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Abstract. In a ranked lattice, we consider two maximal chains, or “flags” to bei -adjacent if they are equal
except possibly on ranki . Thus, a finite rank lattice is a chamber system. If the lattice is semimodular, as noted
in [9], there is a “Jordan-H¨older permutation” between any two flags. This permutation has the properties of
an Sn-distance function on the chamber system of flags. Using these notions, we define aW-semibuilding as a
chamber system with certain additional properties similar to properties Tits used to characterize buildings. We
show that finite rank semimodular lattices form anSn-semibuilding, and develop a flag-based axiomatization of
semimodular lattices. We refine these properties to axiomatize geometric, modular and distributive lattices as
well, and to reprove Tits’ result thatSn-buildings correspond to relatively complemented modular lattices (see
[16], Section 6.1.5).
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1. Introduction

The paper [9] studies relationships between maximal chains, orflags in finite rank semi-
modular lattices. We say two flags arei -adjacent if they agree on all ranks except, possibly,
ranki . Thus, the flags of the lattice form a chamber system, as used in the study of Coxeter
groups and buildings. Furthermore, the Jordan-H¨older function as developed by Stanley in
[13] and [14] and by Bj¨orner in [4] has many properties in common with anSn-distance
function. In this paper, we develop that analogy. The results here are related to results
of Abels in [2]. He developed his own characterizations of the relationships between two
flags in a semimodular lattice, and also used the Jordan-H¨older permutation extensively to
prove his results. However, his approach is more geometric than the lattice-based viewpoint
adopted here.

We define asemibuildingover a Coxeter groupW as a chamber system with aW-
distance function and with some additional properties similar to those used by Tits to define
W-buildings in [17]. We define anupper semibuildingas anSn-semibuilding with an
additional property that is obeyed by the flags of a semimodular lattice. (We do not define
upperW-semibuildings forW 6= Sn.)

Upper semibuildings are closely related to upper semimodular lattices. From the results
in [9], we show that the chamber system formed by the flags of a semimodular lattice under
the relation ofi -adjacency is an upper semibuilding. The Jordan-H¨older permutation is the
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requiredSn-distance function. Conversely, for anSn-semibuildingB, we construct a ranked
lattice whose flags form a chamber system isomorphic toB. We show that the lattice is
semimodular if and only ifB is an upper semibuilding. By performing this construction on
the upper semibuilding given by the flags of a semimodular lattice, we obtain the original
lattice. Thus, we have a flag-based axiomatization of finite rank semimodular lattices:
a poset is a rankn semimodular lattice if and only if its maximal chains form an upper
semibuilding.

We also show how to add extra constraints to upper semibuildings to determine when
they correspond to modular and distributive lattices, and we also give a condition which
determines when the lattice for anSn-semibuilding (not necessarily an upper semibuilding) is
relatively complemented. This enables us to prove Tits’ result thatSn-buildings correspond
to finite rank, relatively complemented modular lattices, and also allows us to characterize
finite rank geometric lattices, since a geometric lattice is simply a relatively complemented
semimodular lattice (see [12], Proposition 3.3.3).

We review the pertinent definitions and results from the study of buildings and from [9] in
Section 2, and in Section 3, we define semibuildings and relate them to semimodular lattices.

2. Preliminaries

We wish to relate the concepts from the paper [9] to the study of buildings. We first recall
the definitions concerning buildings, and then present the results from [9].

2.1. Coxeter groups and buildings

To define buildings, we need two sets of preliminary definitions; one set for Coxeter groups,
and another for chamber systems.

Definitions for Coxeter groups The groupW is aCoxeter group, if W is generated by
a set of involutions{ri : i ∈ I } whose only relations are of the form(ri r j )

mi j = 1, the
identity in W. The generating involutions are calledsimple reflections. For example,Sn is
generated by the adjacent transpositions,ri = (i i + 1), so these are the simple reflections.
A decompositionof τ in W is an expression ofτ as a product of simple reflections. The
decomposition isreducedif there is no shorter decomposition ofτ . Finally, theweak
Bruhat order on Wis given byρ ≤ τ if some reduced decomposition ofτ begins with a
decomposition ofρ.

Definitions for chamber systemsA chamber systemis a collection of elements called
chamberstogether with an equivalence relation calledi -adjacencyon the chambers for
eachi in some indexing setI . We say the chamber system hasfinite rank if the set I
is finite. A gallery of type ri1ri2 · · · rim between the chambersX andY is a sequence of
chambers(X = Z0, Z1, . . . , Zm = Y) such thatZk andZk+1 arei k-adjacent for eachk.

