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Abstract. This paper is concerned with properties of the Mullineux map, which plays a rˆole in p-modular
representation theory of symmetric groups. We introduce the residue symbol for a p-regular partitions, a variation
of the Mullineux symbol, which makes the detection and removal of good nodes (as introduced by Kleshchev) in
the partition easy to describe. Applications of this idea include a short proof of the combinatorial conjecture to
which the Mullineux conjecture had been reduced by Kleshchev.
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1. Introduction

It is a well-known fact that for a given primep the p-modular irreducible representations
Dλ of the symmetric groupSn of degreen are labelled in a canonical way by thep-regular
partitionsλ of n. When the modular irreducible representationDλ of Sn is tensored by
the sign representation we get a new modular irreducible representationDλP

. The question
about the connection between thep-regular partitionsλ andλP was answered in 1995 by
the proof of the so-called “Mullineux Conjecture”.

The importance of this result lies in the fact that it provides information about the decom-
position numbers of symmetric groups of a completely different kind than was previously
available. Also it is a starting point for investigations on the modular irreducible represen-
tations of the alternating groups. From a combinatorial point of view the Mullineux map
gives ap-analogue of the conjugation map on partitions. The analysis of its fixed points
has led to some interesting general partition identities [1, 2].

The origin of this conjecture was a paper by Mullineux [14], where he defined a bijective
involutory mapλ → λM on the set ofp-regular partitions and conjectured that this map
coincides with the mapλ→ λP. The statement “M = P” is the Mullineux conjecture. To
eachp-regular partition Mullineux associated a double array of integers, known now as the
Mullineux symbol and the Mullineux map is defined as an operation on these symbols. The
Mullineux symbol may be seen as ap-analogue of the Frobenius symbol for partitions.

Before the proof of the Mullineux conjecture many pieces of evidence for it had
been found, both of a combinatorial as well as of representation-theoretical nature. The
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breakthrough was a series of papers by Kleshchev [7–9] on “modular branching”, i.e., on
the restrictions of modular irreducible representations fromSn to Sn−1. Using these results
Kleshchev [9] reduced the Mullineux conjecture to a purely combinatorial statement about
the compatibility of the Mullineux map with the removal of “good nodes” (see below). A
long and complicated proof of this combinatorial statement was then given in a paper by
Ford and Kleshchev [4].

In his work on modular branching Kleshchev introduced two important notions, normal
and good nodes inp-regular partitions. Their importance has been stressed even further in
recent work of Kleshchev [10] on modular restriction. Also these notions occur in the work
of Lascoux et al. on Hecke Algebras at roots of unity and crystal bases of quantum affine
algebras [11]; it was discovered that Kleshchev’sp-good branching graph onp-regular
partitions is exactly the crystal graph of the basic module of the quantized affine Lie algebra
Uq(ŝl p) which had been studied by Misra and Miwa [12].

From the above it is clear that a better understanding of the Mullineux symbols is desirable
including their relation to the existence of good and normal nodes in the corresponding
partition. In the present paper this relation will be explained explicitly. We introduce a
variation of the Mullineux symbol called the residue symbol forp-regular partitions. In
terms of these the detection of good nodes is easy and the removal of good nodes has a
very simple effect on the residue symbol. In particular this implies a shorter and much more
transparent proof of the combinatorial part of the Mullineux conjecture with additional
insights (Section 4). We also note that the good behaviour of the residue symbols with
respect to removal of good nodes allows one to give an alternative description of thep-good
branching graph, and thus of the crystal graph mentioned above. Some further illustrations
of the usefulness of residue symbols are given in Section 3. This includes combinatorial
results on the fixed points of the Mullineux map.

2. Basic definitions and preliminaries

Let p be a natural number.
Let λ be ap-regular partition ofn. The p-rim of λ is a part of the rim ofλ ([6], p. 56),

which is composed ofp-segments. Each p-segment except possibly the last containsp
points. The firstp-segment consists of the firstp points of the rim ofλ, starting with the
longest row. (If the rim contains at mostp points it is the entire rim.) The next segment
is obtained by starting in the row next below the previousp-segment. This process is
continued until the final row is reached. We leta1 be the number of nodes in thep-rim of
λ = λ(1) and letr1 be the number of rows inλ. Removing thep-rim of λ = λ(1) we get
a newp-regular partitionλ(2) of n − a1. We leta2, r2 be the length of thep-rim and the
number of parts ofλ(2), respectively. Continuing this way we get a sequence of partitions
λ = λ(1), λ(2), . . . , λ(m), whereλ(m) 6= 0 andλ(m+1) = 0, and a correspondingMullineux
symbolof λ

Gp(λ) =
(

a1 a2 · · · am

r1 r2 · · · rm

)
.
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The integerm is called thelengthof the symbol. Forp > n, the well-known Frobenius
symbolF(λ) of λ is obtained fromGp(λ) as above by

F(λ) =
(

a1− r1 a2− r2 · · · am − rm

r1− 1 r2− 1 · · · rm − 1

)
.

