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Abstract. This paper provides new exponent and rank conditions for the existence of abelian relative(pa, pb, pa,

pa−b)-difference sets. It is also shown that no splitting relative(22c, 2d, 22c, 22c−d)-difference set exists ifd > c
and the forbidden subgroup is abelian. Furthermore, abelian relative (16, 4, 16, 4)-difference sets are studied in
detail; in particular, it is shown that a relative (16, 4, 16, 4)-difference set in an abelian groupG 6∼= Z8× Z4× Z2

exists if and only if exp(G) ≤ 4 or G = Z8 × (Z2)
3 with N ∼= Z2 × Z2.
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1. Introduction

A relative (m, n, k, λ)-difference set (RDS) in a finite groupG of ordermn relative to a
normal subgroupN of ordern is ak-subsetR of G such that every element ofg ∈ G\N
has exactlyλ representationsg = r1r

−1
2 with r1, r2 ∈ R and no nonidentity element ofN

has such a representation. The notion of relative difference sets was introduced by Bose
[2] and Elliott and Butson [9]. For a detailed survey on RDSs, see [19]. The investigation
of relative difference sets is of great interest because of their connection to design theory:
Relative difference sets are equivalent to certain divisible designs with point regular au-
tomorphism group, see [1]; in particular, certain types of projective planes correspond to
relative difference sets (see [19]).

Furthermore, relative difference sets can be used to construct generalized Hadamard
matrices and sequences with good autocorrelation properties (see [8] and [19]).

Recently, the research concentrated on RDSs with parameters(m, n, k, λ) = (pa, pb, pa,

pa−b) [3–8, 15, 16]. In his above mentioned survey, Pott says that in his opinion, the
existence problem of(pa, pb, pa, pa−b)-RDSs is one of the most interesting questions
about RDSs. In this paper, we will focus on this problem.

In order to describe RDSs effectively we will use the notation of the group ringZG. A
subsetR of G is a relative(m, n, k, λ)-difference set inG relative toN if and only if the
equation

RR(−1) = keG + λ(G− N)

holds inZG, where we identify a subsetA of G with the element
∑

g∈A g in ZG and write
R(−1) = {r−1 : r ∈ R}.

Two RDSsR, R′ in G are called equivalent if there is an automorphismα of G and an
elementg of G such that{α(r )g : r ∈ R} = R′.
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It is well-known that, ifG is abelian, ak-subsetRof G is a relative(m, n, k, λ)-difference
set relative toN if and only if

χ(R)χ(R) =
k if χ ∈ G\N⊥

k− λn if χ ∈ N⊥\{χ0}
k2 if χ = χ0

for every characterχ of G, whereN⊥ = {χ ∈ G∗ : χ is principal onN} andχ0 is the
principal character ofG.

In the following, we list some results which will be needed in the further sections.
Throughout this paper, group homomorphisms will be extendend to the group rings in the
natural way. We begin with a well-known lemma.

Lemma 1.1 Let G be a finite group of order mn, let U be a normal subgroup of order u
of G and letρ : G→ G/U be the canonical epimorhism. If R is an(m, n, k, λ)-RDS in G
relative to a normal subgroup N of G, then

ρ(R)ρ(R)(−1) = k+ uλ(G/U )− |N ∩U |λ(NU/U ).

In particular, if U ≤ N thenρ(R) is a (m, n/u, k, uλ)-RDS in G/U relative to N/U (in
this situation we say that R is alifting of ρ(R)).

Before we can state a very useful result of Turyn we need a definition.

Definition 1.2 Let p be a prime and letm be a positive integer. We writem = pam′

with (m′, p) = 1). We call p selfconjugate mod miff there exists a positive integeri with
pi ≡ −1 modm′.

Remark In particular,p is selfconjugate modpb for everyb ≥ 0.

Result 1.3 [21] Let ξ be a complex mth root of unity and let p be a prime which is
selfconjugatemodm. If X ∈ Z[ξ ] satisfies

XX̄ ≡ 0 mod p2a

then we have

X ≡ 0 mod pa.

Result 1.3 is frequently used in connection with Ma’s Lemma, which is one of the most
important tools in the theory of difference sets and relative difference sets.

Lemma 1.4 (Ma’s Lemma [14]) Let p be a prime and let G be a finite abelian group with
a cyclic Sylow p-subgroup. If Y∈ ZG satisfies

χ(Y) ≡ 0 mod pa
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for all nontrivial charactersχ of G then there exist X1, X2 ∈ ZG such that

Y = pa X1+ P X2,

where P is the unique subgroup of order p of G.
Furthermore, if Y has only nonnegative coefficients then X1 and X2 can be chosen to

have nonnegative coefficients only.

The following lemma due to Ma and Pott [15] has the same goal as Ma’s Lemma:
Conversion of character equations into equations inZG.

