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Abstract. A remarkable coincidence has led to the discovery of a family of packings ofm2 + m − 2 m/2-
dimensional subspaces ofm-dimensional space, wheneverm is a power of 2. These packings meet the “orthoplex
bound” and are therefore optimal.
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1. Introduction

LetG(m, n)denote the Grassmannian space of alln-dimensional subspaces of real Euclidean
m-dimensional spaceRm. The principal anglesθ1, . . . , θn ∈ [0, π/2] between two sub-
spacesP, Q ∈ G(m, n) are defined by

cosθi = max
u∈P

max
v∈Q

u · v = ui · vi ,

for i = 1, . . . ,n, subject tou · u = v · v = 1, u · u j = 0, v · v j = 0 (1 ≤ j ≤ i − 1). We
define the distance1 betweenP andQ to be

d(P, Q) =
√

sin2 θ1+ · · · + sin2 θn.

In [11] we discussed the problem of finding good packings inG(m, n), that is, for given
N = 1, 2, . . . , of choosingP1, . . . , PN ∈ G(m, n) so that mini 6= j d(Pi , Pj ) is maximized.
It was shown that forN > m(m+ 1)/2 the highest achievable distance,dN(m, n), satisfies

d2
N(m, n) ≤

n(m− n)

m
. (1)

A necessary condition for equality to hold in (1) is thatN ≤ (m− 1)(m+ 2). An es-
pecially interesting case occurs whenm is even,n = m/2, andN = (m− 1)(m+ 2),
where we found optimal packings form = 2, 4 and 8; that is, packings of 4 lines in
R2, 18 2-spaces inR4 and 70 4-spaces inR8. The first is the familiar configuration seen
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on the British flag (the Union Jack), the second is the “double-nine”, a classic configu-
ration from nineteenth-century geometry (see (3) below and also the reference in [11]),
but the third was discovered only after a very considerable computer-assisted search. At
the time [11] was written we believed that there would be no further examples in this
series.

It came as a considerable surprise therefore when we discovered that such packings exist
wheneverm is a power of 2.

These packings were discovered by a remarkable coincidence. One of us (P.W.S.) had
discovered a family of groups in connection with quantum coding theory [10], and asked
the other (N.J.A.S.) for the best way to determine their orders. N.J.A.S. explained to P.W.S.
that the Magma computer system [6–8] was ideal for this, and gave as an example the
symmetry group of above-mentioned set of 70 4-spaces inR8, an eight-dimensional group
of order 278! = 5160960. To our astonishment, the first of his groups that P.W.S. tested
turned out to be (almost) exactly the same group.

The version of the group that arises from quantum coding in fact has the coordinates
in a slightly nicer order, and produces the 70 planes as the orbit of the plane spanned by
the first four coordinate vectors. With the help of our colleague R.H. Hardin we verified
that the next three groups in the series produced packings meeting the bound in 16, 32
and 64 dimensions. Further investigation then produced the general construction given in
Section 3. The groups are described in Section 2.

2. The group

The groupGi that arises from quantum coding theory is a subgroup of the real orthogonal
groupO(V,R), whereV denotesRm, m = 2i , i ≥ 1, with coordinates indexed by binary
i -tuplesx = (x1, . . . , xi ) ∈ F i , andF is the field of order 2.Gi is generated by the following
2i × 2i orthogonal matrices:

(i) all permutation matricesπA,b corresponding to affine transformationsx 7→ Ax+ b of
F i , whereA is any invertiblei × i matrix overF andb ∈ F i , and

(ii) the matrix H = diag{H2, H2, . . . , H2}, whereH2 = 1√
2
(
++
+− ) (and+ denotes+1,

− denotes−1).

By multiplying these generators it is easy to see that, fori ≥ 2, Gi contains the matrix
H ′ = diag{H4, H4, . . . , H4}, where

H4 = 1

2


+ + + +
+ − + −
+ + − −
+ − − +

 .
LetHi be the group generated by the permutations andH ′. ThenGi = Hi

⋃
HHi .