As usual, here the top and bottom line give the arm and leg lengths of the principal hooks.
It is easy to recover ap-regular partitionλ from its Mullineux symbolGp(λ). Start with

the hookλ(m), given byam, rm, and work backwards. In placing eachp-rim it is convenient
to start from below, at rowri . Moreover, by a slight reformulation of a result in [14], the
entries ofGp(λ) satisfy (see [1])

(1) εi ≤ ri − ri+1 < p+ εi , 1≤ i ≤ m− 1; 1≤ rm < p+ εm

(2) ri − ri+1+ εi+1≤ai −ai+1< p+ ri − ri+1+ εi+1; 1≤ i ≤ m− 1; rm≤am< p+ rm

(3)
∑

i ai = n

whereεi = 1 if p6 | ai andεi = 0 if p |ai . If p |ai , we call the corresponding column( ai
ri
)

of the Mullineux symbol asingularcolumn, otherwise the column is calledregular.
If Gp(λ) is as above then the Mullineux conjugateλM of λ is by definition thep-regular

partition satisfying

Gp(λ
M) =

(
a1 a2 · · · am

s1 s2 · · · sm

)
wheresi = ai − ri + εi .

In particular, forp > n, this is just the ordinary conjugation of partitions.

Example Let p = 5, λ = (8, 6, 52), then

4 4 3 2 2 1 1 1

4 3 3 2 1 1

3 3 2 2 1

2 1 1 1 1

G5(λ) =
(

10 6 5 3

4 4 3 2

)

4 4 3 3 3 2 2 1 1 1

4 3 3 2 2 2 1 1

2 1

1 1

1

1

G5(λ
M) =

(
10 6 5 3

6 3 2 2

)

(In both cases the nodes of the successive 5-rims are numbered 1, 2, 3, 4).
Thus(8, 6, 52)M = (10, 8, 22, 12).
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Now let p be a prime number and consider the modular representations ofSn in char-
acteristicp; note that for all purely combinatorial results the condition of primality is not
needed.

The modular irreducible representationsDλ of Sn may be labelled byp-regularpartitions
λ of n, a partition beingp-regular if no part is repeatedp (or more) times ([6], Section 6.1);
this is the labelling we will consider in the sequel.

Tensoring the modular representationDλ of Sn by the sign representation ofSn gives
another modular irreducible representation, labelled by ap-regular partitionλP. Mullineux
has then conjectured [14]:

Conjecture For any p-regular partitionλ of n we haveλP = λM.

If λ is a p-regular partition we let as before

Gp(λ) =
(

a1 a2 · · · am

r1 r2 · · · rm

)
denote its Mullineux symbol. We then define theResidue symbol Rp(λ) of λ as

Rp(λ) =
{

x1 x2 · · · xm

y1 y2 · · · ym

}
wherexj is the residue ofam+1− j − rm+1− j modulo p andyj is the residue of 1− rm+1− j

modulo p. Note that the Mullineux symbolGp(λ) can be recovered from the Residue
symbol Rp(λ) because of the strong restrictions on the entries in the Mullineux symbol.
Also, it is very useful to keep in mind that for a residue symbol there are no restrictions
except that(x1, y1) 6= (0, 1) (which would correspond to starting with thep-singular
partition(1p)). We also note that a column( x j

yj
) in Rp(λ) is a singular column inGp(λ) if

and only ifxj + 1≡ yj (mod p).

Example p = 5, λ = (10, 8, 7, 5, 3, 22), then

G5(λ) =
(

15 12 7 3

7 6 3 2

)
and R5(λ) =

{
1 4 1 3

4 3 0 4

}
.

Also for the residue symbol of ap-regular partition we have a good description of the
residue symbol of its Mullineux conjugate; this is just obtained by translating the definition
of the Mullineux map on the Mullineux symbol to the residue symbol notation.

Lemma 2.1 Let the residue symbol of the p-regular partitionλ be

Rp(λ) =
{

x1 x2 · · · xm

y1 y2 · · · ym

}
.
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Then the residue symbol ofλM is

Rp(λ
M) =

{
δ1− y1 · · · δm − ym

δ1− x1 · · · δm − xm

}
where

δ j =
{

1 if x j + 1= yj

0 otherwise
.

Notation. We now fix ap-regular partitionλ. Thenλ̃ denotes the partition obtained from
λ by removing all those parts which are equal to 1. We will assume thatλ hasd such parts,
0 ≤ d ≤ p − 1. Moreover, we letµ be the partition obtained fromλ by subtracting 1
from all its parts. We say thatµ is obtained by removing the first column fromλ. Unless
otherwise specified we assume that the residue symbolRp(λ) for λ is as above.

For later induction arguments we formulate the connection between the residue sym-
bols of λ and µ. First we consider the process of first column removal; this is an easy
consequence of Proposition 1.3 in [3] and the definition of the residue symbol.

Lemma 2.2 Suppose that

Rp(λ) =
{

x1 x2 · · · xm

y1 y2 · · · ym

}
.

Then

Rp(µ) =
{

x′1 x′2 · · · x′m
y′1 y′2 · · · y′m

}
where for1≤ j ≤ m

x′j = xj − ν j

y′j = yj−1− ν j .

Here y0 is defined to be1 and theν j ’s are defined by

ν j =
{

0 if x j + 1= yj−1

1 otherwise
.

Moreover, if x1 = 0 then the first column in Rp(µ) (consisting of x′1 and y′1) is omitted.

Remark 2.3 In the notation of Lemma 2.2 the numberd of parts equal to 1 inλ is
determined by the congruence

d ≡ y′m − ym = ym−1− ym − νm (mod p)
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Moreover, sincer1 is the number of parts ofλ and ym ≡ 1− r1 it is clear thatym is the
p-residue of the lowest node in the first column ofλ.

Next we consider the relationship betweenλ andµ from the point of adding a column
toµ; this follows from Proposition 1.6 in [3].

Lemma 2.4 Suppose that

Rp(µ) =
{

x′1 x′2 · · · x′m
y′1 y′2 · · · y′m

}
.

