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Abstract. We study paths between maximal chains, or “flags,” in finite rank semimodular lattices. Two flags are
adjacent if they differ on at most one rank. A path is a sequence of flags in which consecutive flags are adjacent.
We study the union of all flags on at least one minimum length path connecting two flags in the lattice. This is
a subposet of the original lattice. If the lattice is modular, the subposet is equal to the sublattice generated by
the flags. It is a distributive lattice which is determined by the “Jordan-H¨older permutation” between the flags.
The minimal paths correspond to all reduced decompositions of this permutation. In a semimodular lattice, the
subposet is not uniquely determined by the Jordan-H¨older permutation for the flags. However, it is a join sublattice
of the distributive lattice corresponding to this permutation. It is semimodular, unlike the lattice generated by
the two flags, which may not be ranked. The minimal paths correspond to some reduced decompositions of
the permutation, though not necessarily all. We classify the possible lattices which can arise in this way, and
characterize all possibilities for the set of shortest paths between two flags in a semimodular lattice.
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1. Introduction

In this paper, we study relationships between maximal chains, orflags, in a finite rank
semimodular lattice. We develop a generalization to semimodular lattices of the sublattice
generated by two flags of a modular lattice. We consider the Jordan-H¨older function for
two flagsX andY in a semimodular lattice as developed by Stanley in [11] and [12] and by
Björner in [4], and show that this gives a permutation in the symmetric groupSn, wheren
is the rank of the lattice. It is commonly known that in a modular lattice, this permutation
determines the lattice structure of the lattice generated by the flagsX andY, and that this
lattice is a finite distributive lattice.

For semimodular lattices the situation is more complex. In Section 4, we give an example
of a finite rank semimodular lattice in which two flags generate a sublattice which is not
ranked; hence, it cannot be semimodular.

Our main object of study is a join sublattice of the original semimodular lattice and of
the lattice generated by the two flags. It is a semimodular lattice which is related to the
Jordan-H¨older permutation (though not determined by it). The lattice we obtain from the
flagsX andY can be embedded as a join sublattice into the distributive lattice corresponding
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to the permutation when the underlying lattice is modular, and we classify the lattices which
occur as one of these join sublattices.

We say two flags arei -adjacentif they agree except possibly at leveli . This notion is
related to the Jordan-H¨older permutation;X andY are distincti -adjacent flags if and only
if the permutation is the adjacent transpositionri = (i i + 1). WhenX andY are arbitrary
flags in the lattice, we define apath from X to Yas a sequence of flags beginning withX
and ending withY such that consecutive flags in the sequence are adjacent. We call the
path aminimal path from X to Yif no path fromX to Y has shorter length. We study the
collection of minimal paths between two flags.

For modular lattices, it is known that the points on a flag on some minimal paths between
X andY are precisely those points in the sublattice generated by the flags. For semimodular
lattices, the points on minimalX-Y paths are still in the sublattice generated byX andY,
but there may be points in the sublattice which are not on a minimal path. As we noted, the
sublattice need not be ranked, whereas the subposet of points on reduced paths clearly is
ranked, since every point in the subposet is on a flag of the original lattice that is contained
in the subposet.

We contend that this subposet, the union of all flags on reduced paths fromX to Y, is the
natural semimodular analog of the sublattice generated byX andY in a modular lattice. We
show that it is a join sublattice of the distributive lattice which corresponds to the Jordan-
Hölder permutation when the underlying lattice is modular. We also give examples to show
that the sublattice generated byX andY in a semimodular lattice is not as appropriate a
generalization as one might expect.

The minimal paths can be represented byreduced decompositionsof the Jordan-H¨older
permutation, or expressions of this permutation as a minimal length product of adjacent
transpositions. In a modular lattice, it is known that there is a one-to-one correspondence
between minimal paths and reduced decompositions. We classify the collection of paths
which can occur between two flags in a semimodular lattice by classifying the set of reduced
decompositions which correspond to these paths.

Many of these results correspond to results of Abels in [1] and [2], though he approached
these problems from a more geometric viewpoint. He considers semimodular lattices from
the point of view of chamber systems, since the notion ofi -adjacency makes a semimodular
lattice into a chamber system. The paper [8] considers axioms which define a building, and
uses similar axioms involving chamber systems to define many classes of semimodular
lattices.

The remainder of this paper is structured as follows: in Section 2, we present the results
for modular lattices. In Section 3, we give some preliminary notions and results for the
semimodular case. In Section 4, we show that our poset is a join sublattice of the lattice
generated by two flags, and in Section 5, we develop the concept of the label of a point with
respect to a flag, and use this to derive an explicit lattice expression for every point in the
poset we study. In Section 6, we show that this poset is a join sublattice of the distributive
lattice determined by Jordan-H¨older permutation. In Section 7, we classify the sets reduced
decompositions which can correspond to paths between two flags in a semimodular lattice,
and in Section 8, we use our results to derive the corresponding results in the modular case
presented in Section 2.
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2. Modular lattices and Jordan-Hölder permutations

In this section, we present some commonly known results concerning the sublattice gener-
ated by two maximal chains, orflags, in a rankn modular lattice. Although these results
are well known, the only references this author has been able to locate for them are Abels’
papers [1] and [2]. In this paper we use these results to develop a generalization to semi-
modular lattices of the lattice generated by two flags in a modular lattice. We also compare
our generalization to the lattice generated by two flags in a semimodular lattice.

In this section,X, Y, andZ represent flags in a modular or a semimodular lattice, andxi ,
yj , andzk represent the ranki , j , andk points on the flagsX, Y, andZ respectively. For
two flagsX andY, we discuss the lattice generated byX andY, i.e., the lattice of all meets
and joins of points onX andY. We let L(X,Y) denote this lattice. In a modular lattice,
L(X,Y) is determined by a permutation called theJordan-Ḧolder permutation. We define
this function for semimodular lattices and prove that it is a permutation.

Definition If X andY are two flags in a rankn semimodular lattice, theJordan-Ḧolder
function of Y relative to Xfrom [n] = {1, 2, . . . ,n} to itself is denoted byπ(X,Y) and is
given by:

π(X,Y)( j ) = min{i : yj ≤ xi ∨ yj−1} = min{i : xi ∨ yj−1 = xi ∨ yj }.

Proposition 2.1 For all flags X and Y in a rank n semimodular lattice, π(X,Y) is a
permutation. Its inverse isπ(Y, X).

Proof: If π(X,Y)( j ) = i , we have the inequality

xi−1 ∨ yj−1 < xi−1 ∨ yj ≤ xi ∨ yj = xi ∨ yj−1, (1)

since i is the smallest number such thatxi ∨ yj−1= xi ∨ yj . Now by semimodularity,
xi ∨ yj−1 covers xi−1∨ yj−1. Therefore, xi−1∨ yj = xi ∨ yj in (1), but xi−1∨ yj−1<

xi ∨ yj−1. In other words, j is the smallest number such thatxi−1∨ yj = xi ∨ yj , so
π(Y, X)(i )= j . 2

We now define the latticeJ(τ ). This lattice is isomorphic toL(X,Y) whenX andY are
flags in a modular lattice andτ = π(X,Y).