Lemma 1.5
(a) Let P be a cyclic group of order pt where p is a prime. Let Pi be the unique subgroup

of order pi of P (0≤ i ≤ t). If A ∈ Z P satisfies

χ(A)χ(A) = p2a

for all χ ∈ P∗\P⊥n where1≤ n ≤ t and n≤ a, then we have

A =
n−1∑
m=0

εm(p
a−mPm − pa−m−1Pm+1)gm + PnY

with εm = ±1, gm ∈ P and Y∈ Z P.
(b) Let G= 〈g〉 be a cyclic group of order2t and let Gi be the unique subgroup of order

2i of G (0≤ i ≤ t). If A ∈ ZG satisfies

χ(A)χ(A) = 22a+1

for all χ ∈ G∗\G⊥n , where1≤ n ≤ t − 1 and n≤ a+ 1, then we have

A =
n−1∑
m=0

XmGmgm + GnY

with gm ∈ G,

Xm = 2a−m−1
(
1+ g2t−m−2− g2·2t−m−2 − g3·2t−m−2)

for m≤ a− 1 and

Xa = 1− gt−a−2.

Finally, we recall a well-known theorem of Kronecker.

Result 1.6 (Kronecker) Letξ be a complex mth root of unity. If x∈ Z[ξ ] has modulus1
then x= ±ξ i for a suitable rational integer i.
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2. Existence results

In this section we summarize the known existence results for(pa, pb, pa, pa−b)-RDS. It
should be mentioned that forb = 1 there are more constructions than in the general case.
We refer the reader to Ma and Schmidt [16] where the caseb = 1 is studied in detail.

Result 2.1 [9]
(a) Let p be an odd prime and let a, b be positive integers with a≥ b. Then there is a

(pa, pb, pa, pa−b)-RDS in E A(pa+b).
(b) Let c be a positive integer. Let G∼= (Z4)

c and let N be the unique subgroup of G
isomorphic to(Z2)

c. Then there is a(2c, 2c, 2c, 1)-RDS in G relative to N.

Result 2.2 [5] Let p be a prime and let G be an abelian group of order p2c+k where k≤ c.
Furthermore,we assume rank(G) ≥ pc+k. Let N be an arbitrary subgroup of G isomorphic
to (Z p)

k. Then G contains a(p2c, pk, p2c, p2c−k)-RDS relative to N.

Result 2.3 [13] Let s, d, r, t be positive integers with r≤ s and t≤ d. We write s= ar+b
where a and b are nonnegative integers with b< r . Let p be a prime and let N be an arbitrary
( possibly nonabelian) group of order pt . Then there is a(p2sd, pt , p2sd, p2sd−t )-RDS in

(Z pa+1)2db× (Z pa)2d(r−b) × N

relative to N.

The following product construction essentially goes back to Davis [4].

Result 2.4 Let G be a group of order m1m2n. Let H1 be a subgroup of G and let H2 and
N be normal subgroups of G with|H1| = m1n, |H2| = m2n, |N| = n and H1 ∩ H2 = N.

If Ri is an(mi , n,mi ,mi /n)-RDS in Hi relative to N, i = 1, 2, then

R1R2 = {r1r2 : r1 ∈ R1, r2 ∈ R2}

is an(m1m2, n,m1m2,m1m2/n)-RDS in G relative to N.

3. Exponent bounds

Using the arguments of Turyn [21] one can prove the validity of following the exponent
bound.

Result 3.1 [6, 18] Let G be an abelian group of order pa+b and let N be a subgroup of
order pb of G. A(pa, pb, pa, pa−b)-RDS in G relative to N can only exist if

exp(G) ≤ p
a+1

2 exp(N).
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This bound is not entirely satisfactory as it ignores the position ofN in the underlying
group which sometimes is relevant. With a more detailed analysis we can prove a slightly
stronger result.

Theorem 3.2 Let G be an abelian group of order pa+b and let N be a subgroup of order
pb of G. We write N as direct product of cyclic groups:

N = 〈n1〉 × 〈n2〉 × · · · × 〈nt 〉.

Let Z be a cyclic subgroup of G. If U:= Z ∩ N 6= 1, then we write U= 〈u〉, |U | = py,

u =
t∏

i=1

(
npxi ai

i

)
with (ai , p) = 1 and we set m= min{xi : i = 1, 2, . . . , t}. If G contains a(pa, pb, pa,

pa−b)-RDS relative to N then
(a) |Z| ≤ p

a+3
2 if Z ∩ N = 1 and

(b) |Z| ≤ p
a+1

2 +y+m if Z ∩ N 6= 1.

Proof: Let R be a(pa, pb, pa, pa−b)-RDS inG relative toN.

(a) LetZ ∩ N = 1. By elementary character theory we can choose a characterχ of G with
Kerχ |Z = 1 and|Kerχ |N | = |N|/p. We write K = Kerχ . Let ρ : g → G/K be
the canonical epimorphism. The coefficients ofρ(R) are obviously≤|K |/|K ∩ N| ≤
pa+1/|Z|. Now the assertion follows from Result 1.3 and Ma’s Lemma.

(b) LetZ ∩ N 6= 1. We choose a characterχ ′ of G with |Kerχ ′|Z| = py−1 and|Kerχ ′|N | =
|N|/pm+1. The assertion follows as in (a). 2

Example By Theorem 3.2(a) there is no(p4, p3, p4, p)-RDS inZ p4 × N relative toN
whereN is cyclic of orderp3. This RDS can not be excluded by Result 3.1.