Then

Rp(λ) =
{

x0 x1 · · · xm

y0 y1 · · · ym

}
,

where for1≤ j ≤ m

xj = x′j + ν ′j , yj−1 = y′j + ν ′j .

Here x0 = 0, ym = y′m − d and theν ′j ’s are defined by

ν ′j =
{

0 if x ′j + 1= y′j
1 otherwise

Moreover, if y′1 = 0 andν ′1 = 1, then the first column in Rp(λ) (consisting of x0 and y0)
is omitted.

Remark 2.5 In the notation of Lemma 2.2 and Lemma 2.4 we have

ν j = ν ′j for 1≤ j ≤ m.

Indeed,

ν j = 0⇔ xj + 1= yj−1 (by definition ofν j )

⇔ x′j + ν ′j + 1= y′j + ν ′j (by Lemma 2.4)

⇔ x′j + 1= y′j
⇔ ν ′j = 0 (by definition ofν ′j )

3. Mullineux fixed-points in a p-block

The p-core λ(p) of a partitionλ is obtained by removingp-hooks as much as possible;
while the removal process is not unique the resultingp-regular partition is unique as can
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most easily be seen in the abacus framework introduced by James. The reader is referred
to [6] or [17] for a more detailed introduction into this notion and its properties. We define
theweightw of λ byw = (|λ| − |λ(p)|)/p.

The representation-theoretic significance of thep-core is the fact that it determines the
p-block to which an ordinary or modular irreducible character labelled byλ belongs. The
weight of a p-block is the common weight of the partitions labelling the characters in
the block.

Let λ = (l1 ≥ l2 ≥ · · · ≥ lk > 0) be a partition ofn. Then

Y(λ) = {(i, j ) ∈ ZZ× ZZ | 1≤ i ≤ k, 1≤ j ≤ l i } ⊂ ZZ× ZZ

is the Young diagram ofλ, and(i, j ) ∈ Y(λ) is called anodeof λ. If A = (i, j ) is a node
of λ andY(λ)\{(i, j )} is again a Young diagram of a partition, thenA is called aremovable
node andλ\A denotes the corresponding partition ofn− 1.

Similarly, if A = (i, j ) ∈ IN × IN is such thatY(λ) ∪ {(i, j )} is the Young diagram of a
partition ofn+ 1, thenA is called anindentnode ofλ and the corresponding partition is
denotedλ ∪ A.

Thep-residueof a nodeA = (i, j ) is defined to be the residue modulop of j − i , denoted
res A = j − i (mod p). The p-residue diagram ofλ is obtained by writing thep-residue
of each node of the Young diagram ofλ in the corresponding place.

Example p = 5, λ = (62, 5, 4)

0 1 2 3 4 0

4 0 1 2 3 4

3 4 0 1 2

2 3 4 0

The p-content c(λ) = (c0, . . . , cp−1) of a partitionλ is defined by counting the number
of nodes of a given residue in thep-residue diagram ofλ, i.e.,ci is the number of nodes
of λ of p-residuei . In the example above, thep-content ofλ is c(λ) = (c0, . . . , c4) =
(5, 3, 4, 4, 5).

It is important to note that thep-content determines thep-core of a partition. This can
be explained as follows. First, for givenc = (c0, c1, . . . , cp−1) we define the associated
En-vector byEn = (c0− c1, c1− c2, . . . , cp−2− cp−1, cp−1− c0). Now, for any vector

En ∈
{
(n0, . . . ,np−1) ∈ ZZp

∣∣∣∣∣ p−1∑
i=0

ni = 0

}

there is a uniquep-coreµ with this En-vectorEn associated to itsp-contentc(µ) (for short,
we also say thatEn is associated toµ.) We refer the reader to [5] for the description of the
explicit bijection giving this relation. From [5] we also have the following
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Proposition 3.1 Letµ be a p-core with associatedEn-vectorEn. Then

|µ| = p
‖En‖2

2
+ EbEn = p

2

p−1∑
i=0

n2
i +

p−1∑
i=1

ini

with Eb = (0, 1, . . . , p− 1).

How do we obtain theEn-vector associated toλ from its Mullineux or residue symbol?
This is answered by the following

Proposition 3.2 Let λ be a p-regular partition whose Mullineux symbol and residue
symbol are

Gp(λ) =
(

a1 a2 · · · am

r1 r2 · · · rm

)
and Rp(λ) =

{
x1 x2 · · · xm

y1 y2 · · · ym

}
,

respectively. Then the associatedEn-vectorEn = (n0, . . . ,np−1) is given by

n j = |{i | ai − ri ≡ j mod p}| − |{i | −ri ≡ j mod p}|
= |{i | xi = j }| − |{i | yi = j + 1}|

Proof: In the residue symbol, singular columns do not contribute to then-vector as they
contain the same number of nodes for each residue. So let us consider a regular column(

x
y ),

respectively,( a
r ), in the Mullineux symbol and the correspondingp-rim in the p-residue

diagram. In this case, the contribution only comes from the last section of thep-rim. The
final node is in rowr and column 1 so itsp-residue is 1− r ≡ y (mod p). What is the
p-residue of the top node of this rim section? The length of this section is≡ a (mod p),
hence we have to go≡ a− 1 steps from the final node of residuey to the top node of the
section, which hence hasp-residue≡ y+ a− 1≡ 1− r + a− 1≡ a− r ≡ x (going one
step northwards or eastwards always increases thep-residue by 1!). Thus going along the
residues in the last section we have a stripy, y+ 1, . . . , x − 1, x. Now the contribution of
the intermediate residues to theEn-vector cancel out, and we only have a contribution 1 for
nx and−1 for ny−1, which proves the claim. 2

First we use the preceding proposition to give a short proof of a relation already noticed
by Mullineux [15]:

Corollary 3.3 Letλ be a p-regular partition. Then

(λM)(p) = λ′(p).