The packings described in Section 3 can be obtained by writing the coordinates in the
natural lexicographic order and taking the orbit underGi of the subspace spanned by the
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Figure 1. The first pair of Barnes-Wall lattices,BW1 (small circles) andBW′1 (large circles).

first 2i−1 coordinate vectors (i.e., those in whichx1 = 0). However, the construction now
given in Section 3 is a recursive one that no longer explicitly mentions the group. The group
is only needed in the analysis, where we make use of the fact that it acts transitively on the
subspaces. In the rest of this section we shall therefore give only a brief discussion of these
groups, in order to show their connection with the Barnes-Wall lattices.

It turns out thatHi andGi are well-known groups.Hi is the Clifford groupCT +1 (2i )

studied in [4, 5, 14], which in recent years has been used in the classification of finite
simple groups (see the references in [9]).Hi is relevant for the present work because of its
connection with the Barnes-Wall lattices.

Although the original paper of Barnes and Wall [3] describes a family of lattices in each
dimensionm= 2i (i ≥ 1), the most interesting lattices are the pair with the highest number
of minimal vectors (this number is given by the formula displayed in (4)). We denote this
pair of 2i -dimensional lattices byBWi and BW′i . A construction of these lattices using
Reed-Muller codes is given in [2] and in [12], p. 234, example (f) (see also [13]).

BWi andBW′i are geometrically similar lattices, differing only by a rotation and change
of scale. Wheni = 1, for example, we can takeBW1 to be the square latticeZ2 (figure 1,
solid circles), andBW′1 to be its sublattice of index 2 (figure 1, double circles). In this case
the matrixD = √2H2 acts as an endomorphism sendingBW1 to BW′1. In exactly the same
way, the matrix

√
2H sendsBWi to BW′i , a geometrically similar sublattice of index 2m/2

(cf. [12], pp. 240–241). Applying
√

2H twice sendsBWi to 2· BWi .
Wall [14] showed that fori 6= 3,Hi is the full automorphism group of the latticesBWi

andBW′i . (The casei = 3 is special, sinceBW3 andBW′3 are copies of the root latticeE8.)
The groupHi has a normal subgroupE which is an extra-special 2-group of order 21+2i ,
andHi /E is isomorphic to the orthogonal groupO+2i (2) ∼= Di (2). The order ofHi is

22i+1 · 2i (i−1)(2i − 1)
i−1∏
j=1

(4 j − 1). (2)
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By adjoining the irrational matrixH we obtain the full groupGi , twice the size ofHi .
The groupGi also appears in an apparently totally different context in [9] (see the groupL
defined in Eq. (2.13)).

The way the groupGi arises in quantum coding theory is as follows. The quantum state
space ofi 2-state quantum systems is the complex spaceCm,m= 2i . Quantum computation
involves making unitary transformations in this space (see [1, 10]). Some transformations
may be much easier to realize than others, and it is therefore important to know which sets of
transformations are sufficient for quantum computation, that is, which sets generate a group
dense inSU(2i ). An interesting set of transformations which generate a finite group are the
linear Boolean functions on quantum bits (the permutation matrices in our groupGi ), and
certain rotations of quantum bits byπ/2. To obtain the corresponding subgroup of the or-
thogonal groupSO(2i ), only one rotation is required, which can be taken to be the matrixH .

3. The construction

We specify a subspaceP ∈ G(m, n) by giving a generator matrix, that is, ann×m matrix
whose rows spanP. We will use the same symbol for the subspace and the generator
matrix, andP⊥ will denote the subspace orthogonal toP (or a generator matrix thereof).
I denotes an identity matrix.

The construction is recursive. We define a setQi containing 22i−1 monomial matrices of
size 2i−1× 2i−1 byQ1 = {(+), (−)},