Definition Givenτ , let J(τ ) be the subsets of [n] with the following property: for alli
and j in [n], if i < j andτ(i ) < τ( j ), then every set inJ(τ ) which includesτ( j ) also
includesτ(i ). If these sets are ordered by inclusion,J(τ ) is a distributive lattice; joins and
meets correspond to unions and intersections, respectively. In this lattice, we letX andY
be the flags given by

xi = [i ] = {1, 2, . . . , i },
yj = τ([ j ]) = {τ(1), τ (2), . . . , τ ( j )}.
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Figure 1. P(τ ) andJ(τ ) for τ = (4132).

Alternatively, we could defineP(τ ) as the set of pointsP(τ ) = {(i, τ (i ))} ordered by
(i, τ (i )) ≤ ( j, τ ( j )) if i ≤ j andτ(i ) ≤ τ( j ), and letJ(τ ) be the lattice of order ideals of
P(τ ). For example, Figure 1 showsP(τ ) and J(τ ) for τ = (4132) in one line notation,
(i.e., τ(1) = 4, τ(2) = 1, τ(3) = 3 andτ(4) = 2), and Figure 2 does the same for allτ

in S3. In our examples, when a lattice consists of a collection of sets, we eliminate the set
brackets and commas to label the sets; for example, in Figure 1, we write 124 for the subset
{1, 2, 4} ⊆ [4].

Theorem 2.2 Suppose X and Y are flags in a modular lattice withτ = π(X,Y). Then
L(X,Y) is isomorphic to J(τ ) via an isomorphism which maps xi to [i ] and yj to τ([ j ])
for every i and j.

Definition Two flags in a finite rank lattice arei -adjacentif they are equal except (possibly)
at ranki . They areadjacentif they arei -adjacent for somei . A path of length n from X
to Y is a sequence of flags(X = X0, X1, X2, . . . , Xn = Y) such that consecutive flags are
adjacent. Such a path is aminimal X-Y pathif its length is minimal.

Theorem 2.3 relates minimalX-Y paths to reduced decompositions of the Jordan-H¨older
permutationπ(X,Y). Thus, we define reduced decompositions.

Definition A simple reflectionin Sn is a permutation of the formri = (i i + 1). We also
call these permutationsadjacent transpositions. A decompositionof a permutationτ is an
expression ofτ as a product of simple reflections, i.e.,τ = s1s2 · · · sk. The decomposition
is reducedif every decomposition ofτ has at leastk simple reflections. In this case, we say
k is thelengthof τ , and we writè (τ ) = k. We generally writeri for the simple reflection
which switchesi andi + 1, andsj for an arbitrary simple reflection.
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Figure 2. P(τ ) andJ(τ ) for all τ in S3.

Theorem 2.3 In a finite rank modular lattice,minimal X-Y paths are related toπ(X,Y)
and L(X,Y) as follows.
(i) The point z is on a minimal X-Y path(more precisely, z is on a flag which is on a

minimal X-Y path) if and only if z is in L(X,Y).
(ii) There is a natural one-to-one correspondence between minimal X-Y paths and re-

duced decompositions ofπ(X,Y). A step between i-adjacent flags in a minimal path
corresponds to an occurrence of ri in the corresponding reduced decomposition.

For example, consider the latticeJ(4132) (see Figure 1). The minimal paths fromX to Y
are the following.

X = {∅, 1, 12, 123, 1234} X = {∅, 1, 12, 123, 1234} X = {∅, 1, 12, 123, 1234}
{∅, 1, 12, 124, 1234} {∅, 1, 12, 124, 1234} {∅, 1, 13, 123, 1234}
{∅, 1, 14, 124, 1234} {∅, 1, 14, 124, 1234} {∅, 1, 13, 134, 1234}
{∅, 1, 14, 134, 1234} {∅, 4, 14, 124, 1234} {∅, 1, 14, 134, 1234}

Y = {∅, 4, 14, 134, 1234} Y = {∅, 4, 14, 134, 1234} Y = {∅, 4, 14, 134, 1234}
For (i), note that every point ofJ(τ ) is listed in at least one of these sets. As for (ii), note
that in the first path listed, we change the rank 3 point, then the rank 2 point, then the rank
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3 point, and finally the rank 1 point. The corresponding reduced decomposition ofτ is
thereforeτ = r3r2r3r1. The other paths giveτ = r3r2r1r3 andτ = r2r3r2r1, respectively.
These are the only reduced decompositions ofτ . For another example, we have listed the
reduced decompositions of permutations inS3 in Figure 2.

3. Reduced decomposition paths in semimodular lattices

To generalize Theorems 2.2 and 2.3 to semimodular lattices, we relate minimal paths
between two flags in a semimodular lattice to reduced decompositions of the Jordan-H¨older
permutation between the flags. The flags along a minimal path are related to theweak
Bruhat orderon Sn. This partial order on permutations inSn is also related to the notion of
inversions. We now define these concepts.

Definition If τ andτ ′ are permutations inSn with τ = τ ′ri , then we defineτ < τ ′ if
`(τ ) < `(τ ′). Theweak Bruhat orderis the transitive closure of this relation. Equivalently,
we haveρ ≤ σ in the weak Bruhat order if some reduced decomposition ofσ begins with
a reduced decomposition ofρ. An inversion inτ is a pair(τ (i ), τ ( j )) such thati < j but
τ(i ) > τ( j ).

Proposition 3.1 is a standard result which relates inversions to the weak Bruhat order and
to length of a permutation. We use this result to give an alternate characterization ofJ(τ ).

Proposition 3.1 In a reduced decomposition ofτ , each simple reflection adds one inver-
sion to the permutation. Hence, we haveρ ≤ τ in the weak Bruhat order if and only if every
inversion inρ is also an inversion inτ . Furthermore, `(τ ) equals the number of inversions
in τ .

Corollary 3.2 J(τ ) = {ρ([k]) : 0≤ k ≤ n andρ ≤ τ in the weak Bruhat order}.
Proof: Supposeρ ≤ τ in the weak Bruhat order. Then every inversion inρ is also inτ .
Hence, ifi < j andτ(i ) < τ( j ), then(τ ( j ), τ (i )) cannot be an inversion inρ. Therefore,
τ(i ) precedesτ( j ) in the one-line expression forρ. Thus ifρ([k]) includesτ( j ), it also
includesτ(i ), so everyρ([k]) is in J(τ ).

Conversely, letSbe a set inJ(τ ) with cardinalityk. Let ρ be the permutation in which
ρ(1) throughρ(k) are the elements ofS in increasing order, andρ(k+1) throughρ(n) are
the remaining elements in increasing order. Thus,S= ρ([k]). To show thatρ ≤ τ in the
weak Bruhat order, suppose(τ ( j ), τ (i )) is an inversion inρ. From the definition ofρ, this
can only happen ifτ( j ) is in Sandτ(i ) is not. But sinceS is in J(τ ) andτ(i ) < τ( j ), we
cannot havei < j . Hence,(τ ( j ), τ (i )) is also an inversion inτ . 2

We now relate these notions to arbitrary semimodular lattices.