Remark The more usual terminology for what we call a gallery of typeri1ri2 · · · rim is
“a gallery of type(i1, i2, . . . , im).” We have adopted this alternate notation for consistency
with the notation of Section 7 in [9].
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The following definition of a building can be found in [17] and elsewhere.

Definition A W-buildingis a chamber system1 over the indexing setI with a function
δ : 1 × 1 → W (called aW-distance function) such thatδ(X,Y) = r i if and only if X
andY are distinct andi -adjacent, and such that1 obeys the following conditions.

B0. Every chamber isi -adjacent to at least one other chamber for eachi in I .
B1. If δ(X,Y) = τ , andδ(Y,Y′) = ri , then eitherδ(X,Y′) = τ or δ(X,Y′) = τri .

Furthermore, ifτ < τri in the weak Bruhat order, thenδ(X,Y′) = τri .
B2. For every reduced decompositionf of δ(X,Y), there exists a gallery of typef between

X andY. Such a gallery is called aminimal gallery.

2.2. Minimal paths between flags in semimodular lattices

In [9] finite rank semimodular lattices were studied by considering their maximal chains,
or flags, and the adjacency relationships between the flags. Two flags arei -adjacentif they
agree on all ranks except possibly ranki . From this point of view, the flags of a semimodular
lattice form a chamber system. Apath from X to Y is a gallery betweenX andY, and a
reduced pathis a minimal gallery fromX to Y. Finally, if a minimal gallery has typef ,
we say the decompositionf takes X to Yalong the path.

Two useful tools for studying these relationships were the Jordan-H¨older permutation and
the labeling functions as developed by Stanley in [13] and [14]. We recall the definitions
of these concepts.

Definitions If X andY are two flags in a semimodular lattice, we defineπ(X,Y), the
Jordan-Ḧolder function of Y relative to Xfrom [n] = {1, 2, . . . ,n} to itself by:

π(X,Y)( j ) = min{i : yj ≤ xi ∨ yj−1} = min{i : xi ∨ yj−1 = xi ∨ yj }.

Thelabeling function with respect to Xis a function from points in the lattice to subsets of
[n]. It is defined as follows:

l X(z) = {i ∈ [n] : xi ≤ xi−1 ∨ z} = {i ∈ [n] : xi ∨ z= xi−1 ∨ z}. (1)

We calll X(z) the X-label of z.

The properties in Proposition 2.1 of the Jordan-H¨older permutation and of labels were
proved separately in [9].

Proposition 2.1 If X, Y and Y′ are flags in a semimodular lattice withτ = π(X,Y)
and τ ′ = π(X,Y′), then the following properties hold for the labeling function and the
Jordan-Ḧolder function.
(i) The functionsτ andτ ′ are permutations in Sn.

(ii) If Y and Y′ are j-adjacent then eitherτ ′ = τ or τ ′ = τr j . Furthermore, if Y 6= Y′

andτ < τr j in the weak Bruhat order, thenτ ′ = τr j .
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(iii) The element i is in lX(yj ) if and only if i = τ(k) for some k≤ j, i.e., l X(yj ) =
τ([ j ]) = {τ(1), . . . , τ ( j )}, so the cardinality of lX(z) equals the rank of z for all z in
the lattice.

In particular, the statement (ii) says thatπ(X,Y) is anSn-distance function, and that the
flags of a semimodular lattice obey the axiom B1. We can relate the flags to other building
axioms using Proposition 2.2 (Proposition 7.1 in [9]).

Proposition 2.2 Let S be the set of reduced decompositions which take X to Y in some
semimodular lattice. Then S is nonempty and has the following properties.
R1. If f r i r j h is in S and ri and rj commute, then f rj r i h is in S.
R2. If f r i r i+1ri h is in S then f ri+1ri r i+1h is in S.

To better describe the relation between these properties and the flags of semimodular lattices
and other lattices, we develop the notion of semibuildings.

3. Semibuildings

We note that the flags of finite rank semimodular lattices obey axioms similar to those for
a building. We therefore make the following definitions.

Definitions A W-semibuildingis a chamber system with aW-distance functionδ such
that:

S1. If δ(X,Y) = τ , and δ(Y,Y′) = ri , then eitherδ(X,Y′) = τ or δ(X,Y′) = τri .
Furthermore, ifτ < τr i in the weak Bruhat order, thenδ(X,Y′) = τri .

S2. For some reduced decompositionf of δ(X,Y), there exists a gallery of typef between
X andY.