Qi =
{(+ 0

0 +
)
⊗ Q,

(+ 0
0 −

)
⊗ Q,

(
0 +
+ 0

)
⊗ Q,(

0 +
− 0

)
⊗ Q; Q ∈ Qi−1

}
,

for i ≥ 2. ThenCi is defined by

C1 = {(+0), (0+), (++), (+−)},

Ci =
{
(I 0), (0I ),

(
P 0
0 P

)
,

(
P 0
0 P⊥

)
, (I Q); P ∈ Ci−1, Q ∈ Qi

}
,

for i ≥ 2. For example,C2 consists of the 18 matrices(+0 00
0+00

)
,

(
00+0
00 0+

)
,

(+0 0 0
0 0+0

)
,

(+00 0
0 00+

)
,

(
0+0 0
0 0 0+

)
,(

0+0 0
0 0+0

)
,

(++0 0
0 0++

)
,

(++0 0
0 0+−

)
,

(+−0 0
0 0+−

)
,

(+−0 0
0 0++

)
,(+0+0

0+0+
)
,

(+0+0
0+0−

)
,

(+0−0
0+0+

)
,

(+0−0
0+0−

)
,(+0 0+

0++0

)
,

(+0 0+
0+−0

)
,

(+0 0−
0++0

)
,

(+0 0−
0+−0

)
.

(3)



P1: PMR

Journal of Algebraic Combinatorics KL540-03-Shor February 5, 1998 10:46

A FAMILY OF OPTIMAL PACKINGS 161

(The last two rows of matrices in (3) are the matrices(I Q).) These are generator matrices
for 18 2-spaces inR4.

Theorem Let m= 2i , i ≥ 1. The generator matricesCi define a set of(m−1)(m+2) =
22i + 2i − 2 1

2m-dimensional subspaces ofRm. The distance between any two subspaces
is either

√
m/4 or

√
m/2.

Proof: The number of subspaces is, by induction,

2+ 2(22i−2+ 2i−1− 2)+ 22i−1 = 22i + 2i − 2,

as claimed.
Since the recursive definition of theCi mentions the matrices(I 0)and(0I ), the coordinate

positions ofCi can be labeled from left to right with binaryi -tuples in the natural order,
and the groupGi then acts by multiplication on the right. It is now easy to find matrices in
Gi that permute the subspaces transitively. We leave the details to the reader. Therefore,
to determine the distances between the planes, we may assume that one of the planes has
generator matrix

A =


1 0

1 0
1 0
· · · · · ·

1 0

 .

We recall (cf. [11]) that if a second plane has generator matrix

B =


c1 s1

c2 s2

c3 s3

· · · · · ·
cn sn

 ,

wherec2
1 + s2

1 = · · · = c2
n + s2

n = 1, n = 2i−1, then the principal angles betweenA andB
are arccosc1, arccosc2, . . . ,arccoscn.

The principal angles betweenAand(0I ) areπ/2 (n times). BetweenAand the subspaces(
P 0
0 P

)
or

(
P 0
0 P⊥

)
they are 0 (n/2 times),π/2 (n/2 times); and betweenA and(I Q) they areπ/4 (n times).
The distance fromA to any other plane is therefore either

√
n/2 or

√
n. 2

Since the bound (1) is achieved, this is an optimal packing.
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Together with R.H. Hardin, we are also investigating other families of subspaces that can
be obtained from the same group. If the initial subspace is taken to be that spanned by the
first coordinate vector, the orbit consists of the minimal vectors of the Barnes-Wall lattice
BWi , together with their images under the transformationH , giving a total of

(2+ 2)(22+ 2) · · · (2i + 2) (4)

lines, with minimal angleπ/4. Taking the plane spanned by the first two coordinates as the
initial plane, we appear to obtain packings inG(m, 2) containing

1

12
(2i − 1)

i∏
r=0

(2r + 2)

planes, with minimal distance 1, form= 2i , i ≥ 1.
On the other hand, if the initial subspace is that generated by the firstm/4 coordinate

vectors, we appear to obtain packings inG(m,m/4) containing

1

12
(m− 2)(m− 1)(m+ 2)(m+ 4)

subspaces, with minimal distance
√

m/8, for m = 2i , i ≥ 2. The first member of this
sequence is the packing of 24 lines inR4 formed from the diameters of a pair of dual
24-cells.

We hope to discuss these packings (which appear to be a kind of Grassmannian analogue
of Reed-Muller codes and Barnes-Wall lattices) in a subsequent paper.2
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Notes

1. It is shown in [11] that this is a metric, and in fact is essentially theL2 distance between the matrices that
describe the orthogonal projections ontoP andQ.

2. The above conjectures have been confirmed. See A.R. Calderbank, R.H. Harden, E.M. Rains, P.W. Shor, and
N.J.A. Sloane, “A group-theoretic framework for the construction of packings in Grassmannian spaces”, to
appear in this journal.
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