Lemma 3.3 Let X and Y be two flags in a finite rank semimodular lattice withτ =
π(X,Y). Then if(τ ( j ), τ ( j + 1)) is not an inversion, we have

yj =
(
xτ( j ) ∨ yj−1

) ∧ yj+1.
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Proof: Let a= τ( j ) andb= τ( j + 1). Now yj ≤ xa ∨ yj−1, sincea= τ( j ). Therefore,
(xa ∨ yj−1) ∧ yj+1 equals eitheryj or yj+1, but sincea < b = τ( j + 1), we have
yj+1 6≤ xb−1 ∨ yj , soyj+1 6≤ xa ∨ yj−1. Hence, the meet isyj . 2

Proposition 3.4 Suppose X, Y, and Y′ are flags in a finite rank semimodular lattice with
τ = π(X,Y) andτ ′ = π(X,Y′), and suppose Y and Y′ are i-adjacent. Then eitherτ = τ ′
or τ = τ ′ri . Furthermore, if (τ (i ), τ (i + 1)) is not an inversion, thenτ = τ ′ if and only if
Y = Y′.

Proof: SinceY and Y′ are i -adjacent, we haveyk= y′k and yk−1= y′k−1 for k 6= i and
k 6= i + 1. Thus,τ−1(k) = τ ′−1(k) for k 6= i andk 6= i + 1, soτ = τ ′ or τ = τ ′ri .
From Lemma 3.3, ifτ = τ ′ and(τ (i ), τ (i + 1)) is not an inversion, thenyi = (xτ(i ) ∨
yi−1)∧ yi+1 = (xτ(i ) ∨ y′i−1) ∧ y′i+1 = y′i , soY = Y′. 2

We want some terminology to discuss the relationship of a reduced decomposition to the
path to which it corresponds.

Definition We say the decompositions1s2 · · · sm takes X to Yalong the path(X= Z0,

Z1, . . . , Zm = Y) if π(X, Zk) = s1s2 · · · sk for all k. If the decomposition is reduced, we
call the path areduced decomposition path from X to Y, or simply areduced X-Y path.

Corollary 3.5 If X and Y are flags in a semimodular lattice withτ = π(X,Y), then
every path from X to Y is at least as long as`(τ ). Furthermore, if a path is the same
length as̀ (τ ), it is a reduced decomposition path. For every flag Z on a reduced path, if
ρ = π(X, Z), thenρ ≤ τ in the weak Bruhat order.

Proof: Let (X = Z0, Z1, . . . , Zm = Y) be a path fromX to Y. By Proposition 3.4,
eitherπ(X, Zk) = π(X, Zk−1) orπ(X, Zk) = π(X, Zk−1)sk for some simple reflectionsk.
Therefore,τ = π(X, Zm) can be expressed as a product ofm or fewer simple reflections,
and`(τ ) ≤ m. If `(τ ) = m then everysk is included in the product forτ and this product
is a reduced decomposition. In this case,π(X, Zk) = s1s2 · · · sk ≤ s1s2 · · · sm = τ in the
weak Bruhat order. 2

Corollary 3.5 shows that if there is a reduced path fromX to Y in a semimodular lattice,
then every minimal path is a reduced path. Theorem 3.6 shows that this applies to every pair
of flags in every semimodular lattice. In [1] (proof of Theorem 3.3), Abels constructed the
path and showed that its length is the same as`(π(X,Y)) without referring to the reduced
decomposition. He also showed that the entire path constructed in this manner is contained
in the join sublatticeX ∨ Y = {xi ∨ yj }.

Theorem 3.6 For every pair of flags X and Y in a semimodular lattice, some reduced
decomposition ofτ = π(X,Y) takes X to Y . Furthermore, if j is the largest number such
that τr j < τ, we can choose a decomposition ending with rj .
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Proof: It suffices to find a flagY′ such thatτ ′ = π(X,Y′) = τr j < τ andπ(Y′,Y) = r j ,
since by induction on the length ofτ , we may assume some reduced decomposition ofτ ′

takesX to Y′, and appendingr j to this decomposition gives a reduced decomposition ofτ

which takesX to Y (throughY′).
Sinceτr j < τ , we haveτ( j +1) < τ( j ), and sincej is the largest such number, we find

τ( j +1) < τ( j +2) < · · · < τ(n). Thus, lettingi = τ( j +1) gives [i −1] ⊆ τ([ j −1]) =
l X(yj−1), soxi−1 ≤ yj−1. Similarly, we havexi 6≤ yj , butxi ≤ yj+1.

By semimodularity, the pointy′j = xi ∨ yj−1 coversxi−1∨ yj−1 = yj−1, soy′j has rankj .
Sincexi ≤ yj+1, we havey′j < yj+1. Hence,Y′ = {0̂ = y0 < y1 < · · · < yj−1 < y′j <
yj+1 < · · · < yn = 1̂} is a well defined flag. NowY′ is j -adjacent toY, so eitherτ ′ = τ or
τ ′ = τr j , whereτ ′ = π(X,Y′). Sincey′j 6≤ xi−1 ∨ yj−1 = yj−1, but y′j = xi ∨ yj−1, we
find thatπ(X,Y′)( j ) = i = τ( j + 1); thus,τ ′ = τr j , as desired. 2

4. R(X,Y) and L(X,Y )

We now begin generalizing Theorems 2.2 and 2.3 to semimodular lattices. We study
the subposetR(X,Y), defined below, and give a detailed comparison of this poset to the
sublatticeL(X,Y).

Definition If X andY are two flags in a semimodular lattice, thenR(X,Y) is the subposet
of all points on at least one reducedX-Y path.

In a modular lattice,R(X,Y) = L(X,Y) by Theorem 2.3. In a semimodular lattice, they
need not be equal. We wish to generalize to semimodular lattices the description ofL(X,Y)
for modular lattices. In a modular lattice,L(X,Y) is finite and distributive, even when the
original lattice is not. Thus, constructingL(X,Y) produces a lattice with more restrictive
conditions than the original lattice. The examples of this section show thatL(X,Y) can
lose some properties of the original semimodular lattice, including semimodularity. We do
not know whetherL(X,Y)must be finite for a semimodular lattice. Therefore, we contend
that R(X,Y) is a more appropriate generalization thanL(X,Y).

Furthermore, through the notion ofi -adjacency, we can view the flags of a finite rank
semimodular lattice as elements of a chamber system. Abels did this in [1] and [2], and
this idea is also explored in [8]. In this context,R(X,Y) is a natural concept, andL(X,Y)
appears meaningless, especially if it is not ranked. Thus, in several ways,R(X,Y) is a
more natural generalization to semimodular lattices ofL(X,Y) from modular lattices than
L(X,Y).

We begin with an example, in whichR(X,Y) 6= L(X,Y). This example was also
discovered by Abels ([2], Remark 3.13). LetX andY be the flagsX = {∅, 1, 12, 123, 1234}
andY = {∅, 4, 42, 423, 4231} in the semimodular lattice on the left in Figure 3. In this
case, we haveτ = π(X,Y) = (4231) in one-line notation. The point 3 is inL(X,Y); it is
the meet of 123 and 234. We show thatR(X,Y) does not contain the point 3.

Let Z be a flag in this lattice which contains 3, and letρ = π(X, Z). By definition of the
Jordan-H¨older permutation,ρ(1) = 3 (sincez0 = ∅), so(3, 2) is an inversion inρ, but not
in τ . Hence, by Proposition 3.1,ρ 6≤ τ in the weak Bruhat order. Therefore, no reduced
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Figure 3. L(X,Y) 6= R(X,Y).

decomposition that takesX to Y goes throughZ, and so 3 is not an element ofR(X,Y).
R(X,Y) is on the right in Figure 3;L(X,Y) is the entire lattice on the left.