S3. If ri andr j commute andδ(X,Y) = ri r j , then there are galleries of typeri r j and of
typer j r i betweenX andY.

An upper(Sn)-semibuildingis anSn-semibuilding with the additional property:

U4. If δ(X,Y) = (k k+ 2), then there is a gallery betweenX andY of typerk+1rkrk+1.

In particular, anSn-building is an upperSn-semibuilding, since condition B1 implies S1
and condition B2 implies S2, S3 and U4.

We have chosen to include condition S3 in the definition of a semibuilding because our
applications all require this condition. We also focus almost entirely on the caseW = Sn,
so all semibuilding areSn-semibuildings unless otherwise indicated. We do not define an
upperW-semibuilding forW 6= Sn.

Proposition 3.1 The flags of an upper semimodular lattice form the chambers of an upper
semibuilding with distance functionδ(X,Y) = π(X,Y), the Jordan-Ḧolder permutation.
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Proof: Properties S1, S2, S3 and U4 of upper semibuildings follow, respectively, from
Proposition 2.1 (ii), the fact thatS is nonempty in Proposition 2.2, and properties R1 and
R2 from Proposition 2.2. 2

Given anSn-semibuildingB, we construct a latticeL(B) whose flags are in one-to-one
correspondence with the chambers ofB and whose paths are in one-to-one correspondence
with galleries inB. We show that ifB is an upper semibuilding, thenL(B) is semimodular,
and we relate other constraints onB to properties ofL(B). Using this approach, we develop
a flag-based axiomatization for semimodular, geometric, modular, and distributive lattices.

To constructL(B) from the semibuildingB, we need some way to take a lattice whose
flags form anSn-semibuilding, and to recover the points of the lattice from the flags. We
make an observation: in a semimodular lattice, if the flagsZ andZ′ both contain the rank
k point zk, thenπ(Z, Z′)([k]) = [k]. Therefore, a reduced decomposition ofπ(Z, Z′) has
nork’s, so all flags in every reduced path fromZ to Z′ containzk. With this motivation, we
define the following equivalence relation forSn-semibuildings.

Definition For every j with 0≤ j ≤ n, we say the chambersX andY in a semibuilding
are j -equivalentand writeX ∼ j Y if there is gallery fromX to Y in which no consecutive
chambers arej -adjacent. In particular, all chambers are 0-equivalent andn-equivalent. For
every j , this is an equivalence relation on the chambers ofB.

The j -equivalence classes are the rankj points of the lattice we are in the process of
constructing.

Proposition 3.2 For every pair of chambers X and Y in a semibuilding, the following are
equivalent:
(i) X ∼ j Y .
(ii) We haveδ(X,Y) in the“parabolic subgroup” Pj = 〈rm : m 6= j 〉.

(iii) There is a chamber Z such that X∼i Z for i ≤ j and Z∼k Y for k≥ j .

We use Lemma 3.3 to prove this.

Lemma 3.3 In a semibuilding, if r i and rj commute and there is a gallery of type f ri r j g
between the chambers X and Y, then there is also a gallery of type f rj r i g between X and
Y . In an upper semibuilding, if there is a gallery of type f rkrk+1rkg between X and Y there
is a gallery of type f rk+1rkrk+1g between X and Y .

Proof: Let X′ be the chamber reached after traversingf , and letY′ be the chamber
reached after traversingf r i r j or f rkrk+1rk, respectively. Now by applying property S3 or
U4, we obtain a new path fromX′ to Y′, and we can follow this new path in our gallery
from X to X′ to Y′ to Y. 2

Proof of Proposition 3.2:

(i⇔ ii). If X ∼ j Y, let (X = Z0, Z1, . . . , Zm = Y) be a gallery fromX to Y in which no
consecutive chambers arej -adjacent. Ifδ(X, Zk) is in Pj , thenδ(X, Zk+1) is in Pj as
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well, since by property S1,δ(X, Zk+1) equals eitherδ(X, Zk) or δ(X, Zk)r p for p 6= j ;
therefore, by induction,δ(X,Y) is in Pj . Conversely, ifδ(X,Y) is in Pj , a reduced
decomposition ofδ(X,Y) has nor j ’s in it. Therefore, by S2, there is a gallery fromX
to Y in which consecutive chambers are neverj -adjacent.