Another exponent bound is due to Pott [18] who generalized an ad-hoc argument of
Hoffmann [11]:

Result 3.3 Let G be an abelian group of order pa+b and let N be a subgroup of order pb

of G. If G contains a(pa, pb, pa, pa−b)-RDS relative to N then

exp(G) ≤ pa

or p = 2,a = b = 1.

Ma and Pott [15] were able to prove the following strong bounds.

Result 3.4 Let p be a prime.
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(a) Let G be an abelian group of order p2a+b+1 and let N be a subgroup of order pb of G.
If there exists a(p2a+1, pb, p2a+1, p2a−b+1)-RDS in G relative to N then

exp(G) ≤ pa+1

if p is odd and

exp(N) ≤ 2a+1

if p = 2.
(b) Let G be an abelian group of order p2a+b and let N be a subgroup of G of order pb. If

there exists a(p2a, pb, p2a, p2a−b)-RDS in G relative to N then

exp(N) ≤ pa.

Using the method of Ma and Pott [15] and some additional arguments we can improve
Result 3.4(a) forp = 2.

Theorem 3.5 Let G be an abelian group of order22a+b+1 and let N be a subgroup of order
2b of G. If G contains a(22a+1, 2b, 22a+1, 22a−b+1)-RDS relative to N then

exp(G) ≤ 2a+2.

Furthermore, if exp(N) < exp(G) then

exp(N) ≤ 2a.

Proof: Let R be a(22a+1, 2b, 22a+1, 22a−b+1)-RDS relative toN. We write exp(G) = 2t .

(a) By Result 3.4(a) we have exp(N) ≤ 2a+1. We will show that the assumption exp(N) =
2a+1< 2t leads to a contradiction proving the second assertion of the Theorem 3.5.
Let G′ be a cyclic group of order 2t and letρ : G → G′ be an epimorphism with
|ρ(N)| = 2a+1.
Application of Lemma 1.5(b) yields

ρ(R) =
a−1∑
m=0

GmXmgm + εaGa
(
1− g2t−a−2)

ga + Ga+1Y

using the notation of 1.5(b). Without loss of generality we assumega = 1. Letχ be a
character ofG′/Ga+1. If we view Y as an element ofZ(G′/Ga+1) we get

χ(Y) =
2a if χ = χ0

0 if 2 ≤ o(χ) ≤ 2t−a−2

−1 if o(χ) = 2t−a−1
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Hence the coefficient of 1 inY is

2−t+a+1(2a − 2t−a−2) = 22a+1−t − 1

2
6∈ Z,

a contradiction.
(b) We have to show exp(G) ≤ 2a+2. By Result 3.4(a) and part (a) of the proof we can

assume exp(N) =: 2n ≤ 2a. Let G′ be a cyclic group of order 2t and letρ : G→ G′

be an epimorphism with|ρ(N)| = 2n. By Lemma 1.5(b) we get (using the notation of
this lemma)

ρ(R) =
n−1∑
m=0

εmGmXmgm + GnY

with

Xm = 2a−1−m
(
1+ g2t−m−2 − g2·2t−m−2 − g3·2t−m−2)

for all m. Sinceχ(Y) = 0 for all charactersχ of G′ which are nonprincipal onGn we
infer

GnY = 22a+1−t G′.

Without loss of generality letg0 = 1. We write

ρ(R) = A+ B+ C

with

A = 2a−1
(
1+ g2t−2 − g2·2t−2 − g3·2t−2)

+ 2a−2
(
1+ g2t−3 − g2·2t−3 − g3·2t−3)

,

B =
n−1∑
m=2

GmXmgm,

C = 22a+1−t G′.

It is easy to see that we always can find an element ofG′ whose coefficient inA is less or
equal−2a−1. The coefficients ofB are less or equal 2a−3+ 2a−4+ · · · + 2a−n < 2a−2.
This implies

−2a−1+ 2a−2+ 22a+1−t > 0,

hencet < a+ 3. 2
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4. Further exponent and rank conditions

In this section we prove two new nonexistence theorems using the techniqes developed by
Ma and Schmidt [16, 17]. To this end we will need the following lemmas contained in
[16, 17].

Lemma 4.1 Let p be a prime, let G be a finite abelian group with Sylow p-subgroup
P and let g0 ∈ G be an element of orderexp(P). We write pc = |P|/ exp(P) and
P = {U < P : |U | = pc, U ∩ 〈g0〉 = 1 and P/U is cyclic}. Furthermore, we set
U ′ = {g : gps ∈ U } for U ∈ P where s is a positive integer with ps ≤ exp(P).

Moreover, we assume that there is a subset D of G such that for every U∈ P and g∈ G
either
(1) |D ∩Uh| ≥ δ and|D ∩ (U ′\U )h| ≤ ε for a suitable h∈ U ′g or
(2) |D ∩U ′g| ≤ ε′
whereδ, ε, ε′, δ > ε′ are fixed positive integers not depending on U. Furthermore, we
assume that there is at least one coset U′g satisfying condition(1).

We write t= rank(P), P = 〈g0〉 × 〈g1〉 × · · · × 〈gt−1〉 where o(g0) = exp(P) and
o(gi ) = pai for i = 1, 2, . . . , t − 1. We set bi = min{s,ai }. Then

δ −mε ≤ pc−∑m
i=1 bi

for m= 1, 2, . . . , t − 1.