We might also look for conditions on the lattice under whichR(X,Y) andL(X,Y)must
be equal. Since semimodularity places a bound on the join of two points in a lattice, a
natural attempt would be requiring every point in the lattice to be the join of rank 1 points,
or atoms. Such a lattice is calledatomic, orgeometric. These lattices can also be viewed as
the lattice of flats (or closed sets) of a matroid (see [5] for more details). For our examples
of matroids, we limit ourselves to faces of three-dimensional complexes.

However, geometric lattices do not necessarily satisfyR(X,Y) = L(X,Y). Consider the
lattice in Figure 4. As a matroid, this lattice can be represented as the faces of the pyramid
in Figure 4; if we let a face be denoted by its vertices, the faces in this diagram are all subsets
of {A, B,C, D, E} which obey the condition that if any three points of{A, B, D, E} are
in a subset, then all four points are included, since the plane determined by the three points
includes the whole square. LetX andY be the flagsX = {∅, A, AB, ABC, ABC DE} and
Y = {∅, E, DE,C DE, ABC DE}. ThenL(X,Y) is the bold part of the lattice in Figure 4;
it is isomorphic to the lattice on the left in Figure 3, andR(X,Y) is isomorphic toR(X,Y)
from the example in Figure 3 soR(X,Y) 6= L(X,Y).

In [2] (Proposition 3.11, part (ii)), Abels proved that for every pair of flags in a semi-
modular lattice,R(X,Y) is a join sublattice of the original lattice. He did this by proving
a more general result for everyconvexset of flags.

Definition A setF of flags in a semimodular lattice isconvexif wheneverX andY are
in F , every flag on a minimalX-Y path is also inF .
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Figure 4. A geometric lattice whereL(X,Y) 6= R(X,Y).

Proposition 4.1 (Abels) LetF be a convex set of flags in a semimodular lattice. Then the
collection of all points on some flag inF forms a join sublattice of the original lattice. In
particular, if we apply this to the convex hull of X and Y(the smallest convex set containing
X and Y),we may conclude that R(X,Y) is a join sublattice of the original lattice for every
pair of flags X and Y .

Combining Proposition 4.1 with Lemma 3.3, we obtain the following.

Corollary 4.2 If X and Y are two flags in a semimodular lattice, then R(X,Y) is a join
sublattice of L(X,Y).

Proof: By Proposition 4.1, it suffices to show thatR(X,Y) is a subposet ofL(X,Y). For
anyz in R(X,Y), let X = Z0, Z1, . . . , Zm = Y be a reduced decomposition path fromX
to Y in which at least one flag containsz. By Lemma 3.3, every point onZk−1 is in the
lattice generated byX andZk, and so by descending induction onk, every point inZk−1 is
in L(X,Y). In particular,z is in L(X,Y). 2

Another corollary of Proposition 4.1 is thatR(X,Y) is semimodular.

Corollary 4.3 R(X,Y) is a semimodular lattice.

Proof: R(X,Y) is clearly ranked, and the rank of everyz in R(X,Y) is the same as its
rank in the original lattice, sincez is on some flag of the original lattice which is contained
in R(X,Y). SinceR(X,Y) is a join sublattice of the original lattice, the join of any two
points inR(X,Y) is the same as their join in the original lattice. Although the original meet
may not be inR(X,Y), this only means that the rank of the meet inR(X,Y)may be lower
than in the original lattice, and this does not alter semimodularity. 2
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Figure 5. L(X,Y) is unranked.

We could apply the same proof to show thatL(X,Y) is a semimodular latticeif L (X,Y)
is ranked. However, this need not be the case. Consider the lattice of all subsets of
{1, 2, 3, 4} except{2}, ordered by inclusion. The lattice is drawn on the left in Figure 5.
Let X = {∅ < 1 < 12< 123< 1234} and letY = {∅ < 4 < 24< 234< 1234}. The
point 23 is the intersection of 123 and 234, so 23 is inL(X,Y). However, the point 3 is
not in L(X,Y). This is because every point in eitherX or Y which contains 3 also contains
a 2, so the only way we could get to 3 is by taking a meet of points which contain 23. But
the intersection of every such pair of sets also contains 23, and every set with 23 is in the
original lattice.L(X,Y) is drawn on the right in Figure 5.

5. Labeling functions for a semimodular lattice

In Section 4, we showed thatR(X,Y) is a join sublattice ofL(X,Y) wheneverX andY
are flags in a semimodular lattice. We now show thatR(X,Y) can be embedded as a join
sublattice intoJ(π(X,Y)). We also obtain an explicit lattice expression for every point in
R(X,Y). This expression is independent of the reducedX-Y path that contains the point.

The embedding is given byl X, the labeling function for a lattice with respect to a flagX.
Stanley defined this function in [11] and [12], and Bj¨orner developed it further in [4]. We
now define this function, and derive some properties which relate it to the Jordan-H¨older
permutation.
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Definition If X is a flag in a rankn semimodular lattice, we define thelabeling function
with respect to Xfrom points in the lattice to subsets of [n] as follows:

l X(z) = {i ∈ [n] : xi ≤ xi−1 ∨ z} = {i ∈ [n] : xi ∨ z= xi−1 ∨ z}.
The imagel X(z) is called theX-label of z.

Proposition 5.1 Suppose X and Y are flags in a semimodular lattice withτ = π(X,Y),
and let yj < yk be points on Y . Then the labeling function lX has the following properties.
(i) The element i is in lX(yj ) if and only if i = τ(m) for some m≤ j , i.e., l X(yj ) =
{τ(1), . . . , τ ( j )} = τ([ j ]). Thus, the cardinality of lX(z) equals the rank of z for all z.

(ii) We have lX(yj ) ⊂ l X(yk), so lX is strictly monotonic. Thus, the labels on every flag
form a strictly ascending chain of subsets of[n].

(iii) The containment[i ] ⊆ l X(yj ) holds if and only if xi ≤ yj .

Proof: We havei in l X(yj ) if and only if xi ∨ yj = xi−1 ∨ yj , or equivalently,τ−1(i )
=π(Y, X)(i ) ≤ j . Letting m = τ−1(i ) proves (i). For (ii), we havel X(yj ) = τ([ j ])
⊂ τ([k]) = l X(yk). To show (iii), note that [i ] ⊆ l X(yj ) if and only if xi ∨ yj = xi−1 ∨ yj

= · · · = x0 ∨ yj = yj , or equivalently,xi ≤ yj . 2

We now give a criterion to determine whether a flag is on a reducedX-Y path from the
X- andY-labels of its points.

Proposition 5.2 Let τ = π(X,Y). The flag Z is on a reduced X-Y path if and only if
l X(zk) = τ(lY(zk)), and lX(zk) is in J(τ ) for each zk in Z.

Proof: Let ρ = π(X, Z), σ = π(Z,Y), and letτ = s1s2 · · · sm be a reduced decomposi-
tion takingX to Y throughZ, i.e.,ρ = s1 · · · sl for somel , andσ = sl+1 · · · sm. Therefore,
τ = ρσ , and l X(zk) = ρ([k]) = (τσ−1)([k]) = τ(π(Y, Z)([k])) = τ(lY(zk)). Since
ρ ≤ τ in the weak Bruhat order,ρ([k]) is in J(τ ) by Corollary 3.2.