(i ⇔ iii). Suppose we have a minimal gallery of typef from X to Y. By the equivalence
of (i) and (ii), f has nor j ’s in it, since f is a reduced decomposition ofδ(X,Y). By
Lemma 3.3, if anri with i < j precedes anrk with k > j in f , we may reverse the order.
Thus, we may assume that everyrk in f with k > j occurs before everyr i with i < j .
If Z is the chamber immediately after the lastrk, thenX ∼i Z for all i ≤ j andZ ∼k Y
for all k ≥ j . Conversely, if (iii) holds, we haveX ∼ j Z ∼ j Y. 2

We now defineL(B).

Definition For a semibuildingB, let L(B) consist of thej -equivalence classes for 0≤
j ≤ n with the order relation: ifwi andzj arei - and j -equivalence classes, thenwi ≤ zj

if wi ∩ zj 6= ∅ andi ≤ j .

Proposition 3.4 is a consequence of this definition.

Proposition 3.4 Let L be a semimodular lattice, and let B be the upper semibuilding
whose chambers are the flags of L and whose distance function is the Jordan-Hölder
permutation. Then L(B) ∼= L.

Proof: Let X andY be flags inL (or chambers inB). Now a path fromX to Y in which
consecutive flags are neverj -adjacent exists if and only if we can go fromX to Y without
changing the rankj point. Hence, we haveX ∼ j Y in B if and only if X andY contain the
same rankj point, and thej -equivalence classes inL(B) correspond to the rankj points
in L. Furthermore, ifxi ≤ xj in L, let X be some flag that goes through both these points.
Then inB, the chamberX is in the intersection of the equivalence classes that correspond
to xi andxj . Hence, the equivalence classes are comparable inL(B). Conversely, ifyi and
yj are comparable equivalence classes inL(B), then some flagY is in yi ∩ yj , and the rank
i and j points ofY are comparable inL. 2

We know from Proposition 3.1 that an upper semimodular lattice gives rise to an upper
semibuilding. Proposition 3.4 implies that ifB is a semibuilding that is constructed from
a semimodular lattice, then(L(B),≤) is a poset isomorphic to the original lattice. We
show that for everySn-semibuildingB (L(B),≤) is a ranked lattice, and that the chamber
system ofL(B) is isomorphic toB for every semibuildingB. We begin by showingL(B)
is a poset with â0 and1̂. We then showL(B) is ranked, and that its flags form a chamber
system isomorphic toB. After that, we define a labeling function on semibuildings and
use it to show thatL(B) is a lattice. Finally, we relate various conditions onB to lattice
properties ofL(B), including a proof thatL(B) is semimodular if and only ifB is an upper
semibuilding.
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Proposition 3.5 If B is a semibuilding, then (L(B),≤) is a poset. The0- and n-
equivalence classes are0̂ and1̂ in the poset.

Proof: Reflexivity and antisymmetry are trivial, and the 0- andn-equivalence classes are
obviously0̂ and1̂ in the poset ifL(B) is in fact a poset. For transitivity, supposexi ≤ zj

andzj ≤ yk. Let X be a chamber inxi ∩ zj and letY be a chamber inzj ∩ yk. Now X ∼ j Y,
so there is some chamberZ in the j -equivalence classzj such thatX ∼i Z andZ ∼k Y,
by Proposition 3.2. Therefore,Z is in xi ∩ yk, soxi ≤ yk. 2

Proposition 3.6 A collection of pointsF in L(B) is a flag in L(B) if and only ifF
consists of all equivalence classes of some chamber in B. Hence, there is a one-to-one
correspondence between flags in L(B) and chambers in B. Furthermore, L(B) is ranked,
since a j-equivalence class is a rank j point in L(B). Two flags in L(B) are i-adjacent
(i.e., they agree except, possibly, on rank i), if and only if the corresponding chambers in
B are i-adjacent in the chamber system. Thus, the flags in L(B) form a chamber system
which is isomorphic to B.

To prove this, we use Lemma 3.7. This lemma is a particular instance of a more general
result on parabolic subgroups of Coxeter groups (see [10], Corollary 5.10(c), for example).

Lemma 3.7 Let S be a subset of[n− 1], and let PS be the intersection

PS =
⋂
j∈S

Pj .

Then PS is given by

PS = 〈rm : m 6∈ S〉.