Proof: Let the residue symbol ofλ be Rp(λ) = { x1 x2 · · · xm
y1 y2 · · · ym

}.
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So by Lemma 2.1 we haveRp(λ
M) = { δ1 − y1 · · · δm − ym

δ1 − x1 · · · δm − xm
} with δ j = 1 if xj + 1 = yj

and 0 otherwise.
Now we consider the contributions of the entries in the residue symbol to theEn-vectors.

If xi +1 6= yi , xi = j , yi = k+1, then we get a contribution 1 tonj (λ) and−1 tonk(λ) on
the one hand, and a contribution 1 ton−(k+1)(λ

M) and−1 ton−( j+1)(λ
M) on the other hand.

If xi + 1 = yi , then from columni in the residue symbol we get a contribution neither to
En(λ) nor to En(λM). Hencenj (λ

M) = −n−( j+1)(λ) for all j , i.e., if En(λ) = (n0, . . . ,np−1),
thenEn(λM) = (−np−1, . . . ,−n0).

Now let c(λ) = (c0, . . . , cp−1) be thep-content ofλ, thenc(λ′) = (c0, cp−1, . . . , c1),
and hence

En(λ′) = (c0− cp−1, cp−1− cp−2, . . . , c2− c1, c1− c0)

= (−np−1,−np−2, . . . ,−n1,−n0)

= En(λM)

Thus(λM)(p) = (λ′)(p) = λ′(p). 2

Now we turn to Mullineux fixed-points.

Proposition 3.4 Let p be an odd prime and suppose thatλ is a p-regular partition with
λ = λM. Then the representation Dλ belongs to a p-block of even weightw.

Proof: If λ = λM , then its Mullineux symbol is of the form

Gp(λ) = Gp(λ
M) =

 a1 a2 · · · am

a1+ ε1

2

a2+ ε2

2
· · · am + εm

2


where as beforeεi = 1 if p6 | ai andεi = 0 if p |ai , and whereai is even if and only if
p |ai .

Now by Proposition 3.1 we have

w = 1

p

(∑
j

aj − p
‖En‖2

2
− Eb · En

)

whereEn = En(λ) = (n0, . . . ,np−1) is theEn-vector associated toλ andEb = (0, 1, . . . , p−1).
By Proposition 3.2 we have

nj =
∣∣∣∣{i

∣∣∣∣ ai − εi

2
≡ j mod p

}∣∣∣∣− ∣∣∣∣{i

∣∣∣∣ −ai − εi

2
≡ j mod p

}∣∣∣∣
Forai ≡ 0 (mod p) we do not get a contribution to theEn-vector. Forai 6≡ 0 (mod p) with
ai−1

2 ≡ j (mod p) we get a contribution 1 tonj and−1 ton−( j+1). Note that we cannot get
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any contribution ton p−1
2

. Thus we have

En = (n0, n1, . . . ,n p−3
2
, 0,−n p−3

2
, . . . ,−n0

)
.

Now we obtain for the weight modulo 2:

w ≡
∑

j

aj +
p−3

2∑
i=0

n2
i +

p−3
2∑

i=0

ni (i + (p− 1− i ))

≡ |{ j | aj 6≡ 0 mod 2}| +
p−3

2∑
i=0

n2
i

≡
p−3

2∑
i=0

ni +
p−3

2∑
i=0

n2
i

≡ 0

Hence the weight is even, as claimed. 2

For the following theorem we recall the definition of the numbersk(r, s):

k(r, s) =
∣∣∣∣∣
{
(λ1, . . . , λr ) | λi is a partition for alli, and

r∑
i=1

|λi | = s

}∣∣∣∣∣
In view of the now proved Mullineux conjecture, the following combinatorial result implies
a representation-theoretical result in [16].

Theorem 3.5 Let p be an odd prime. Letµ be a symmetric p-core and n∈ IN with
w = n−|µ|

p even. Then

k

(
p− 1

2
,
w

2

)
= |{λ ` n | λ = λM , λ(p) = µ}|

Proof: We set

F(µ) = {λ ` n | λ = λM , λ(p) = µ}.

Forλ ∈ F(µ) we consider its Mullineux symbol; asλ is a Mullineux fixed-point this has
the form

Gp(λ) = Gp(λ
M) =

 a1 a2 · · · am

a1+ ε1

2

a2+ ε2

2
· · · am + εm

2


with εi = 1 if p6 | ai andεi = 0 if p | ai , andai being even if and only ifp | ai .
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In this special situation the general restrictions on the entries in Mullineux symbols stated
at the beginning of Section 2 are now given by:

(i) 0 ≤ ai − ai+1 ≤ 2p for all i .
(ii) If ai = ai+1 thenai is even.
(iii) If ai − ai+1 = 2p thenai is odd.
(iv) ai is even if and only ifp | ai .

(v)
∑

i ai = n.

We have already explained before how to read off thep-core of a partition from its Mullineux
symbol by calculating theEn-vector. In the proof of the previous proposition we have already
noticed that entriesai ≡ 0 (mod p) do not contribute to theEn-vector.