Conversely, letρ = π(X, Z) = s1 · · · sl , andσ = π(Z,Y) = t1 · · · tm be reduced
decompositions takingX to Z andZ toY, respectively. Then inJ(τ ), these decompositions
also takeX to Z andZ to Y, since the labels give the same permutation inJ(τ ) as in the
semimodular lattice. Thus,τ = s1 · · · sl t1 · · · tm is reduced, since it takesX to Z to Y in
J(τ ) along a minimal path with respect to paths throughZ, and Z is on a reduced path
in J(τ ). 2

Proposition 5.2 only applies when the labels of all points on a flag obey its conditions.
Having l X(zk) = τ(lY(zk)) andl X(zk) in J(τ ) does not insure thatzk is in R(X,Y). For a
counterexample, we refer back to the lattice on the left in Figure 5. The pointz2 = 23 has
l X(z2) = {2, 3} = τ(lY(z2)), and this label is inJ(τ ). However, a flag through 23 must also
containz1 = 3, andl X(z1) = {3}. This label is not inJ(τ ) since(3, 2) is not an inversion
in τ . Alternatively, we could note that 3 cannot be inR(X,Y) because it is not inL(X,Y).
Since no reducedX-Y path includes 3, none can include 23; thus, 23 is not inR(X,Y).

Proposition 5.2 shows thatl X takes points inR(X,Y) to J(π(X,Y)). To show thatl X

embedsR(X,Y) as a join sublattice ofJ(π(X,Y)), we need to show that it is an injective
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function, and thatl X(wk∨ zm) = l X(wk)∪ l X(zm)wheneverwk andzm are inR(X,Y). We
first show that the join of any point inR(X,Y) with a point in eitherX or Y has the proper
label.

Proposition 5.3 If zk is R(X,Y), then lX(xi ∨ zk) = [i ] ∪ l X(zk), and lX(yj ∨ zk) =
τ([ j ]) ∪ l X(zk).

Proof: Let Z be a flag that containszk, and is on a reducedX-Y path. Also, letρ=π(X, Z).
From Theorem 3.6, we can choose a reducedX-Z path whose reduced decomposition ends
with r j , where j is the largest number such thatρr j < ρ. If j ≥ k, we may replaceZ by
the flag before ther j . Applying this inductively, we may assumeρ has the property that
ρr j > ρ for all j > k. Thus,ρ( j ) < ρ( j + 1) for j > k, and so labels are added in
increasing order above rankk. We claim that this flag is

{∅ = z0 < z1 < · · · < zk ≤ x1 ∨ zk ≤ · · · ≤ xn ∨ zk = [n]}.
There are two cases. If [i ] ⊆ l X(zk) then xi ∨ zk = zk which is onZ by definition.

Otherwise, letz′ be the lowest point onZ such that every label added abovez′ is greater
thani . Now l X(z′) = [i ] ∪ l X(zk). Therefore,xi ≤ z′, andzk ≤ z′ sincez′ is on Z. But
the label of every upper bound ofxi andzk contains [i ] ∪ l X(zk) soz′ is an upper bound of
minimal rank. Hence,z′ = xi ∨ zk.

As for yj ∨ zk, we havelY(yj ∨ zk) = [ j ] ∪ lY(zk), and so by Proposition 5.2, we find

l X(yj ∨ zk) = τ(lY(yj ∨ zk)) = τ([ j ] ∪ lY(zk))

= τ([ j ]) ∪ τ(lY(zk)) = τ([ j ]) ∪ l X(zk). 2

Corollary 5.4 For every z in R(X,Y), z ≤ xi ∨ yj if and only if lX(z) ⊆ l X(xi ∨ yj ) =
[i ] ∪ τ([ j ]).

Proof: If l X(z) ⊆ [i ] ∪ τ([ j ]), thenl X(z∨ xi ∨ yj ) = l X(z)∪ [i ] ∪ τ([ j ]) = [i ] ∪ τ([ j ]),
by Proposition 5.3. Sincexi ∨ yj ≤ z∨ xi ∨ yj and both points have the same label, and
hence the same rank, we havexi ∨ yj = z∨ xi ∨ yj , or z≤ xi ∨ yj . 2

Proposition 5.5 gives an explicit lattice expression for an arbitrary point inR(X,Y).
Since the order relations inR(X,Y) and L(X,Y) are inherited from the original lattice,
this shows thatR(X,Y) ⊆ L(X,Y). Corollaries 5.6 and 5.7 show thatl X is an injective
function onR(X,Y).

Proposition 5.5 If X and Y are flags in a finite rank semimodular lattice withτ =
π(X,Y), then for all z in R(X,Y), we can write z as the following meet:

z=
∧

l X(z)⊆[i ]∪τ([ j ])

xi ∨ yj =
∧

z≤xi∨yj

xi ∨ yj . (2)

Proof: Let z′ be the meet in (2). Clearly,z ≤ z′, sincez′ is the meet of points abovez.
Now supposei = τ( j ) is in l X(z′). Thenl X(z) 6⊆ [i − 1] ∪ τ([ j − 1]), soxi−1 ∨ yj−1 is
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not in the meet forz′. Thus, there is someτ(k) in l X(z) with k ≥ j andτ(k) ≥ i = τ( j ).
But l X(z) is in J(τ ); therefore, ifτ(k) is in l X(z), theni = τ( j ) is in l X(z) as well. Hence,
l X(z′) ⊆ l X(z), andz= z′. 2

Corollary 5.6 If z and z′ are in R(X,Y), then lX(z) ⊆ l X(z′) if and only if z≤ z′.

Corollary 5.7 Labels in R(X,Y) are unique—that is, for all points z and z′ in R(X,Y),
l X(z) = l X(z′) if and only if z= z′. Hence, l X is an injection of R(X,Y) into J(τ ).

Proof of Corollaries 5.6 and 5.7: If l X(z) ⊆ l X(z′), thenz′ ≤ xi ∨ yj impliesz≤ xi ∨ yj .
Hence, every point in the meet forz′ is also in the meet forz, soz ≤ z′ in Corollary 5.6,
andz≤ z′ ≤ z in Corollary 5.7. 2

By contrast, labels need not be unique inL(X,Y), even when the underlying lattice
is geometric. For an example, consider Figure 6. In this lattice, letX andY be the flags
X = {∅, A, AB, ABC, ABC DE} andY = {∅, E, DE,C DE, ABC DE}. Then the points
C E = (x3 ∧ y3) ∨ y1 andDE = y2 are both inL(X,Y), but l X(C E)= l X(DE)={3, 4}.

Besides showing that Corollaries 5.6 and 5.7 cannot apply toL(X,Y), this example
also shows that points inL(X,Y) need not obey Corollary 5.4 or the label criterion of
Proposition 5.5. The labels ofC E and DE are identical. Since their join is above both
of them, the label of the join contains more than the union of the labels. Furthermore,
C E 6≤ DE = y2, even though itsX-label is contained inl X(DE). However, we note that
lY(DE) = {1, 2} sincey2 = DE, butlY(C E) = {1, 3}. This suggests the following analog
of Corollaries 5.6 and 5.7, which is an open question.

Question 1 If z and z′ are in L(X,Y), and if lX(z) ⊆ l X(z′) and lY(z) ⊆ lY(z′), must we
have z≤ z′? If l X(z) = l X(z′) and lY(z) = lY(z′), must z= z′?

We proved Corollaries 5.6 and 5.7 via Proposition 5.5; similarly, question 1 would follow
as a corollary to the following question.