Proof of Proposition 3.6: To show the correspondence between flags and chambers, let
{z1 < z2 < · · · < zm} be a chain inL(B), and suppose by induction that the intersection
z1 ∩ z2 ∩ · · · ∩ zp is nonempty. LetX be a chamber in this intersection and letY be a
chamber inzp ∩ zp+1. If zp is a j -equivalence class, thenX ∼ j Y, so by Proposition 3.2,
there is a chamberZ such thatX ∼i Z for i ≤ j andY ∼k Z for k ≥ j . Thus,Z is in
z1 ∩ · · · ∩ zp ∩ zp+1, and by induction, the intersectionz1 ∩ z2 ∩ · · · ∩ zm is nonempty.
Hence, a maximal chain inL(B) consists of all the equivalence classes of some chamber.
In particular, a maximal chain inL(B) consists ofn+ 1 equivalence classes, andj is the
rank of everyj -equivalence class.

To show that the chamber corresponding to a maximal chain is unique, letX andY be
two chambers which correspond to the same maximal chain. ThenX ∼ j Y for all j . Now
by Lemma 3.7,δ(X,Y) = 1 and soX = Y by S2. Conversely, given a chamberZ in B, if
we letzi be thei -equivalence class ofZ in B, then{z0, z1, . . . , zn} is a maximal chain in
L(B). The intersectionz0∩ z1∩ · · · ∩ zn is nonempty since it containsZ. Finally, suppose
two flags inL(B) agree on all ranks except ranki , and letX andY be the chambers inB
which correspond to these flags. Now by Lemma 3.7, eitherδ(X,Y) = 1 or δ(X,Y) = ri ;
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henceX andY are i -adjacent. Conversely, ifX andY are i -adjacent inB, they will be
j -equivalent for all j 6= i , so the corresponding flags inL(B) will agree on all ranks
except i . 2

We digress briefly to consider other Coxeter groups. The proof of Proposition 3.5 that
L(B) is a poset only uses Proposition 3.2 and Lemma 3.3. But all we require ofW = Sn for
these results is thatr i andr j commute if| j − i | = 1. The Proof of Proposition 3.6 thatL(B)
is ranked and its chamber system is isomorphic to the original semibuilding requires the
additional Lemma 3.7, but this lemma can be generalized to all Coxeter groups. Thus, if the
each connected component of the Coxeter graph ofW is a line, we can order the generating
reflections ofW so thatL(B) is a ranked poset for anyW-semibuildingB. Furthermore,
the flags inL(B) form aW-chamber system isomorphic toB. These results and a converse
was shown for buildings by Bj¨orner and Wachs. It appears as Proposition 4.18 in [5], and
we repeat the statement here.

Proposition 3.8 (Björner and Wachs) Let1 be a Coxeter complex or building of finite
rank. Then1 ∼= 1(P), the simplicial complex of all finite chains of some poset P if and
only if the corresponding Coxeter diagram is linear.

To show thatL(B) is a lattice ifW = Sn, we define a labeling function on its points,
the j -equivalence classes, with respect to a chamber. Motivated by Proposition 2.1(iii), we
make the following definition, which agrees with the definition of labels for semimodular
and modular lattices in Eq. (1).

Definition Let X be a chamber in anSn-semibuildingB. For every j -equivalence class
zj , choose some representativeZ. Then thelabeling function with respect to Xis defined by

l X(zj ) = δ(X, Z)([ j ]).

Proposition 3.9 The labeling function as defined on semibuildings has the following
properties.
(i) The label lX(zj ) is independent of the equivalence class representative chosen, so the

function is well-defined.
(ii) If z j ≤ zk, then lX(zj ) ⊆ l X(zk).

(iii) We have[i ] ⊆ l X(zj ) if and only if xi ≤ zj .

Proof: For (i), let Z andZ′ be two representatives ofzj . SinceZ ∼ j Z′, there is some
gallery(Z = Z0, Z1, . . . , Zm = Z′) in which no two consecutive chambers arej -adjacent.
Since eitherδ(X, Zp+1) = δ(X, Zp) or δ(X, Zp+1) = δ(X, Zp)rk for somek 6= j , and
δ(X, Zp+1)([ j ]) = δ(X, Zp)([ j ]) in either case, we findδ(X, Z′)([ j ]) = δ(X, Z)([ j ]) by
induction. The statement (ii) follows by choosing the same representativeZ for bothzj and
zk, since their intersection is nonempty. Thenl X(zj ) = δ(X, Z)([ j ]) ⊆ δ(X, Z)([k]) =
l X(zk).