Lemma 4.2 Let p be a prime and let G= A×B×H be an abelian group with A∼= (Zpa)s,

B = 〈β1〉 × 〈β2〉 × · · · × 〈βt 〉, o(β j ) = pbj ≤ pa for 1≤ j ≤ t and(p, |H |) = 1. We set
e= a(s− 1)+∑t

j=1 bj ,

P = {W ≤ A : |W| = pa(s−1) and A/W is cyclic}

and

R = {W × 〈β1γ1〉 × · · · × 〈βtγt 〉 : W ∈ P, γ j ∈ A, o(γ j ) ≤ pbj }.

If a subset D of G satisfies

χ(D) ≡ 0 mod pe

for all nonprincipal charactersχ of G then D can be written as

D =
∑
U∈R

U XU + KY

with XU ,Y ⊂ G, where K is the unique maximal elementary abelian subgroup of A.

Now we are ready to prove our main theorems.
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Theorem 4.3 Let p be an odd prime, let G be an abelian group of order p2a+b and let N
be a subgroup of G of order pb. Let R be a(p2a, pb, p2a, p2a−b)-RDS in G relative to N.
Furthermore, we assume that G contains an element g0 of order pa+r+2 (r ≥ 0). We write
G as a direct product of cyclic groups:

G = 〈g0〉 × 〈g1〉 × · · · × 〈gt−1〉

with o(gi ) = pai for i = 1, 2, . . . , t − 1. We set

b(s)i = min{ai , s}

for s= 1, 2, . . . , r + 1, i = 1, 2, . . . , t − 1 and

py = max

{ |N|
|U ∩ N| : U ≤ G, |U | = pa+b−r−2,U ∩ 〈g0〉 = 1,G/U ∼= Z pa+r+2

}
(note that by Result3.4(b) py ≤ exp(N) ≤ pa). Then

pa −m(ps − 1)(pa−r−2− pa−y) ≤ pa+b−r−2−∑m
i=1 b(s)i

for s= 1, 2, . . . , r + 1 and m= 1, 2, . . . , t − 1.

Proof: Let U be an arbitrary subgroup of orderpa+b−r−2 of G such thatG/U is cyclic
andU ∩ 〈g0〉 = 1. From Theorem 3.2(a) it is clear thatN£U . Let ρ : G → G/U be
the canonical epimorphism. By Result 1.3 and Ma’s Lemmaρ(R) must have at least one
coefficient greater or equalpa. On the other hand, the coefficients ofρ(R) are obviously
less or equal|U |/|U ∩ N|. This impliespa ≤ |U |/|U ∩ N|, and hence we have

|ρ(N)| = |N|
|U ∩ N| ≥

pa|N|
|U | = pr+2.

We write |ρ(N)| = px with x ≥ r + 2. By Result 3.4(b) we can assumex ≤ a. By
Lemma 1.5(a) we get (using the notation of this lemma)

ρ(R) =
x−1∑
m=0

εm pa−m−1(pPm − Pm+1)gm + pa−r−2Pa+r+2. (1)

We claim

ε0 = ε1 = · · · = εr+1 = 1 and Pi g0 = Pi gi (2)

for i = 0, 1, . . . , r + 1.
We prove (2) by induction. Forg ∈ G/U let C(g) be the coefficient ofg in ρ(R).
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(a) We assumeε0 = −1. Then by (1) (recall thatp 6= 2)

C(g0) ≤ −pa + pa−1+ pa−1− pa−2+ pa−2+− · · · + pa−x+1− pa−x + pa−r−2

= −pa + 2pa−1− pa−x + pa−r−2 < 0,

a contradiction. Henceε0 = 1.
(b) Let 1≤ l ≤ r + 1, ε0 = ε1 = · · · = εl−1 = 1 andPi g0 = Pi gi for i = 0, 1, . . . , l − 1.

We have to showεl = 1 andPl g0 = Pl gl . From (1) we have

ρ(R) = (pa − pa−l Pl )g0+
x−1∑
m=l

εm pa−m−1(pPm − Pm+1)gm + pa−r−2Pa+r+2.

Let g′ ∈ Pl g0\{g0}. If εl = −1 or Pl g0 6= Pl gl , then

C(g′) ≤ −pa−l + pa−l−1+ pa−l−1− pa−l−2+− · · · + pa−x+1− pa−x + pa−r−2

= −pa−l + 2pa−l−1− pa−x + pa−r−2 < 0,

a contradiction. Thus we have proved (2). Hence we get

ρ(R) = (pa − pa−r−2Pr+2)g0+
x−1∑

m=r+2

εm pa−m−1(pPm − Pm+1)gm + pa−r−2Pa+r+2

from (1). We infer

C(go) ≥ pa − pa−r−2+ pa−r−3− pa−r−3+− · · · − pa−x+1+ pa−x

= pa − pa−r−2+ pa−x,

C(h) ≤ −pa−r−2+ pa−r−2− pa−r−3+− · · · + pa−x+1− pa−x + pa−r−2

= pa−r−2− pa−x

for h ∈ Pr+2g0\{g0} and

C(h′) ≤ pa−r−2− pa−r−3+ pa−r−3−+ · · · + pa−x+1− pa−x + pa−r−2

= 2pa−r−2− pa−x

for h′ ∈ (G/U )\Pr+2g0. Asρ(R) has at least one coefficient greater or equal topa we
getC(g0) ≥ pa. Now we apply Lemma 4.1 with

δ = pa,

ε = (ps − 1)(pa−r−2− pa−y),

ε′ = ps(2pa−r−2− pa−y)

proving the theorem. 2
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The following theorem deals with an extreme case of Theorem 3.2.