Figure 6. A geometric lattice with duplicatedX-labels inL(X,Y).
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Question 2 If z is a point in L(X,Y), can we write always write z as the meet

z=
∧

z≤xi∨yj

xi ∨ yj ?

Finally, we note thatR(X,Y) is finite, since it is a sublattice ofJ(τ ) which is finite. We
do not know whether the same holds forL(X,Y). Thus, we are led to ask:

Question 3 Is it possible to construct a finite rank semimodular lattice such that L(X,Y)
is arbitrarily large for some flags X and Y?

Obviously, an affirmative answer to question 3 would imply a negative answer to questions 1
and 2.

6. R(X,Y) and J(τ )

Theorem 6.1 We have lX(wk ∨ zm) = l X(wk) ∪ l X(zm). Hence, the labeling function lX
embeds R(X,Y) into J(τ ) as a join sublattice.

Proof: We havel X(wk) ∪ l X(zm) ⊆ l X(wk ∨ zm) by Proposition 5.1(ii). Now assume by
induction onk that l X(wk−1 ∨ zm) = l X(wk−1) ∪ l X(zm) for all m. By semimodularity,
eitherwk ∨ zm coverswk−1 ∨ zm or the points are equal. If they are equal, thenl X(wk ∨
zm) = l X(wk−1 ∨ zm) = l X(wk−1) ∪ l X(zm) ⊆ l X(wk) ∪ l X(zm). Otherwise, we have
l X(wk) 6⊆ l X(wk−1∨ zm), by Corollary 5.6, sincewk 6≤ (wk−1∨ zm), and both points are in
R(X,Y). Hence,l X(wk) ∪ l X(zm) has at least one more element thanl X(wk−1 ∨ zm). But
l X(wk ∨ zm) has exactly one more element thanl X(wk−1 ∨ zm), since the first point covers
the second. Since

l X(wk−1 ∨ zm) = l X(wk−1) ∪ l X(zm) ⊂ l X(wk) ∪ l X(zm) ⊆ l X(wk ∨ zm)

and the last set has exactly one more element than the first, we must havel X(wk)∪ l X(zm) =
l X(wk ∨ zm). 2

We can also derive a converse to Theorem 6.1.

Proposition 6.2 Every ranked join sublattice of J(τ ) which contains its distinguished
flags X and Y occurs as R(X,Y) for some semimodular lattice.

Proof: Let M be a join sublattice ofJ(τ ). The proof of Corollary 4.3 shows that if a
ranked join sublattice of a semimodular lattice has the same rank as the original lattice,
the join sublattice is semimodular. Hence,M is semimodular, and it suffices to show that
R(X,Y) = M in M . Since the labeling functionsl X andlY are determined by joins, and
sinceM is a join sublattice ofJ(τ ), the X- andY-labels of a point inM is the same as
the corresponding labels inJ(τ ). As every flag is on a reduced path inJ(τ ), we also have
l X(z) = τ(lY(z)) for everyz in M , and so, by Proposition 5.2, every flag inM is on a
reducedX-Y path. Thus,R(X,Y) = M . 2
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7. Classification of reduced paths in semimodular lattices

In this section, we classify the sets of reduced decompositions of a permutationτ which
can correspond to a set of reducedX-Y paths in some semimodular lattice. We begin by
defining the monoid of all decompositions of permutations inSn.

Definition Let M be the free monoid on generators{r1, r2, . . . , rn−1}, where we multiply
elements ofM by concatenating them, and the identity is∅, the empty product. Then for
f in M, we define f̄ to be the image off in Sn. In particular, f is a decomposition of̄f ;
f g = f̄ ḡ; and∅̄ is the identity inSn.

Proposition 7.1 Let S be the set of reduced decompositions ofτ which take X to Y in a
semimodular lattice. Then S is nonempty and has the properties:
R1. If f r i r j h is in S and ri and rj commute, then f rj r i h is in S.
R2. If f r i r i+1ri h is in S then f ri+1ri r i+1h is in S.
R3. If f h and f′h′ are in S andf̄ ≤ f̄ ′ in weak Bruhat order, then some decomposition

in S has the form fgh′.

Proof: S is nonempty by Theorem 3.6. Ifτ = ri r j and the reflections commute, we have

Y={0̂< x1< · · · < xi−1< yi < xi+1< · · · < xj−1< yj < xj+1< · · · < xn= 1̂},

and we can go fromxi to yi either before or after going fromxj to yj , so S contains
both decompositions. Ifτ = ri r i+1ri , then by Theorem 3.6,ri+1ri r i+1 takesX to Y,
so this decomposition must be inS. For longer permutations, iff r i r j h (or f r i r i+1ri h,
respectively) is a decomposition inS, applying the above comments lettingX′ be the flag
reached after traversingf andY′ be the flag reached afterf r i r j (or f r i r i+1ri , respectively)
proves R1 and R2.

As for R3, let X′ be the flag inR(X,Y) in position f̄ , andY′ be the flag in position
f̄ ′ from the path ending withh′. By uniqueness of labels inR(X,Y), these flags are well
defined. SinceR(X,Y) is semimodular, Theorem 3.6 gives a reduced decompositiong
which takesX′ to Y′ in R(X,Y). The decompositionf gh′ takesX to X′ to Y′ to Y in J(τ ).
Furthermore, this is a reducedX-Y path in J(τ ), since f̄ ≤ f̄ ′ ≤ τ in the weak Bruhat
order. But we can follow the same steps inR(X,Y) as we do inJ(τ ), and this gives a
reducedX-Y path in the original lattice as well. 2

For the remainder of this section, we prove the conditions in Proposition 7.1 are sufficient
as well, i.e., for any nonempty setSof reduced decompositions which obey these conditions,
we construct a semimodular latticeR(S) with two distinguished flagsX andY such that
the decompositions which takeX to Y in R(S) are precisely those inS. For notational
convenience, we make the following definition.

Definition Let S be a set of reduced decompositions of someτ in Sn. Then S is an
R-set ofτ , or simply anR-set, if S is nonempty and obeys conditions R1, R2, and R3 in
Proposition 7.1.
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Theorem 7.2 The R-sets are in one to one correspondence with the isomorphism classes
of R(X,Y)’s.

We constructR(S) as follows: for each decompositionf = s1s2 . . . sm in S, let f j =
s1 . . . sj , and let f jk be the subset̄f j ([k]) ⊆ [n]. The idea is that iff is to represent a path
from X to Y, we need a flag at each step of the path. IfZ j is the flag at thej th step, then
π(X, Z j ) = f̄ j , andl X(zk)would be f jk . Thus, we defineR(S) = { f jk : f ∈ S} ordered by
inclusion. ThenR(S) is contained inJ(τ ) since everyf jk is ρ([k]) for someρ ≤ τ in the
weak Bruhat order, andX andY are inR(S) sinceX = { f0k = f̄0([k]) = ∅̄([k]) = [k]} and
Y = { fmk = f̄m([k]) = τ([k])} for any f in S. Also, by construction, every decomposition
of S takesX to Y in R(S). We call a reduced path fromX to Y in R(S) an S-pathif the
corresponding decomposition is inS, and we say any flag on anS-path is anS-flag.

We want to show that every reducedX-Y path is anS-path, and every flag inR(S) is an
S-flag, soR(X,Y) = R(S). To do this, we showR(S) has several properties analogous
to those ofR(X,Y) that we proved in previous sections. We use these properties to show
R(S) is a join sublattice ofJ(τ ) and the only reduced decompositions which takeX to Y
are those inS. For example, Lemma 7.3 corresponds to Theorem 3.6.