From (ii), we see thatxi ≤ zj implies [i ] ⊆ l X(zj ). To prove the converse, choose a
representativeZ in zj , and use induction on the length ofρ = δ(X, Z). Take a minimal
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gallery from X to Z and let Z′ be the last chamber in the gallery beforeZ. Thus, Z
and Z′ are k-adjacent for somek. If k 6= j then Z′ ∼ j Z, so by induction we have
xi ≤ z′j = zj . If k = j we letρ ′ = δ(X, Z′) = ρr j < ρ since we started with a minimal
gallery fromX to Z. But if [ i ] ⊆ ρ([ j ]) andρr j < ρ, thenρ( j ) > ρ( j + 1) > i . Thus,
[i ] ⊆ ρ([ j − 1]) = ρ ′([ j − 1]). Now by induction, (iii) applies toZ′, soxi ≤ z′j−1 < zj

as desired. 2

We need one more lemma to proveL(B) is a lattice.

Lemma 3.10 Suppose the rank k points xk and yk are both upper bounds of xi and yj in
L(B). Then either xk = yk or there are rank(k−1) points xk−1 < xk and yk−1 < yk which
are also upper bounds of xi and yj .

Proof: We findyk−1; to findxk−1, reverse the roles ofX andY. If xk 6= yk let X andY be
chambers inxi ∩ xk andyj ∩ yk, respectively, and consider a minimal gallery fromX to Y.
LetY′ be the last chamber in the gallery which is not in the equivalence classyk and letY′′ be
the chamber immediately followingY′ in the gallery (soY′′ is in yk). Also, letρ ′ = δ(X,Y′)
andρ ′′ = δ(X,Y′′). From (iii), we have [i ] ⊆ l X(yk) = ρ ′′([k]) = ρ ′rk([k]), sincexi ≤ yk.
But Y′ precedesY′′ in a minimal gallery, soρ ′<ρ ′′, and so [i ] ⊆ ρ ′([k]). Therefore,
[i ] ⊆ ρ ′([k − 1]) = ρ ′′([k − 1]). Hence, lettingyk−1 be the(k − 1)-equivalence class of
Y′ andY′′, we havexi ≤ yk−1 < yk, though we still must showyj ≤ yk−1. Proceeding
by induction, we find thatxi is less than thek-equivalence class of every chamber in the
minimal gallery, and therefore, less than or equal to the(k− 1)-equivalence classes of the
chambers in the gallery. Similarly, we can use theY-labels to show thatyj is less than or
equal to all the(k− 1)-equivalence classes in the gallery. Thus,yj ≤ yk−1. 2

Theorem 3.11 (L(B),≤) is a lattice.

Proof: SinceL(B) has a1̂, every pair of points has an upper bound. To show each pair
has a least upper bound, supposezk andwm are upper bounds ofxi andyj , with k ≤ m.
Lemma 3.10 shows that if there are distinct upper bounds of the same rank, then neither one
is minimal. Thus, if we choose some rankm point zm ≥ zk, we find the only waywm can
be minimal is ifwm = zm = zk. Therefore,zk andwm cannot be distinct minimal upper
bounds, and a least upper bound exists. SinceL(B) is a finite rank poset with least upper
bounds and â0, it must be a lattice. 2

We now show thatL(B) is semimodular ifB is an upper semibuilding.

Theorem 3.12 B is an upper semibuilding if and only if L(B) is an upper semimodular
lattice. Thus, by virtue of Propositions3.4 and3.6, upper semibuildings are in one-to-one
correspondence with finite rank upper semimodular lattices, and the axiomsS1, S2, S3,
andU4 give us a flag-based axiom system of rank n semimodular lattices.

Proof: Since the chamber system formed by the flags inL(B) is isomorphic toB, Propo-
sition 3.1 says thatB is an upper semibuilding ifL(B) is semimodular. Conversely, suppose
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B is an upper semibuilding, and supposexj andyj both coverxj−1 in L(B). Let X be a
flag containingxj−1 andxj and letY be a flag that containsxj−1 and yj . We construct
a minimal gallery fromX to Y with exactly oner j . Then lettingX′ andY′ be the flags
immediately before and after ther j in this minimal gallery, we havex′i = xi andy′i = yi

for i ≤ j , andx′j+1 = y′j+1 = xj ∨ yj . Therefore, the join coversxj andyj , andL(B) is
semimodular.