Now the partitions(a1, . . . ,am) ` n with properties (i) to (iv) above are just the partitions
satisfying the special congruence and difference conditions forN = 2p and the congruence
set

C =
{

2 j + 1 | j = 0, . . . ,
p− 3

2
,

p+ 1

2
, . . . , p− 1

}
considered in [1, 2]. The bijection described there transforms the set of partitions above
into the set

D = {b = (b1, . . . ,bl ) ` n | b1 > · · · > bl , modNbi ∈ C}

where modNb denotes the smallest positive number congruent tob mod N. Computing
the En-vector from thebi ’s instead of theai ’s with the formula given in the previous proof
then gives the same answer since the congruence sequence of thebi ’s is the same as the
congruence sequence of theregular ai ’s. For a bar partitionb ∈ D as above we then
compute its so calledN-bar quotient; sinceb has no parts congruent to 0 orp moduloN,
the bar quotient is ap−1

2 -tuple of partitions. For the properties of these objects we refer the
reader to [13, 17]. It remains to check that theN-weight ofb equalsw2 , i.e., that theN-bar
coreρ = b(N̄) of b satisfies|ρ| = |µ|.

We recall from above that we have for theEn-vector ofλ:

nj =
∣∣∣∣{i

∣∣∣∣ ai − εi

2
≡ j mod p

}∣∣∣∣− ∣∣∣∣{i

∣∣∣∣ −ai − εi

2
≡ j mod p

}∣∣∣∣
and

En = (n0, n1, . . . ,n p−3
2
, 0,−n p−3

2
, . . . ,−n0

)
.

Hence by Proposition 3.1 we obtain

|λ(p)| = |µ| =
p−3

2∑
i=0

pn2
i +

p−3
2∑

i=0

ni (2i − p+ 1).
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As remarked before the bijection transforminga = (a1, . . . ,am) into (b1, . . . ,bl ) leaves
the sequence of congruences moduloN = 2p of the regular elements ina invariant. Now
for determining theN-bar core ofb we have to pair offbi ’s congruent to 2j + 1 modulo
N = 2p with bi ’s congruent to 2p− (2 j + 1), for eachj = 0, . . . , p−3

2 , and only have to
know for each suchj the number

|{i | bi ≡ 2 j + 1 mod 2p}| − |{i | bi ≡ 2p− (2 j + 1) mod 2p}|.

But this is equal to∣∣∣∣{i

∣∣∣∣ bi − 1

2
≡ j mod p

}∣∣∣∣− ∣∣∣∣{i

∣∣∣∣ −bi − 1

2
≡ j mod p

}∣∣∣∣
which is same as∣∣∣∣{i

∣∣∣∣ ai − εi

2
≡ j mod p

}∣∣∣∣− ∣∣∣∣{i

∣∣∣∣ −ai − εi

2
≡ j mod p

}∣∣∣∣,
which finally isnj .

Now the contribution to the 2p-bar core from the conjugate runners 2j+1 and 2p− (2 j + 1)
for j = 0, . . . , p−3

2 is for any value ofnj easily checked to be

nj (2 j + 1)+ nj (nj − 1)p = nj (2 j + 1− p)+ p n2
j .

Thus the total contribution to the 2p-bar core is exactly the same as the one calculated
above, i.e., we have|µ| = |ρ| as was to be proved. 2

4. The combinatorial part of the Mullineux conjecture

We are now going to introduce the main combinatorial concepts for our investigations. The
concept of the node signature sequence and the definition of its good nodes have their origin
in Kleshchev’s definition of good nodes of a partition. First we recapitulate his original
definition [8].

We write the given partition in the form

λ = (λa1
1 , λ

a2
2 , . . . , λ

ak
k

)
whereλ1 > λ2 > · · · λk > 0, ai > 0 for all i .

For 1≤ i ≤ j ≤ k we then define

β(i, j ) = λi − λ j +
j∑

t=i

at and γ (i, j ) = λi − λ j +
j∑

t=i+1

at .

Furthermore, fori ∈ {1, . . . , k} let

Mi = { j | 1≤ j < i, β( j, i ) ≡ 0 (mod p)}.
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We then calli normal if and only if for all j ∈ Mi there existsd( j ) ∈ { j + 1, . . . , i − 1}
satisfyingβ( j, d( j )) ≡ 0 (mod p), and such that|{d( j ) | j ∈ Mi }| = |Mi |.

We call i good if it is normal and ifγ (i, i ′) 6≡ 0 (mod p) for all normali ′ > i .
Let us translate this into properties of the nodes ofλ in the Young diagram that can most

easily be read off thep-residue diagram ofλ. One sees immediately thatβ(i, j ) is just the
length of the path from the node at the beginning of thei th block ofλ to the node at the end
of the j th block ofλ. The conditionβ(i, j ) ≡ 0 (modp) is then equivalent to the equality
of the p-residue of the indent node in the outer corner of thei th block and thep-residue of
the removable node at the inner corner of thej th block.

Similarly, γ (i, j ) ≡ 0 (mod p) is equivalent to the equality of thep-residues of the
removable nodes at the end of thei th and j th block.

We will say that a nodeA= (i, j ) is abovethe nodeB= (i ′, j ′) or B is below A) if
i < i ′, and write this relation asB↗ A. Then a removable nodeA of λ is normal if
for any B∈MA={C |C indent node ofλ aboveA with resC= resA} we can choose a
removable nodeCB of λ with A↗CB↗ B and resCB= res A, such that|{CB | B ∈
MA}| = |MA|. A nodeA is goodif it is the lowest normal node of itsp-residue.

Consider the exampleλ = (11, 92, 6, 42, 2, 1), p = 5. In thep-residue diagram below
we have included the indent node at the beginning of the second block, marked 3, and
we have also marked in boldface the removable node of residue 3 at the end of the fourth
block. The equality of these residues corresponds toβ(2, 4) ≡ 0 (mod 5). We also see
immediately from the diagram below thatγ (4, 6) ≡ 0 (mod 5).