Theorem 4.4 Let G be an abelian group of order p2a+b and let N be a subgroup of order
pb of G. We write N as a direct product of cyclic groups:

N = 〈n1〉 × 〈n2〉 × · · · × 〈ns〉.

Let Z be a cyclic subgroup of G with U:= Z ∩ N 6= 1. We write U= 〈u〉, |U | = py,

u =
t∏

i=1

(
npxi ai

i

)
with (ai , p) = 1 and we set m= min{xi : o(npxi

i ) ≥ py}.
If G contains a(p2a, pb, p2a, p2a−b)-RDS relative to N and if

|Z| = pa+y+m,

then y= 1 and m= 0.

Proof: Without loss of generality leta ≥ 2. By elementary character theory we can choose
a characterχ of G with Kernχ |Z = 1 and|Kernχ |N | = pb−y−m. We setK = Kernχ |N .
Let ρ : G → G/K be the canonical epimorphism. We writēR = ρ(R), Ḡ = ρ(G),
Z̄ = ρ(Z) and N̄ = ρ(N). Then R̄ is a (p2a, py+m, p2a, p2a−y−m)-RDS in Ḡ relative
to N̄. We write

Ḡ = 〈g0〉 × 〈g1〉 × · · · × 〈gt 〉.

with o(g0) = pa+y+m, 〈go〉 = Z̄ ando(gi ) = pai for i = 1, 2, . . . , t . By Result 1.3 and
Lemma 4.2 we get

R̄=
pa1−1∑
i1=0

pa2−1∑
i2=0

· · ·
pat−1∑
i t=0

(
t⊗

l=1

〈
gl g

il pa+y+m−al

0

〉)
Xi1,i2,...,i t +

〈
gpa+y+m−1

0

〉
Y

(
⊗

denotes the internal direct product) for suitableY, Xi1,i2,...,i t ⊂ Ḡ. Let η be a primitive
complexpa+y+mth root of unity. Letχi1,i2,...,i t be the characters defined by

χi1,i2,...,i t (g0) = η

and

χi1,i2,...,i t (gl ) = η−i l pa+y+m−al
.

SinceN̄ 6⊂⊗t
l=1〈gl g

il pa+y+m−al

0 〉 we have

pa = |χi1,i2,...,i t (R̄)| = pa|χi1,i2,...,i t (Xi1,i2,...,i t )|. (3)
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This implies|Xi1,i2,...,i t | = 1 for all i1, i2, . . . , i t andY = 0. Hence we have

R̄=
pa1−1∑
i1=0

pa2−1∑
i2=0

· · ·
pat−1∑
i t=0

(
t⊗

l=1

〈
gl g

il pa+y+m−al

0

〉)
g
εi1,i2,...,i t

0 (4)

with suitable integersεi1,i2,...,i t .
Let χ j0, j1,..., jt be the characters defined by

χ j0, j1,..., jt (g0) = η j0 p

and

χ j0, j1,..., jt (gl ) = η jl pa+y+m−al

for j0 = 0, 1, . . . , pa+y+m−1 − 1 and jl = 0, 1, . . . , pal − 1. Obviously, we have
χ j0, j1,..., jt (R̄) = 0, if ( jl , p) = 1 for at least onel ≥ 1. Hence

|N⊥| = p2a > pa+y+m−1(p− 1)pa−1 = (p− 1)p2a+y+m−2 (5)

if t > 1. If t = 1, then there surely exists a characterχ apart from the charactersχ j0, j1,..., jt
with χ(R) = 0 (recalla > 1). Thus (5) holds in every case. Hencey + m = 1 which
implies y = 1 andm= 0. 2

Corollary 4.5 A (p2a, pb, p2a, p2a−b)-RDS in an abelian group G of exponent pa+b exists
if and only if b= 1.

Proof: Forb > 1 the assertion follows from Theorem 3.2 and Theorem 4.4, and forb = 1
it is contained in Theorem 2.4 of Ma and Schmidt [16]. 2

5. (22a, 2b, 22a, 22a−b)-RDSs with b> a are special

By Result 2.2 a(22a, 2b, 22a, 22a−b)-RDS in an abelian groupG exists if b ≤ a and
rank(G) ≥ 2a+b. Let us compare this with the following remarkable result is due to Ganley
[10] (for a short proof we refer the reader to Jungnickel [12]).

Result 5.1 Let G be an abelian group of order22c and let N be a subgroup of order2c of
G. A(2c, 2c, 2c, 1)-RDS in G relative to N exists if and only if G is isomorphic to(Z4)

c and
N is isomorphic to(Z2)

c.