To construct the desired minimal gallery, start with any minimal gallery, and consider the
first occurrence ofr j r j+1 . . . rk in the decomposition ofδ(X,Y). If this is not at the end of the
decomposition, letr p be the first simple reflection after this string. Ifp = k, the decomposi-
tion is not reduced. Ifp = k+1, we can lengthen the string. Ifp < j or p > k+1, we can
choose a different gallery to replacer j r j+1 . . . rkr p by r pr j r j+1 . . . rk via repeated applica-
tion of S3. If j ≤ p < k, we replacer j r j+1 . . . rkr p by r j r j+1 . . . r p−1(r pr p+1r p)r p+2 . . . rk

using S3. Then, we replace this string with the stringr j r j+1 . . . r p−1(r p+1r pr p+1)r p+2 . . . rk

using U4, and finally we replace this byr p+1r j r j+1 . . . rk, again using S3. When we reach
the end of the string, there is only oner j in the type of the gallery. 2

We now extend this characterization to modular and distributive lattices. To obtain an
upper semimodular lattice from a semibuilding, we needed condition U4, which requires a
gallery of typerk+1rkrk+1 betweenX andY wheneverδ(X,Y) = (k k+ 2). By duality,
we would get lower semimodular lattices by requiring a gallery of typerkrk+1rk between
X andY. Hence, we obtain all modular lattices by requiring conditions S1, S2, S3, and
replacing U4 with the following condition M4.

M4. If δ(X,Y) = (k k+ 2), then there are galleries betweenX andY of typerk+1rkrk+1

and of typerkrk+1rk.

However, conditions S2, S3, and M4 are equivalent to condition B2, since we get all
reduced decompositions orδ(X,Y) by virtue of Lemma 3.3. Therefore, we characterize
semibuildings corresponding to finite rank modular lattices in Theorem 3.13.

Theorem 3.13 If B is an Sn-semibuilding, L(B) is modular if and only if B obeys condition
B2. In this case,we call B amodular(Sn)-semibuilding, or simply amodular semibuilding.

Theorem 3.13 describesL(B) for Sn-semibuildings which obey B2. Theorem 3.14 de-
scribes the effects of B0.

Theorem 3.14 If B is an Sn-semibuilding, L(B) is relatively complemented if and only
if B obeys conditionB0.

Proof: If L(B) is relatively complemented, then every interval of length 2 is relatively
complemented; hence, to find a flagX′ that isi -adjacent toX, choosex′i to be a complement
of xi in the interval [xi−1, xi+1]. Thus,B satisfies B0.

Conversely, supposeB is a semibuilding which obeys condition B0, and supposexi <

xj < xk in L(B). We must show thatxj has a complement in the interval [xi , xk]. Toward
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this end, letX be a flag throughxi , xj , andxk, and letτ be the permutation

τ = (1 2 . . . i k k− 1 . . . i + 1 k+ 1 k+ 2 . . . n)

in one line notation. We show there is a flagY throughxi andxk such thatπ(X,Y) = τ .
Once we findY, the complement ofxj is the rank(i + k− j ) point ofY, since theX-label
of this point is [i ] ∪ ([k] \ [ j ]), the complement of [j ] in the interval{z : [i ] ⊆ z ⊆ [k]}.
To find Y, note that ifZ is a flag which contains allxm with m ≤ i andm ≥ k, then
eitherπ(X, Z) = τ so we can useY = Z, or there is somep with i < p < k such that
π(X, Z)r p > π(X, Z). By condition B0, we may choose a new flagZ′ that is p-adjacent
to Z, and by B1,π(X, Z′) = π(X, Z)r p. We repeat this process until we findY. 2

As one corollary of this result, we obtain Tits’ result ([16], Section 6.1.5, Proposition 6,
or in [2], Corollary 3.8). We also obtain an axiomatization of finite rank geometric lattice,
since a finite rank lattice is geometric if and only if it is relatively complemented and
semimodular (see [12], Proposition 3.3.3).

Corollary 3.15 (Tits) B is an Sn-building if and only if L(B) is a relatively complemented
modular lattice.

Corollary 3.16 L(B) is geometric if and only if B is an upper semibuilding which obeys
conditionB0.

We now turn to distributive lattices. A modular lattice is distributive if and only if it
does not contain a sublattice which is isomorphic toM3 in Figure 1 ([3], Section II.8,
Theorem 13).

This condition lets us extend our work to distributive lattices; we show that all distributive
lattices can be obtained asL(B) for a modular semibuildingB which obeys condition D0.

D0. Every chamber isi -adjacent to at most one other chamber for eachi in the indexing
set for the chamber system.

Figure 1. M3: the unique five element modular nondistributive lattice.
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As part of Theorem 3.17 we show that for a modular semibuilding, the condition D0 is
equivalent to the either of the conditions D1 or D1′. Theorem 3.17 is similar to Abels’
Theorem 3.9 in [2]. He gives several flag-based conditions which describe when a finite
rank semimodular lattice can be embedded as a join sublattice into a distributive lattice of
the same rank.