The setMi corresponds in this picture to taking the removable node, sayA, at the end
of the i th block and then collecting intoMi (respectivelyMA) all the indent nodes above
this block of the samep-residue asA. For i (respectivelyA) being normal, we then have
to check whether for any such indent node,B say, at the end of thej th block we can
find a removable nodeC=CB betweenA andB of the samep-residue, and such that the
collection of all these removable nodes has the same size asMi (respectivelyMA). The
nodeA (respectivelyi ) is then good ifA is the lowest normal node of itsp-residue.

The critical condition for the normality ofi (respectivelyA) above is just a lattice condi-
tion: it says that in any section aboveA there are at least as many removable nodes of the
p-residue ofA as there are indent nodes of the same residue.

With these notions the Mullineux conjecture was reduced by Kleshchev to combinatorial
form as below:
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Conjecture Letλ be a p-regular partition, A a good node ofλ. Then there exists a good
node B of the Mullineux imageλM such that(λ\A)M = λM\B.

Now we define signature sequences.
A ( p)-signatureis a paircε wherec ∈ {0, 1, . . . , p−1} is a residue modulop andε = ±

is a sign. Thus 2+ and 3− are examples of 5-signatures.
A ( p)-signature sequence Xis a sequence

X : c1ε1 c2ε2 · · · ctεt

where eachci εi is a signature.
Given such a signature sequenceX we define for 0≤ i ≤ p− 1 and 1≤ j ≤ t

σX(i, j ) = σ(i, j ) =
∑
k≤ j
ck=i

εk.

We make the conventions that an empty sum is 0 and that+ is counted as+1 and− as−1
in the sum.

The i th peak valueπi (X) for X is defined as

πi (X) = max{0, σ (i, j ) | 1≤ j ≤ t}

and thei th end valueωi (X) for X is defined as

ωi (X) = σ(i, t).

We call i agood residue for Xif πi (X) > 0. In that case let

k = min{ j | σ(i, j ) = πi (X)},

and we then say that the residueck at stepk is i -goodfor X, for short:ck is i -goodfor X.
Let us note that ifck is i -good forX thenck = i andεk = +. Indeed, ifk = 1 this is clear
since otherwiseπi (X) ≤ σ(i, 1) ≤ 0. Assumek > 1. If ck 6= i thenσ(i, k) = σ(i, k− 1),
contrary to the definition ofck. If ck = i andεk = −1 thenσ(i, k− 1) > σ(i, k) = πi (X),
contrary to the definition ofπi (X).

The residuecl is calledi -normal if cl is i -good for the truncated sequence

X : c1ε1 c2ε2 · · · cl εl

The following is quite obvious from the definitions.

Lemma 4.1 Let X∗ : c1ε1 c2ε2 · · · ct−1εt−1 be a signature sequence and let X be obtained
from X∗ by adding a signature ctεt at the end. For0≤ i ≤ p− 1 the following statements
are equivalent:
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(1) πi (X) = πi (X∗)+ 1.

(2) πi (X) 6= πi (X∗).
(3) ctεt = i+ andωi (X∗) = πi (X∗).
(4) ct is i -good for X.

We are going to define two signature sequences based onλ, thenode sequence N(λ) and
theMullineux sequence M(λ). Although they are defined in very different ways we will
show that they have the same peak and end value for eachi .

Thenode sequence N(λ) consists of the residues of the indent and removable nodes ofλ,
read from right to left, top to bottom inλ. For each indent residue the sign is+ and for
each removable residue the sign is−.

Let us note that according to Remark 2.3 the final signature inN(λ) is (ym − 1)−.

Example Let p = 5, λ = (10, 8, 7, 5, 3, 22). Below, we have only indicated the remov-
able and indent nodes in the 5-residue diagram ofλ.

N(λ) : 0− 4+′ 2− 1+′ 0− 4+′ 2− 1+′ 4− 3+′ 2− 0+ 3−

Residue 0 1 2 3 4

End value −1 2 −3 0 1

Peak value 0 2 0 1 2

Good? N Y N Y Y

(The good signatures (peaks) are underlined and the normal signatures marked with a prime.)

In other words, in the node sequenceN(λ) defined before, ifcmεm corresponds to the
removable nodeA, thencm = resA, ε = +, andA is normal if and only if the sequence
of signs to the left ofA belonging tocj ’s with cj = resA is latticed read from right to
left. Again, the nodeA (respectivelycm) is good if it is the last normal node of its residue
respectively of its value. The peak value of the node sequenceN(λ) is the number of normal
nodes ofλ.
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Remark 4.2 Let, as before,̃λ denote the partition obtained fromλ by removing all those
parts which are equal to 1, and letµ be the partition obtained fromλ by subtracting 1 from
all its parts. From the definitions it is obvious that for alli

πi (N(λ̃)) = πi−1(N(µ)).

Proposition 4.3 Letλ andµ be as above, and let d be the number of parts1 in λ.
(1) If i 6= ym and i 6= ym − 1 then

ωi (N(λ)) = ωi−1(N(µ)).

(2) If i = ym then

ωi (N(λ)) = ωi−1(N(µ))+ 1

and if i = ym − 1 then

ωi (N(λ)) = ωi−1(N(µ))− 1.

(3) We have

πi (N(λ)) = πi−1(N(µ))

unless the following conditions are all fulfilled
(i) i = ym

(ii) d > 0
(iii) ωi−1(N(µ)) = πi−1(N(µ)).