Something must have happened with the(22a, 2b, 22a, 22a−b)-RDS “on the way” from
b = a to b = 2a. Our next theorem shows what happens and where it happens.
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Theorem 5.2 Let H be an arbitrary( possibly nonabelian) group of order22a and let
N be an abelian group of order2a+1. Then the group G= H × N cannot contain a
(22a, 2a+1, 22a, 2a−1)-RDS relative to N.

Proof: Let R be a(22a, 2a+1, 22a, 2a−1)-RDS inG relative toN. We write exp(N) = 2e.
Let ρ : G→ G/H the canonical epimorphism. We writēR= ρ(R) andN̄ = ρ(N). Let
ξ a primitive complex 2eth root of unity. By Result 1.3 and Result 1.6 we have

χ(R̄) ∈ {2aξ i : i = 0, 1, . . . ,2e− 1}

for all χ ∈ N̄∗\{χ0}, whereχ0 is the principal character of̄N. Furthermore,χ0(R̄) = 22a.
We set

T = {χ ∈ N̄∗ : χ(R̄) 6∈ Z}.

Since the minimum polynomial ofξ is x2e−1 + 1 and∑
χ∈N̄∗

χ(R̄) ∈ Z,

we conclude|T | ≡ 0 mod 2 and
∑

χ∈T χ(R̄) = 0. This implies∑
χ∈N̄∗

χ(R̄) = 22a +
∑
χ∈N̄∗\T
χ 6=χ0

χ(R̄)

≡ 2a mod 2a+1.

However, by the Fourier inversion formula this is impossible as the coefficient of 1 inR̄ is
an integer. 2

6. (16, 4, 16, 4)-RDSs: An unimaginative approach

This section is designed to stress our ignorance about(pa, pb, pa, pa−b)-RDS withb > 1.
We will see that even the smallest interesting case, i.e.,p = 2, a = 4 andb = 2, requires
a lot of work. First of all, we summarize what we know about(16, 4, 16, 4)-RDS from the
previous sections.

Theorem 6.1
(a) There is no(16, 4, 16, 4)-RDS in any abelian group of exponent≥ 16.
(b) The groups(Z2)

6 andZ4× (Z2)
4 contain(16, 4, 16, 4)-RDS for all possible N.

(c) The groups(Z4)
2×(Z2)

2 andZ8×(Z2)
3 contain(16, 4, 16, 4)-RDS for all N∼= Z2×Z2.

Proof: Part (a) follows from Result 3.1 and Corollary 4.5.
The parts (b) and (c) follow from the Results 2.2 and 2.3. 2
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There is one further result due to Davis and Seghal [7]:

Result 6.2 There is a(16, 4, 16, 4)-RDS in(Z4)
3 for all N ∼= Z2× Z2.

Nevertheless, it is clear that we are still far away from having a necessary and sufficient
condition for the existence of abelian(16, 4, 16, 4)-RDSs. In the following we will prove
some interesting new results on these RDSs using the “lifting-method”: By the results
of Ma and Schmidt [16] we can determine the structure of(16, 2, 16, 4)-RDSs in abelian
groups of exponent 8 completely; using some character arguments we will decide if a lifting
of such an RDS to a(16, 4, 16, 4)-RDS is possible. In the case of(16, 4, 16, 4)-RDSs in
abelian groups of exponent 8 which cannot be projected down to a(16, 2, 16, 4)-RDS in
an abelian group of exponent 8, we will have to use Lemma 1.5.

We begin with the characterisation of some(16, 2, 16, 4)-RDSs. For the proof of
Theorem 6.3 and Theorem 6.4 see Example 3.7 and Example 3.10 of Ma and Schmidt
[16].

Theorem 6.3 Let R be a(16, 2, 16, 8)-RDS in G= Z8 × Z4 relative to N= 〈(0, 2)〉.
Then(up to equivalence)

R= 〈(2, 1)〉(1, 0)+ 〈(6, 1)〉(3, 0)+ 〈(4, 0)〉[(0, i1)+ (2, i1)+ (0, i2)+ (2, i2+ 2)]

where(i1, i2) ∈ {(0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3), (3, 0), (3, 2)}.
Conversely, each of the sets R defined above is a(16, 2, 16, 8)-RDS in G relative to N.

Theorem 6.4 Let R be a(16, 2, 16, 8)-RDS in G= Z8 × Z4 relative to N= 〈(4, 0)〉.
Then(up to equivalence)

R= 〈(0, 1)〉 + 〈(2, 1)〉(s1, 0)+ 〈(4, 1)〉(2, 0)+ 〈(6, 1)〉(s2, 0)

where(s1, s2) ∈ {(1, 3), (1, 7), (3, 1), (3, 5)}.
Conversely, each of the sets R defined above is a(16, 2, 16, 8)-RDS in G relative to N.