D1. If δ(X,Y) = τ , andδ(Y,Y′) = ri , thenδ(X,Y′) = τri .
D1′. If δ(X,Y) = τ , andδ(Y, Z) = ρ, thenδ(X, Z) = τρ,

Theorem 3.17 If B is a modular semibuilding the following are equivalent:
(i) L(B) is distributive.

(ii) L(B) does not contain a sublattice isomorphic to M3.
(iii) L(B) does not have distinct points x, y, and z which all cover x∧ y ∧ z and are

covered by x∨ y ∨ z.
(iv) B does not contain three distinct mutually adjacent chambers, i.e., B obeys condi-

tion D0.
(v) If δ(X,Y) = τ, andδ(Y,Y′) = ri , thenδ(X,Y′) = τri , i.e., D1 holds.
(vi) If δ(X,Y) = τ, andδ(Y, Z) = ρ, thenδ(X, Z) = τρ, i.e., D1′ holds.

We call anSn-semibuilding which obeys these conditions adistributive semibuilding.

Proof:

(i⇔ ii). This is well known as previously cited.
(ii ⇒ iii). This is clear.
(iii ⇒ iv). If X, Y, and Z are distinct andj -adjacent, thenxj ∧ yj ∧ zj = xj−1 and

xj ∨ yj ∨ zj = xj+1, contrary to (iii).
(iv ⇒ v). Supposeτ = δ(X,Y) andr j = δ(Y,Y′). If τr j < τ , then there is a reduced

decompositionf r j of τ . Thus, by B2, there is a gallery of typef r j from X toY. The last
chamber beforeY in this gallery must be strictlyj -adjacent toY, butY′ is the only such
chamber since no other chamber can bej -adjacent to bothY andY′ by (iv). Hence, there
is a gallery of typef from X to Y′. Since f is a reduced expression,δ(X,Y′) = τr j . If
τr j > τ and f is a reduced decomposition ofτ , there is a gallery of typef from X to
Y, and appending a step fromY to Y′ gives a gallery fromY to Y′ of type f r j . But f r j

is a reduced decomposition, soδ(X,Y′) = τr j . In either case, (v) holds.
(v⇒ vi). Let τ = δ(X,Y) andρ = δ(Y, Z), and letρ = s1s2 · · · sm be a reduced decom-

position ofρ. By condition B2, there is a minimal gallery(Y = Y0,Y1, . . . ,Ym = Z) of
types1s2 · · · sm, and by induction, (v) implies thatδ(X,Yk) = τs1 · · · sk, soδ(X, Z) =
τρ = δ(X,Y)δ(Y, Z).

(vi ⇒ ii). Suppose the pointsa, x, y, z, andb in L(B) form a sublattice isomorphic
to M3. We may assumea = 0̂ andb = 1̂ by restricting our attention to the interval
[a, b]. We first note that if the lattice has rankn, then rank(x)= rank(y)= rank(z) = n

2,
for which we use the symbolr . This is so because ifx and y are complements in a
modular lattice, then rank(x) + rank(y)= rank(0̂) + rank(1̂) = n. Similarly, we have
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rank(x)+ rank(y)= rank(x)+ rank(z)= rank(x)+ rank(z) = n, which forces the rank
of each point to ber .
Let X be any flag containingx = xr , and letY andZ be the flagsY = {0̂ = xr ∧ y <
xr+1 ∧ y < · · · < xn ∧ y = y = 0̂ ∨ y < x1∨ y < · · · < xr ∨ y = 1̂} and
Z = {0̂= xr ∧ z< xr+1∧ z< · · · < xn∧ z= z= 0̂∨ z< x1∨ z< · · · < xr ∨ z= 1̂}.
The inequalities are all strict since in the interval [0̂, y] there are at mostr distinct
points, and the rank difference between consecutive points in these sets is at most 1 by
modularity, but the total difference in rank between0̂ andy is r . A similar argument
applies to the inequalities in the intervals [y, 1̂], [0̂, z], and [z, 1̂]. Now δ(X,Y) =
(r + 1 r + 2 . . .n 1 2. . . r ), since for j ≤ r we haveyj ≤ xr+ j ∨ yj−1 = xr+ j , but
yj 6≤ xr+ j−1 ∨ yj−1 = xr+ j−1, andxi ≤ yr+i for i ≤ r , so [i ] ⊆ l X(yr+i ). Similarly,
δ(X, Z) = (r + 1 r + 2 . . .n 1 2. . . r ), but sinceY 6= Z and δ(Y, Z) 6= 1, this
contradicts 3.17.6.

2
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