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Abstract. LetG be a connected trivalent graph onn vertices (n ≥ 10) such that among all connected trivalent
graphs onn vertices,G has the largest possible second eigenvalue. We show thatG must bereduced path-like,
i.e. G must be of the form:

where the ends are one of the following:
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(the right-hand end block is the mirror image of one of the blocks shown) and the middle blocks are one of the
following:
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This partially solves a conjecture implicit in a paper of Bussemaker,Čobeljić, Cvetković, and Seidel [3].
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1. Introduction

We letG be a connectedk-regular graph onn vertices, andA its adjacency matrix. Let
λ1 ≥ λ2 ≥ . . . ≥ λn, be the eigenvalues ofA, also called the eigenvalues ofG. They are
real,λ1 = k andλ2 < k. The difference betweenλ1 andλ2 is called theeigenvalue gap.
The eigenvalue gap was first investigated by Fiedler in 1973, who called it thealgebraic
connectivity(see [5]). He bounded this gap above and below by functions of the edge
connectivity ofG. Later, Alon and Milman [2] and Alon [1] bounded the isoperimetric
ratio of G (a more global measure of connectivity) above and below, respectively, by
functions of the eigenvalue gap.

* Research partially supported by an IREX Fellowship while the author was visiting the Mathematical Research
Institute of the Hungarian Academy of Sciences.
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In 1976, Bussemaker,̌Cobeljić, Cvetković, and Seidel ([3], see also [4]) enumerated all
connected trivalent graphs with up to 14 vertices. (We note that trivalent graphs must have an
even number of vertices.) They ordered the graphs lexicographically by their eigenvalues.
The ordering is interesting in that certain combinatorial properties change gradually (e.g.
diameter, connectivity, girth). Graphs whose second largest eigenvalue is large, tend to be
very long, path-like; they have cut edges, large diameter, and small girth. Moving down
the list, as the second eigenvlaue decreases, diameter decreases and both connectivity and
girth increase. Those for which the second eigenvalue is smallest are very compact, they
have small diameter, large girth, and high connectivity.

We show that the trivalent graph onn vertices with maximal second eigenvalue must look
like a path. We formalize this with the following definitions.

Definition A trivalent graph is said to bepath-likeif it has the form:

where each end block is one of the following:
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(the right-hand end block is the mirror image of one of the blocks shown) and each middle
block is one of the following:
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Definition We define a trivalent graph to bereduced path-likeif it is path-like, the end
blocks are of the first two types, and the middle blocks are of the first two types.

LetHn be the reduced path-like graph onn vertices with middle blocks of the first type
and one end block of the first type. The other end block is then forced by the value ofn.

The graphHn only makes sense forn ≥ 10, and the enumeration of Bussemaker et al.
shows that forn = 10, 12, 14, Hn is the unique connected trivalent graph with maximal
second eigenvalue. L. Babai proposed the following conjecture, implicit in the results of
Bussemaker et al.:

Conjecture. For n ≥ 10, the graphHn is the unique connected trivalent graph with
maximum second eigenvalue.

We do not prove the conjecture, instead we prove the following result which supports the
conjecture.
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Theorem 1 LetG be a connected trivalent graph onn vertices(n ≥ 10), such that among
all connected trivalent graphs onn vertices,G has maximal possible second eigenvalue.
ThenG is reduced path-like.

(Note: for the exact graphs achieving the maximum second eigenvalue forn < 10, see
the paper of Bussemaker et al. [3])

We make one more elementary definition and then outline the proof of the theorem.

Definition An elementary movein a graph is a switching of parallel edges: leta ∼ b and
c ∼ d in G, a 6∼ c, b 6∼ d (here∼ and 6∼ denote adjacency and non-adjacency inG), then
the elementary move SWITCH(a, b, c, d) removes the edges{a, b} and{c, d} and replaces
them with the edges{a, c} and{b, d}.

qc qd
qa qb

- qc qd
qa qb

We prove the theorem in two parts. First we show that ifG is not already minimal
path-like, we may transform it into such a graph by elementary moves, never decreasing
the second eigenvalue (and assuming it is maximal, never increasing it). Throughout the
transformation, we maintain connectivity. We then show that the eigenvector for the second
eigenvalue is strictly decreasing from left to right (when the graph is drawn path-like, as
above). It then follows that any elementary move will decrease the second eigenvalue, thus
showing thatG must have been minimal path-like to begin with.