In that case ym is i-good for N(λ) and

πi (N(λ)) = πi−1(N(µ))+ 1.

Proof: Assume thatN(λ) consists ofm′ signatures (m′ is odd). Then

N(µ) consists of

{
m′ signatures whend = 0

m′ − 2 signatures whend 6= 0

Suppose thatd = 0.
If

N(λ) = c1ε1 c2ε2 · · · cm′εm′

then

N(µ) = (c1− 1)ε1 (c2− 1)ε2 · · · (cm′−1− 1)εm′−1 cm′εm′
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where in both sequencescm′ = ym−1,εm′ = −. From this and the definition of end values,
(1) and (2) follow easily. Also since the final sign is− we haveπi (N(λ)) = πi−1(N(µ))
for all i , (by Lemma 4.1) proving (3) in this case.
Supposed 6= 0.

If again

N(λ) : c1ε1 c2ε2 · · · cm′εm′

thencm′−1εm′−1 = ym+ andcm′εm′ = (ym − 1)− and

N(µ) : (c1− 1)ε1 (c2− 1)ε2 · · · (cm′−2− 1)εm′−2

Again (1) and (2) follow easily. To prove (3) we consider the sequence

N∗(λ) : c1ε1 c2ε2 · · · cm′−2εm′−2

Obviously

(∗)
{
πi (N∗(λ)) = πi−1(N(µ))

ωi (N∗(λ)) = ωi−1(N(µ))

for all i . The final signature ofN(λ) has no influence onπi (N(λ)), since the sign is−.
Therefore, in order forπi (N∗(λ)) to be different fromπi (N(λ)), we needi = ym and
πi (N∗(λ)) = ωi (N∗(λ)) by Lemma 4.1. Thus condition (i) of (3) is fulfilled and condition
(iii) follows from (∗). Since by assumptiond 6= 0 (ii) is also fulfilled. Thus (3) is proved
in this case also. 2

We proceed to prove an analogue of Proposition 4.3 for theMullineux(signature)sequence
M(λ), which is defined as follows:

Let the residue symbol ofλ be

Rp(λ) =
{

x1 · · · xm

y1 · · · ym

}
.

Then

M(λ) = 0− x1+ (x1+ 1)− y1+ (y1− 1)−
x2+ (x2+ 1)− y2+ (y2− 1)−

...
...

xm+ (xm + 1)− ym+ (ym − 1)−

Starting with the signature 0− corresponds to starting with an empty partition at the begin-
ning which just has the indent node(1, 1) of residue 0.
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Example p = 5, λ = (10, 8, 7, 5, 3, 22) as before. Then

R5(λ) =
{

1 4 1 3

4 3 0 4

}
and

M(λ) = 0− 1+′ 2− 4+′ 3− 4+′ 0− 3+ 2− 1+′ 2−
0+ 4− 3+′ 4− 4+ 3−

Residue 0 1 2 3 4

End value −1 2 −3 0 1

Peak value 0 2 0 1 2

Good? N Y N Y Y

(The good signatures inM(λ) are again underlined and the normal signatures marked with
a prime.)
The table above is identical with the one in the previous example.

Lemma 4.4 Letλ andµ be as above. Let M∗(λ) be the signature sequence obtained from
M(λ) by removing the two final signatures ym+ and(ym − 1)−. Then for all i we have

ωi (M
∗(λ)) = ωi−1(M(µ))

πi (M
∗(λ)) = πi−1(M(µ))

Proof: We use the notation of Lemma 2.2 forRp(λ) andRp(µ) and proceed by induction
onm. First we study the beginnings ofM∗(λ) andM(µ). We compare

(1) 0− x1+ (x1+ 1)− (from M∗(λ))

with

(2) 0−[x′1+ (x′1+ 1)− y′1+ (y′1− 1)−] (from M(µ))

We have put brackets [ ] around a part of (2), because these signatures do not occur when
x1 = 0 by Lemma 2.2.

If x1 = 0 then (1) and (2) become

0− 0+ 1− and 0−

The former gives a contribution−1 to residue 1 and contributions 0 to all others, the latter
a contribution−1 to residue 0 and 0 to all others.
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If x1 6= 0 thenx1+ 1 6= 1= y0, so by Lemma 2.2δ1 = 1, and (2) becomes

(2)′ 0− (x1− 1)+ x1− 0+ (p− 1)−

The signatures 0− 0+ in the latter sequence have no influence on the end values and peak
values ofM(µ), (even whenx1 − 1 = 0) and may be ignored. Then again we see that (1)
gives the same contribution to residuei as(2)′ to residue(i − 1) for all i . Thus our result
is true ifm= 1.

We assume that the result is true for partitions whose Mullineux symbols have length
m− 1≥ 1, and we have to compare

(3) ym−1+ (ym−1− 1)− xm+ (xm + 1)− (from M∗(λ))

with

(4) x′m+ (x′m + 1)− y′m+ (y′m − 1)− (from M(µ))

By Lemma 2.2, (4) may be written as

(4)′ (xm − δm)+ (xm − δm + 1)− (ym−1− δm)+ (ym−1− δm − 1)−

We see that up to rearrangement the difference between the residues occurring in (3) and
(4)′ is justδm. Whereas the rearrangement is irrelevant for the end values it could influence
the peak value if signatures with same residue but different signs are interchanged. The
possible coincidences of residues with different signs are

(α) ym−1 = xm + 1 (first and fourth residue in(3))

or

(β) ym−1− 1= xm (second and third residue in(3))

But the equations(α) and(β) are equivalent, and by Lemma 2.2 they are fulfilled if and
only if δm = 0! If ym−1 = xm + 1 (and thusδm = 0) (3) and (4) becomes

ym−1+ (ym−1− 1)− (ym−1− 1)+ ym−1−
and

(ym−1− 1)+ ym−1− ym−1+ (ym−1− 1)−

In this case the difference between the occurring residues is 1 (without rearrangement) and
our statement is true.