Lemma 7.3 Let S be an R-set with f h in S. Let i, j , k, and m be the largest numbers
such thatri f < f̄ , f r j < f̄ , rkh < h̄, and hrm < h̄. Then there are decompositions
in S of the form ri f ′h, f ′′r j h, f rkh′, and f h′′rm. ConditionsR1 andR2 are sufficient to
guarantee the conclusions.

Proof: We first supposeh = ∅, the empty decomposition, and use induction on the length
of f to prove the statement fori . Let f = s1s2 · · · sm, and letS′ be the set of reduced
decompositionsf ∗ of s1 f < f̄ such thats1 f ∗ is in S. ThenS′ is nonempty (sincef is
in S) and obeys conditions R1 and R2. Nows1 = r p for somep ≤ i by definition of i .
If p < i − 1, we may assume by induction on the length off̄ thats2 = ri , sincei is the
largest number such thatri s1 f < s1 f , and we may exchanges1 andri by condition R1.

If p = i − 1, thenri−1 f < f̄ andri f < f̄ , so f̄ (i − 1)> f̄ (i )> f̄ (i + 1). Now by
induction, we assumes2 = ri ands3 = ri−1. Using R2, we replace the initialri−1ri r i−1 with
r i r i−1ri to get a decomposition beginning withri . Similarly, we can find a decomposition
f ′′r j in S.

If h 6= ∅, we letS∗ be the set of reduced decompositionsf ∗ of f̄ such thatf ∗h is in S.
As before,S∗ is nonempty, and conditions R1 and R2 hold forS∗, so by the above argument,
we can find an appropriate decompositions inS∗, and appendingh gives the decomposition
in S. Similarly, we can findh′ andh′′. 2

Lemma 7.4 corresponds to Proposition 5.3.

Lemma 7.4 Suppose Z={∅ ⊂ z1 ⊂ · · · ⊂ zn} is an S-flag. Then for all k, we have
S-flags of the form

Z′k = {∅ ⊂ z1 ⊂ · · · ⊂ zk ⊆ zk ∪ [1] ⊆ · · · ⊆ zk ∪ [n]}
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and

Z′′k = {∅ ⊂ z1 ⊂ · · · ⊂ zk ⊆ zk ∪ τ([1]) ⊆ · · · ⊆ zk ∪ τ([n]) = [n]}.

Furthermore, we haveπ(X, Z′k) ≤ π(X, Z) ≤ π(X, Z′′k ) in the weak Bruhat order.

Proof: Choose f h in S such that f = s1 · · · sp takesX to Z andh takesZ to Y. By
Lemma 7.3, we may assumesp is the largestri such thatf r i < f̄ . If i > k, we suppose
by induction on the length off that the lemma holds forZ∗, the flag immediately before
thesp. But Z∗ is identical toZ at rankk and below, soZ′k = (Z∗)′k, which is anS-flag by
induction, andZ′k= (Z∗)′k≤ Z∗< Z. If i ≤ k, then the elements̄f ([m+ 1]) \ f̄ ([m]) are
in increasing order form > k. Therefore, for alli we havezk ∪ [i ] = zm for somem, and
Z′k = Z. To find Z′′k , use the same argument and induction on the length ofh. 2

In R(X,Y), if wk andzk both coverwk∧ zk, thenwk∨ zk coverswk andzk, by semimod-
ularity. We would like to show the same property holds forR(S). Lemma 7.5 is a partial
result in that direction. It applies when there areS-flags throughwk andzk such that the
two flags agree at all levels belowk.

Lemma 7.5 Let W and Z be S-flags, and let k be the smallest rank such thatwk 6= zk.
Then there is an S-path through k-adjacent flags W′ and Z′ with the property thatw′j = w j

and z′j = zj for j ≤ k. In particular, wk ∪ zk is in R(S) and it coverswk and zk.

Proof: We first show that we can chooseW and Z so thatπ(X,W) < π(X, Z) in the
weak Bruhat order (or vice versa, in which case we reverse the roles ofW andZ). Then we
let f , h, f ′, andh′ be reduced paths fromX to W, W to Y, X to Z, andZ to Y, so f h and
f ′h′ are decompositions inS taking X to Y in R(S) throughW andZ, respectively. Since
f̄ < f̄ ′, condition R3 gives a reduced decompositionfgh′ in Swhich takesX to W to Z to
Y. Finally, we show that we can choose ag with exactly onerk in it. (Note thatg cannot
have anr j with j < k sinceW and Z are equal below levelk.) The flags immediately
before and after therk in the correspondingS-path areW′ andZ′, respectively.

We writeρ = π(X,W), σ = π(X, Z), andτ = π(X,Y). To chooseW andZ such that
ρ andσ are related in the Bruhat order, leta andb be the lone elements of(wk \wk−1) and
(zk \ zk−1), respectively. Without loss of generality, supposea < b (otherwise, we switch
W andZ). By Lemma 7.4, we may assumeW = {∅ ⊂ w1 ⊂ · · · ⊂ wk ⊆ wk∪ [1] ⊆ · · · ⊆
wk ∪ [n]} and Z = {∅ ⊂ w1 ⊂ · · · ⊂ wk−1 ⊂ zk ⊆ zk ∪ τ [1] ⊆ · · · ⊆ zk ∪ τ [n]}.
We show that every inversion inρ is also inσ , so ρ < σ in weak Bruhat order by
Proposition 3.1. Clearly, every inversion ofρ which involvesρ( j ) for j < k is also
in σ , sinceρ([ j ]) = σ([ j ]). The only other inversions inρ involveρ(k) = a. But if (a,a′)
is an inversion inρ, it is also an inversion inτ by Proposition 3.1. Nowa′ 6= b, since
a′ < a < b = σ(k), but the labels above rankk in Z are added in the same order that they
appear inτ . Hence, if(a,a′) is an inversion inτ , it is also an inversion inσ . Therefore,
ρ < σ , and condition R3 applies.

To chooseg with only onerk, take the giveng, and look at the first occurrence of a string of
the formrkrk+1 · · · rm. If this string is at the end ofg we have only onerk and there is nothing
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to prove. Otherwise, letr p be the simple reflection following this string. We cannot have
p = msince the decomposition is reduced. Ifp = m+1, we replacembym+1 and use the
longer string. Ifp > m+1, we apply condition R1 repeatedly to replacerkrk+1 · · · rmr p by
r prkrk+1 · · · rm. If p < m, we replacerkrk+1 · · · rmr p by rkrk+1 · · · r p−1r pr p+1r pr p+2 · · · rm

using condition R1, then replace this byrkrk+1 · · · r p−1r p+1r pr p+1r p+2 · · · rm using condi-
tion R2, and replace this withr p+1rkrk+1 · · · rm by condition R1 again. In each of these
cases, we move the string closer to the end ofg. When it gets there, we have a decom-
position f gh′ in S with only one rk in g, so we can chooseW′ and Z′ as explained
above. 2

The requirement in Lemma 7.5 that theS-flags be equal up to the points in question can
be rather cumbersome. Lemma 7.6 allows us to sidestep the difficulties, and to complete
the proof of Theorem 7.2.