2. General set-up

LetG be a connected trivalent graph onn vertices. LetA be the adjacency matrix ofG. The
largest eigenvalue ofG is 3 with eigenvectorj, the all one’s vector. The second eigenvalue,
λ2, is given by the maximum of the Rayleigh quotient:

λ2 = max
x⊥j

xtAx
||x||2 .

Letµ :V −→ R be an eigenvector for the second eigenvalue, considered as a weighting on
the vertices; forv ∈ V we writeµv = µ(v). For convenience, we may assume the vertex
set is[n] = {1, 2, . . . , n} and that the vertices are numbered so thatµ1 ≥ µ2 ≥ · · · ≥ µn.
We call this aproper labelingof the vertices (with respect to the eigenvector for the second
eigenvalue).

We can now clarify the reconnecting. With respect to a proper labeling, we show that we
can reconnect to get vertex 1 adjacent to vertices 2, 3, and 4. We can then reconnect to get
2 adjacent to 3 and 4. This now looks like:
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We show that we can continue in this way, getting a path-like graph, with the labels
increasing from left to right. The trick is not to disconnect the graph while we are recon-
necting, and not to lower the second eigenvalue. We ensure that the eigenvalue does not
decrease by choosing our switch carefully.

Lemma 1 LetG be a connected trivalent graph with maximalλ2. Letµ : V −→ R be
an eigenvector forλ2. If there are verticesa, b, c, d in G such thata ∼ b, c ∼ d, a 6∼
c, b 6∼ d, µa ≥ µd, andµc ≥ µb, thenSWITCH(a, b, c, d) does not decrease the second
eigenvalue.

Proof: We may assume that‖µ‖ = 1, thenλ2 = µtAµ, whereA is the adjacency matrix
of G. LetA′ be the adjacency matrix of the graph after the reconnection. In light of the
Rayleigh quotient, it suffices to show that

µtA′µ ≥ µtAµ.

This follows immediately from

µtA′µ− µtAµ = µt(A′ −A)µ = 2µaµc + 2µbµd − 2µaµb − 2µcµd =

= 2(µa − µd)(µc − µb) ≥ 0.

We have the following lemma to help with keeping the graph connected during recon-
necting:

Lemma 2 LetG be a connected trivalent graph on[n] with maximalλ2, properly labeled
with respect to an eigenvectorµ. Assume thatG \ [r] is disconnected and that each of its
components has and edge which is not a cut edge. Then we may reconnect the graph using
elementary moves to connectG \ [r], not changingλ2.

Proof: It suffices to prove the lemma whenG \ [r] has two connected componentsH
andK. We will prove the lemma by contradiction. Assume that we cannot reconnect the
graph to accomplish our goal. Let{u1, u2} be a non-cut edge inH and{v1, v2} a non-cut
edge in a cycle inK. Because these edges are not cut edges, both SWITCH(u1, u2, v1, v2)
and SWITCH(u1, u2, v2, v1) would leaveG andG \ [r] connected, so it must be the case
that these switches decreaseλ2. Based on the previous lemma, this only happens if the
weights of one pair are strictly greater than those of the other pair. We may assume that
µu1 , µu2 > µv1 , µv2 . Let x be an element in[r] adjacent toK and let(v1, v2, v3, . . . , vt)
be a shortest path inG, vt = x (we may possibly need to switch the roles ofv1 andv2).
For1 ≤ i < t, SWITCH(u1, u2, vi, vi+1) and SWITCH(u1, u2, vi+1, vi) would connectH
andK, leaving the graph conected, so by induction,µu1 , µu2 > µv1 , µv2 , . . . , µvt , but this
is a contradiction, asµx ≥ µv for all v ∈ H.
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3. Reconnecting to get reduced path-like

Assume thatG is a connected trivalent graph onn vertices,n ≥ 10. We further assume that
among all connected trivalent graphs onn vertices,G has maximal second eigenvalue, and
thatG is properly labeled. During the reconnecting, we will denoteG by Gk to indicate
that the firstk vertices are in path-like form.

3.1. GettingG

3.1.1. Connecting 1 to 2.

If 1 6∼ 2 then there is a shortest path(1, i1, . . . , ir, 2) from 1 to 2. Letx be a neighbor of 1
such thatx 6= i1 andx 6∼ ir, then we may apply SWITCH(1, x, 2, ir), not decreasing the
second eigenvalue and leaving 1 adjacent to 2 andG connected.

3.1.2. Connecting 1 to 3.

If 1 6∼ 3 then letx 6= 2 be a neighbor of 1. By a simple counting argument, each connected
component ofG \ {1} contains a cycle. We may therefore use Lemma 2 to assume that
G \ {1} is connected. Let(x, i1, . . . , ir, 3) be a shortest path fromx to 3 not passing
through 1. Lety be a neighbor of 3 so thaty 6= ir andy 6∼ ir, then SWITCH(1, x, 3, y).