Theorem 6.5 Let R be a(16, 2, 16, 8)-RDS in G= Z8 × Z2 × Z2 relative to N =
〈(0, 1, 0)〉. Then(up to equivalence)

R= 〈(4, 1, 0), (0, 0, 1)〉 + 〈(4, 1, 0), (4, 0, 1)〉(y, 0, 0)+ 〈(4, 0, 0)〉R0

where either y= 1 and

R0 = g1(2, 0, 0)+ g2(2, 0, 1)+ g3(3, 0, 0)+ g4(3, 0, 1)

or y = 2 and

R0 = g1(1, 0, 0)+ g2(1, 0, 1)+ g3(3, 0, 0)+ g4(3, 0, 1)
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with gi ∈ N,where exactly one element or exactly three elements of the multiset{g1, g2, g3,

g4} are equal to(0, 0, 0).
Conversely, each of the sets R defined above is a(16, 2, 16, 8)-RDS in G relative to N.

Proof: By Theorem 3.9 of Ma and Schmidt [16] we have

R= 〈(4, 1, 0), (0, 0, 1)〉(x, 0, 0)+ 〈(4, 1, 0), (4, 0, 1)〉(y, 0, 0)+ 〈(4, 0, 0)〉R0,

wherex and y are integers andR0 is a 4-element subset ofG. Considering some auto-
morphisms and translates, we obviously can assumex = 0 andy ∈ {1, 2}. If y = 1 then
w.l.o.g.

R0 = g1(2, 0, 0)+ g2(2, 0, 1)+ g3(3, 0, 0)+ g4(3, 0, 1)

wheregi ∈ N, and it is easy to see thatR is a(16, 2, 16, 8)-RDS inG relative toN if and
only if the condition given in the theorem is satisfied.

Similarly we settle the casey = 2. 2

Theorem 6.6 Let R be a(16, 2, 16, 8)-RDS in G= Z8 × Z2 × Z2 relative to N =
〈(4, 0, 0)〉. Then(up to equivalence)

R = 〈(0, 1, 0), (0, 0, 1)〉 + 〈(0, 1, 0), (4, 1, 0)〉(x1, 0, 0)

+〈(4, 1, 0), (0, 0, 1)〉(x2, 0, 0)+ 〈(4, 1, 0), (4, 0, 1)〉(x3, 0, 0)

where(x1, x2, x3) is from

{(1, 2, 3), (1, 2, 7), (1, 3, 6), (1, 6, 7), (2, 1, 3), (2, 1, 7), (2, 3, 5), (2, 5, 7)}.

Conversely, each of the sets R defined above is a(16, 2, 16, 8)-RDS in G relative to N.

Proof: The assertion follows easily from Theorem 3.6 of Ma and Schmidt [16]. 2

Using these characterizations as described above we get the following theorem.

Theorem 6.7
(a) A (16, 4, 16, 4)-RDS in an abelian group G6∼= Z8×Z4×Z2 exists if and only if

exp(G) ≤ 4 or G = Z8× (Z2)
3 with N ∼= Z2× Z2.

(b) Let G= Z8× Z4× Z2.
(i) There is a(16, 4, 16, 4)-RDS in G relative to〈(4, 0, 0), (0, 2, 0)〉.
(ii) There is no(16, 4, 16, 4)-RDS in G relative to〈(2, 0, 0)〉, 〈(0, 1, 0)〉, 〈(4, 0, 0),

(0, 0, 1)〉 or 〈(0, 2, 0), (0, 0, 1)〉.

The existence part of Theorem 6.7 follows from Theorem 6.1, Result 6.2 and the following
theorem that gives some new RDSs. These were constructed (by hand) by lifting suitable
(16, 2, 16, 8)-RDSs which can be found in Ma and Schmidt [16], Theorem 2.1.
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Theorem 6.8
(a) There is a(16, 4, 16, 4)-RDS in(Z4)

2× (Z2)
2 relative to〈(1, 0, 0, 0)〉.

(b) There is a(16, 4, 16, 4)-RDS inZ8× Z4× Z2 relative to〈(4, 0, 0), (0, 2, 0)〉.
(c) There is a(16, 4, 16, 4)-RDS in(Z4)

3 relative to〈(1, 0, 0)〉.

Proof:

(a) We set

R = 〈(0, 2, 0, 0), (0, 0, 1, 0)〉(0, 1, 0, 0)+ (2, 0, 0, 0)+ (0, 0, 1, 0)+ (1, 2, 0, 0)
+ (3, 2, 1, 0)+ [(2, 0, 0, 0)+ (1, 0, 1, 0)+ (0, 2, 0, 0)+ (3, 2, 1, 0)](0, 3, 0, 1)
+ [(0, 0, 0, 0)+ (3, 0, 1, 0)+ (1, 2, 0, 0)+ (2, 2, 1, 0)(0, 0, 0, 1).

(b) We set

R′ = (0, 0, 0)+ (0, 1, 0)+ (0, 0, 1)+ (0, 3, 1)+ [(0, 0, 0)+ (4, 3, 0)+ (0, 0, 1)
+ (4, 1, 1)](1, 0, 0)+ [(0, 0, 0)+ (0, 3, 0)+ (4, 0, 1)+ (4, 1, 1)](2, 0, 0)
+ [(0, 2, 0)+ (4, 3, 0)+ (4, 2, 1)+ (0, 1, 1)](3, 0, 0).

(c) We set

R′′ = 〈(0, 2, 0), (0, 0, 2)〉 + (0, 1, 0)+ (3, 3, 0)+ (2, 1, 2)+ (1, 3, 2)+ (0, 0, 1)
+ (2, 2, 1)+ (1, 0, 3)+ (3, 2, 3)+ (0, 1, 1)+ (3, 3, 1)+ (1, 1, 3)+ (2, 3, 3).