Lemma 7.6 Suppose W and Z are S-flags such thatwi = zi for i < k andwk+1 = zk+1.
Then{∅ ⊂ w1 ⊂ w2 ⊂ · · · ⊂ wk−1 ⊂ zk ⊂ wk+1 ⊂ · · · ⊂ wn} is an S-flag.

Proof: Let a andb be the lone elements of(wk\wk−1) and(zk\wk−1), respectively. If
a < b, we assumeZ = {∅ ⊂ z1 ⊂ · · · ⊂ zk+1 ⊆ zk+1 ∪ τ [1] ⊆ · · · ⊆ zk+1 ∪ τ [n]}, since
this is anS-flag by Lemma 7.4, and the points ofZ abovezk+1 are irrelevant for this lemma.
Now every inversion inπ(X,W) is also inπ(X, Z), soπ(X,W) ≤ π(X, Z) in weak Bruhat
order. Thus, condition R3 implies the existence of a decompositionfgh in Swhich takesX
to W to Z to Y. The decompositiong from W to Z has exactly onerk and no otherri ’s for
i ≤ k+1, sinceW andZ agree up to levelk+1 except at levelk. By condition R1, we may
assume therk is the first reflection ing. TheS-flag in position f r k is theS-flag asserted in
the lemma. Ifa > b, we assumeZ = {∅ ⊂ z1 ⊂ · · · zk+1 ⊆ zk+1∪ [1] ⊆ · · · ⊆ zk+1∪ [n]}
and note thatπ(X, Z) ≤ π(X,W) in weak Bruhat order. We now assume the lonerk in g
(which is now the decomposition fromZ to W) is at the end ofg, so the flag in position
f grk is the asserted flag. 2

Proposition 7.7 shows thatR(S) is a join sublattice ofJ(τ ), and also allows us to prove
that every flag ofR(S) is anS-flag.

Proposition 7.7 Suppose W and Z are S-flags. Then for every i, there is an S-flag

Ui = {∅ ⊂ w1 ⊂ · · · ⊂ wi ⊆ wi ∪ z1 ⊆ · · · ⊆ wi ∪ zn}.

Hence, R(S) is a join sublattice of J(τ ).

Proof: SinceU0 = Z, we assume by induction thatUi−1 is an S-flag. We first use
Lemma 7.5 and induction onj to extend

Ui−1, j = {∅ ⊂ w1 ⊂ · · · ⊂ wi−1 ⊆ wi−1 ∪ z1 ⊆ · · · ⊆ wi−1 ∪ zj ⊆ wi ∪ zj }
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to anS-flag, and then we use descending induction onk and Lemma 7.6 to show there is
anS-flag

Vik = {∅ ⊂ w1 ⊂ · · · ⊂ wi−1 ⊆ wi−1 ∪ z1 ⊆ · · · ⊆ wi−1 ∪ zk ⊆ wi ∪ zk

⊆wi ∪ zk+1 ⊆ · · · ⊆ wi ∪ zn}.
For the induction onj , we note thatUi−1,0 can be extended toW. Applying Lemma 7.5 to

Ui−1 and theS-flag which results from extendingUi−1, j−1 gives anS-flag containingUi−1, j ,
completing the induction. We also find anS-flag containingUi−1, j−1 and the pointwi ∪ zj .
We will use this flag in the descending induction onk. We first note thatVin = Ui−1,n, so
Vin is anS-flag. Fork ≤ n, we apply Lemma 7.6 toVi,k and theS-flag from the induction
on j which containsUi−1,k−1 andwi ∪ zk. We find thatVi,k−1 is anS-flag. SinceUi = Vi,0,
this completes the original induction oni . 2

Corollary 7.8 Every flag in R(S) is an S-flag.

Proof: Let W be a flag inR(S) and suppose by induction that{∅ ⊂ w1 ⊂ · · · ⊂ wk}
can be extended to anS-flag W∗k . Nowwk+1 is on someS-flag Z, since it is inR(S), so
applying Proposition 7.7 toW∗k andZ gives the flagW∗k+1, completing the induction. 2

Proof of Theorem 7.2: Proposition 7.1 shows that the set of decompositions takingX
to Y in a semimodular lattice form an R-set. Conversely, Proposition 7.7 shows that for
every R-setS, R(S) is a join sublattice ofJ(τ ), i.e., a poset isomorphic to someR(X,Y)
for two flags X andY in a semimodular lattice. To complete the proof, we must show
that every reduced decomposition which takesX to Y in R(S) is in S, i.e., if s1 · · · sm

is a reduced decomposition which takesX to Y in R(S), then this decomposition is in
S. Thus, suppose by induction that some decomposition inS begins withs1 · · · sk. By
Corollary 7.8, there must be anS-flag Z in R(S) such thatπ(X, Z) = s1 · · · sk+1, so there is
another decompositiont1 · · · tm in Ssuch thatt1 · · · tk+1 = s1 · · · sk+1. Now applying R3 to
f = s1 · · · sk andh′ = tk+2 · · · tm, we see thats1 · · · sk+1tk+2 · · · tm is in S, and by induction,
s1 · · · sm is in S. 2

8. Proofs of Theorems 2.2 and 2.3

We note that Theorems 2.2 and 2.3 follow from our results on semimodular lattices. We
prove Theorem 2.3 first.

Proof of Theorem 2.3: From Proposition 4.2, we know that in an upper semimodular
lattice,R(X,Y) is a join sublattice ofL(X,Y). By duality, in a lower semimodular lattice,
R(X,Y) is a meet sublattice ofL(X,Y). Hence, if the original lattice is modular,R(X,Y)
must be a sublattice ofL(X,Y). But L(X,Y) is the smallest sublattice of the original lattice
that containsX andY, soR(X,Y) = L(X,Y). This proves Theorem 2.3(i).

As for Theorem 2.3(ii), Proposition 7.1 applies to lower semimodular lattices, except
that we must replace condition R2 by condition R2′.

R2′. If f r i+1ri r i+1h is in S then f r i r i+1ri h is in S.
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For a modular lattice, this condition becomes

R2′′. If either f r i r i+1ri h or f r i+1ri r i+1h is in S then both decompositions are inS.

But by a standard result (see, for example [9], Theorem 2.11) we can transform any reduced
decomposition ofτ into any other reduced decomposition ofτ by a sequence of replacements
allowed by conditions R1 and R2′′. SinceS is nonempty,Smust therefore consist ofevery
reduced decomposition ofπ(X,Y). This proves Theorem 2.3(ii). 2

Proof of Theorem 2.2: We show that in a modular lattice, the labeling functionl X is an
isomorphism betweenR(X,Y) and J(τ ) whenτ = π(X,Y). SinceR(X,Y) = L(X,Y)
by Theorem 2.3(i), and sincel X(xi ) = [i ] andl X(yj ) = τ([ j ]), this is sufficient.

By Theorem 6.1,R(X,Y) can be embedded as a join sublattice ofJ(τ ). Conversely,
chooseρ ≤ τ in the weak Bruhat order. By definition of the weak Bruhat order, some
reduced decomposition ofτ begins with a reduced decomposition ofρ. By Theorem 2.3(ii),
this decomposition takesX to Y. Thus, some flagZ along this path hasρ = π(X, Z). The
X-label of rankk point of this flag isl X(zk) = ρ([k]). Therefore, every label of the form
ρ([k]) with ρ ≤ τ in the weak Bruhat order occurs. By Corollary 3.2,l X is a surjection,
and so by Corollary 5.7, it is an isomorphism. 2
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