3.1.3. Connecting 1 to 4.

(This is identical to the previous reconnection.) If1 6∼ 4 then letx be the third neighbor
of 1. We may assume (by Lemma 2), thatG \ {1} is connected. Let(x, i1, . . . , ir, 4) be a
shortest path fromx to 4 not passing through 1. Lety be a neighbor of 4 so thaty 6= ir and
y 6∼ ir, then SWITCH(1, x, 4, y).

3.1.4. Connecting 2 to 3.

We may assume thatG \ {1} is connected. Let(2, i1, . . . , ir, 3) be a shortest path in
G\{1}. Letx be the third neighbor of 2 andy the third neighbor of 3. Ifr = 2, x ∼ i2, and
i1 ∼ y, thenx cannot be adjacent toy becauseG\{1} is connected, so SWITCH(2, x, 3, y)
connects2 to 3, as required. Otherwise, eitherx 6∼ ir and SWITCH(2, x, 3, ir), or i1 6∼ y
and SWITCH(2, i1, 3, y).

3.1.5. Connecting 2 to 4.

If there is a vertexx adjacent to2, 3, and4, lety be the third neighbor of4, thenx 6∼ y and
SWITCH(2, x, 4, y). Otherwise, we may assume by Lemma 2 thatG \ [4] is connected.
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Let x be the third neighbor of 2,y the third neighbor of 3, and letu andv be the two
other neighbors of 4. If3 ∼ 4 then SWITCH(2, x, 4, 3). Otherwise, ifx 6= u andx 6∼ u,
then apply SWITCH(2, x, 4, u). If one of these relations does not hold, try the same forv
instead ofu. If the same relations hold forv, try to get3 ∼ 4 by considering 3 instead
of 2 and looking atu and v; then SWITCH(2, x, 4, 3) will work. If none of these are
allowed, thenG \ [4] has a connected component consisting of just{x, y, u, v}, this set
having 2 or 4 points depending on the equalities, and being disconnected from the rest of
the graph. This contradicts the fact thatG \ [4] is connected (in fact, in this caseG has a
connected component with 6 or 8 vertices, contradicting the fact thatG is connected with
at least 10 vertices).

3.2. General Steps

We now introduce general steps that deal with the remaining vertices. We assume at this
point that the graph G has the desired connections among the vertices[r], i.e. we haveGr.
The next three sets of general steps show how to reconnectGr to get eitherGr+1 ofGr+2.

3.2.1. r is odd.

Based on our construction, we only arrive at this case whenr ∼ r−2 andr ∼ r−1, so there
is only one edge leaving the firstr vertices, and it leaves fromr. We need to connectr to
r + 1. Let x be the third neighbor ofr andy be a neighbor ofr + 1 the furthest possible
from r and SWITCH(r, x, r + 1, y). This gives usGr+1.

3.2.2. r is even and the two edges leaving the firstr vertices both come fromr.

Step 1. Connectr to r + 1. Let x be the neighbor ofr closest tor + 1 and lety be the
neighbor ofr + 1 furthest fromr. SWITCH(r, x, r + 1, y).

Step 2. Connectr to r + 2. We may assume thatG \ [r + 1] is connected. Letx
be the third neighbor ofr. Let y be the neighbor ofr + 2 furthest fromx in G \ [r].
SWITCH(r, x, r + 2, y). This does not disconnect because there is a path fromx to one of
the other neighbors ofr + 2 not using the two removed edges.

Step 3. Connectr + 1 to r + 2. We may assume thatG \ [r + 2] is connected. There are
some cases to consider:

case i: r + 1 andr + 2 share two neighbors. Call the neighborsx andy. If x ∼ y, then
n = r + 4 and we are done as this isGn. Otherwise, SWITCH(r + 1, x, r + 2, y). This
leavesGr+2.
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case ii: distG\[r](r + 1, r + 2) = 3 and both neighbors ofr + 1 andr + 2 are adjacent
to each other (thenn = r + 6). Let x be the smallest among the remaining vertices (i.e.
x = r+ 3), soµx is largest among the remaining vertices. Lety, z be the two neighbors of
x and letw = r + 1 or r + 2, whichever is adjacent toy andz, and call the other̄w. Then
SWITCH(w, y, x, z) reduces the graph tocase iii.
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case iii: distG\[r](r+1, r+2) = 2. If we arrive at this case thenr+1 andr+2 share one
neighbor (because ofcase i). Call this neighborx and lety andz be the other neighbors
of r + 1 andr + 2 respectively. Then eitherx 6∼ y and SWITCH(r + 1, y, r + 2, x), or
x 6∼ z and SWITCH(r + 1, x, r + 2, z). This leavesGr+2.

case iv: Let x andy be neighbors ofr + 1 andr + 2 respectively, such thatx 6∼ y and
one is on a path fromr + 1 to r + 2. SWITCH(r + 1, x, r + 2, y).