Using characters it is easily seen thatR, R′ andR′′ are the required RDS. 2

Now we turn to the nonexistence part of Theorem 6.7. Since this requires lenghty proofs
with lots of case distinctions we only give some examples for the nonexistence proofs; all
other proofs are similar. The complete proof of Theorem 6.7 can be found in Schmidt [20].

Theorem 6.9 There is no(16, 4, 16, 4)-RDS in G=Z8× Z8 relative to N= 〈(2, 0)〉.

Proof: Let R be such an RDS. By Theorem 4.3 it is clear that we can assume

R = (0, 1)g1+ (1, 3)g2+ (2, 5)g3+ (3, 7)g4+ (0, 3)g5+ (1, 1)g6+ (2, 7)g7

+ (3, 5)g8+ (i1, 0)g9+ (i1, 2)g10+ (i2, 0)g11+ (i2+ 2, 2)g12+ (i1, 4)g13

+ (i1, 6)g14+ (i2, 4)g15+ (i2+ 2, 2)g16

wheregj ∈ 〈(4, 0)〉 for j = 1, 2, . . . ,16 and(i1, i2) ∈ {(0, 1), (0, 3), (1, 0), (1, 2), (2, 1),
(2, 3), (3, 0), (3, 2)}. We setε j = 1 if gj = (0, 0), andε j = −1 if gj = (4, 0). We define
the charactersχ0, χ1, χ2, χ3 of G by χk(1, 0) = ξ for k = 0, 1, 2, 3, χ0(0, 1) = 1 and
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χk(0, 1) = ξ k for k = 1, 2, 3, whereξ is a complex eighth root of unity. We put theε j into
a matrix:

ε1 ε2 ε3 ε4

ε5 ε6 ε7 ε8

ε9 ε10 ε11 ε12

ε13 ε14 ε15 ε16

 .
In the following matrices we write anm in the position ofε j if the character value of the
term of R belonging toε j is ξm. We get forχ0, χ1, χ2, χ3:

0 1 2 3

0 1 2 3

i1 i1 i2 (i2+ 2)

i1 i1 i2 (i2+ 2)

 , (6)


1 4 7 2

3 2 1 0

i1 (i1+ 2) i2 (i2+ 4)

(i1+ 4) (i1+ 6) (i2+ 4) i2

 , (7)


2 7 4 1

6 3 0 5

i1 (i1+ 4) i2 (i2+ 6)

i1 (i1+ 4) i2 (i2+ 6)

 , (8)


3 2 1 0

1 4 7 2

i1 (i1+ 6) i2 i2

(i1+ 4) (i2+ 2) (i2+ 4) (i2+ 4)

 . (9)

If for examplei1 = 0 andi2 = 1, then we get (using Result 1.3 and Result 1.6)ε3 = −ε7

from (6),ε3 = ε5 from (7),ε1 = ε5 from (8) andε1 = ε7 from (9), a contradiction. Similarly
we get contradictions for all other values ofi1 andi2. 2

Theorem 6.10 There is no(16, 4, 16, 4)-RDS in G = Z8 × (Z2)
3 relative to N =

〈(2, 0, 0, 0)〉.

Proof: Let R be such an RDS. We writeG = 〈g〉 × H and N = 〈g2〉 with o(g) = 8.
Let ρ1 : G→ Ḡ = G/〈g4〉 andρ2 : Ḡ→ Ḡ/ρ1(H) be the canonical epimorphisms. By
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Result 1.3 and Lemma 1.5(a) we have (using the notation of Lemma 1.5)

ρ2(ρ1(R)) = ±(4− 2P1)g0+ 4P2.

W.l.o.g. we can assume

ρ2(ρ1(R)) = 2+ 6h2+ 4(h+ h3)

with ρ2(ρ1(G)) = 〈h〉. This implies

R= A+ g2B+ gC+ g3D

with A, B,C, D ⊂ 〈g4〉H , |A| = 2, |B| = 6, |C| = |D| = 4 andρ1(A+ B) = ρ1(H).
W.l.o.g we assumeA = {1,a} with a ∈ 〈g4〉H\{1}. Let χ be the character ofG defined
byχ(g) = ξ andχ ∈ H⊥. Hencea = g4h′ for a suitableh′ ∈ H\{1}. Let τ be a character
of H with τ(h′) = −1. Obviously, we have|χ ⊗ τ(R)| 6= 4, a contradiction. 2

We conclude our paper with some remarks on Theorem 6.7.

1) Note that Theorem 6.7 settles the existence problem of abelian (16, 4, 16, 4)-RDS
completely.

2) Theorem 6.7 implies that—contrary to the caseb = 1—in general the necessary and
sufficient condition for the existence of abelian(pa, pb, pa, pa−b)-RDSs can not be an
exponent bound.

3) It seems to be very difficult to extend the lifting method used in Theorem 6.7 to attack
the general case of abelian(pa, pb, pa, pa−b)-RDSs. Despite the results of this paper,
a really satisfactory method is still missing.
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