3.2.3. r is even and the two edges leaving the firstr vertices come fromr andr − 1.

We note that if we arrive at this case, thenr ∼ r−1.
Step 1.Connectr − 1 to r + 1. We may assume thatG \ [r] is connected and hence there
is a path fromr− 1 to r+ 1 not passing throughr. Letx be the third neighbor ofr− 1 and
let y be the neighbor ofr+ 1 furthest fromr− 1 inGr \ {r}. SWITCH(r− 1, x, r+ 1, y).
If r ∼ r + 1 too, then this isGr+1 and skip the following steps.

Step 2.Connectr to r + 2. This is the same as step 2 above.

Step 3.Connectr + 1 to r + 2. This is the same as for step 3 above.

3.3. PuttingG in reduced path-like form

We may now assume thatG is path-like with labels increasing from left to right in a
proper labeling (this is what we have acheived in the previous reconnecting). By applying
SWITCH(r+1, r+3, r+2, r+4) as often as possible toG, we putG in minimal path-like
form without decreasingλ2.
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4. The eigenvector coordinates are strictly decreasing

In the previous section we reconnected the graph to put it in reduced path-like form with
the weights given byµ non-increasing from left to right. Assume that the graph is drawn
horizontally like the original example in the definition of path-like, with the vertices num-
bered 1 ton, increasing from left to right. Further, assume that the weights of the vertices
given by an eigenvectorµ of λ2 are non-increasing from left to right. We will show that
these weights are in fact strictly decreasing. We may assume that vertices with the same
vertical position (a set of points are in the said to have the samevertical positionif they lie
on the same vertical line) have the same weight (we may assume this by noticing that there
is a graph automorphism interchanging any two vertices in the same vertical position, and
then averaging the eigenvector). Assume that there are two adjacent vertices in a different
vertical position with the same weight. If this is the case, then we can find two such onesc
andd (c to the left ofd) so that the left-most neighbor ofc, call it a, has greater weight
than the right-most neighbor ofd, call thisf . Let b ande be the other neighbors ofc andd,
respectively. It is possible that some of these coincide, but here are some important obser-
vations:a cannot be to the right orc, f cannot be to the left ofd, b cannot be to the right
of d, ande cannot be to the left ofc. Summarizing what we know about the weights, we
haveµa > µf andµa ≥ µb ≥ µc = µd ≥ µe ≥ µf . We show that there exists someε > 0
such that we may increaseµc by ε and decreaseµd by ε (keeping the vector perpendicular
to j) to increase the Rayleigh quotient, thus showing that the second eigenvalue was not
maximal, and hence arriving at a contradiction. We assume that‖µ‖ = 1, then for the new
vector, the Rayleigh quotient is

λ2 + 2ε(µa + µb + µd − µc − µe − µf − ε)
1 + 2ε(µc − µd + ε)

,

which is greater thanλ2 if

µa + µb − µe − µf > (λ2 + 1)ε.

This is possible, as the left hand side is greater than zero, and taking an appropriateε, we
arrive at a contradiction.

5. QED

We need to show that any elementary move will now decrease the Rayleigh quotient,
so thatG must have been in this shape all along. If we apply SWITCH(a, b, c, d) to
reconnect without decreasing the Rayleigh quotient, we must find four verticesa, b, c, d
such thata ∼ b, c ∼ d, a 6∼ c, b 6∼ d, SWITCH(a, b, c, d) does not disconnectG,
andµa ≥ µd, µc ≥ µb. In a path-like graph withµ strictly decreasing from left to
right, these four vertices only exist whena and b are in the same vertical position,c
andd are in the same vertical position,a ∼ d, andb ∼ c. In this case, reconnecting
leaves a graph isomorphic to the original. This completes the proof of Theorem 1.



THE STRUCTURE OF TRIVALENT GRAPHS WITH MINIMAL EIGENVALUE GAP 329

6. Addendum

We Note that the full conjecture has recently been proved by Brand, Guiduli, and Imrich
[6].
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