If ym−1 6= xm + 1 (and thusδm = 1) then the difference between the occurring residues
is again 1(= δm) and since there is no coincidence for residues with different signs we
may apply Lemma 4.1 and the induction hypotheses to prove the statement in this case
too. 2
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Lemma 4.5 Suppose that in the notation as above we have for i= ym

ωi−1(M(µ)) = πi−1(M(µ)).

Then d 6= 0.

Proof: Supposed = 0. Then by Remark 2.3,y′m = ym = i , and henceM(µ) ends on
(i − 1)−. But then clearlyωi−1(M(µ)) 6= πi−1(M(µ)). 2

Lemma 4.6 Let the notation be as in Lemma4.4.
(1) For 1≤ j ≤ m− 1 we have:

yj is i -good for M∗(λ)

⇔


δ j+1 = 1 and y′j+1 is (i − 1)-good for M(µ)

or

δ j+1 = 0 and x′j+1 is (i − 1)-good for M(µ).

(2) For 1≤ j ≤ m we have:

xj is i -good for M∗(λ)

⇔ δ j = 1 and x′j is (i − 1)-good for M(µ).

Proof: This follows immediately from the proof of Lemma 4.4. It should be noted
that x1 cannot be 0-good forM∗(λ) sinceM∗(λ) starts by 0−. Moreover, the proof of
Lemma 4.4 shows that ifxj is i -good forM∗(λ), then we cannot haveδ j = 0, since other-
wisexj− = (yj−1− 1)− proceedsxj+. 2

Proposition 4.7 Letλ andµ be as above.
(1) If i 6= ym and i 6= ym − 1 then

ωi (M(λ)) = ωi−1(M(µ)).

(2) If i = ym then

ωi (M(λ)) = ωi−1(M(µ))+ 1

and if i = ym − 1 then

ωi (M(λ)) = ωi−1(M(µ))− 1.

(3) We have

πi (M(λ)) = πi−1(M(µ))

unless i= ym andωi−1(M(µ)) = πi−1(M(µ)). In that case ym is i-good for M(λ)
and

πi (M(λ)) = πi−1(M(µ))+ 1.
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Note. There is a strict analogy between the Propositions 4.3 and 4.7. In part (3) the
assumptiond 6= 0 is not necessary in Proposition 4.7 due to Lemma 4.5.

Proof: By Lemma 4.4

ωi (M
∗(λ)) = ωi−1(M(µ))

πi (M
∗(λ)) = πi−1(M(µ))

If we addym+ and(ym− 1)− to M∗(λ) we getM(λ). Therefore, an argument completely
analogous to the one used in the cased 6= 0 in the proof of Proposition 4.3 may be applied.

2

Theorem 4.8 Letλ be a p-regular partition.
Then for all i, 0≤ i ≤ p− 1

ωi (M(λ)) = ωi (N(λ))

πi (M(λ)) = πi (N(λ))

Proof: We use induction on the number` of columns inλ. For` = 1, i.e.,λ = (1d) we
haveGp(λ) = ( d

d ) andRp(λ) = { 0
1− d }. Thus

N(λ) : 1− (1− d)+ (−d)−
M(λ) : 0− 0+ 1− (1− d)+ (−d)−

and the result is clear. Assume the result has been proved for partitions with`−1 columns,
` ≥ 2. Letµ be obtained by removing the first column fromλ. By the induction hypothesis
we have

ωi−1(M(µ)) = ωi−1(N(µ))

πi−1(M(µ)) = πi−1(N(µ))

for all i . Using Propositions 4.3 and 4.7 (see also the note to Proposition 4.7) we get the
result. 2

Theorem 4.9 The following statements are equivalent for a p-regular partitionλ and i,
0≤ i ≤ p− 1.
(1) There is a good node of residue i inλ.
(2) M(λ) has i as a good residue.
(3) N(λ) has i as a good residue.

Proof: (1)⇔(3): See the beginning of this section.
(2)⇔(3): Theorem 4.8. 2

Finally, we describe the effect of the removal of a good node on the residue symbol (or
equivalently on the Mullineux symbol). First we prove a lemma.
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Lemma 4.10 Suppose that there is a good node of residue i inλ. Then the following
statements are equivalent:
(1) The good node of residue i occurs in the first column ofλ.
(2) ym is i-good for M(λ).

Proof: The statement (1) clearly is equivalent to

(1)′ πi (N(λ)) 6= πi (N(λ̃))

(where, as before,̃λ is obtained fromλ by removing all parts equal to 1) We now have

πi (N(λ)) 6= πi (N(λ̃))

⇔ πi (N(λ)) 6= πi−1(N(µ)) (by Remark 4.2)

⇔ πi (M(λ)) 6= πi−1(M(µ)) (by Theorem 4.8)

⇔ ym is i -good forM(λ) (by Proposition 4.7) 2

Theorem 4.11 Suppose that the p-regular partitionλ has a good node A of residue i. Let

Rp(λ) =
{

x1 x2 · · · xm

y1 y2 · · · ym

}
.

Then for some j, 1≤ j ≤ m, one of the following occurs:
(1) xj is i -good for M(λ) and

Rp(λ\A) =
{

x1 x2 · · · xj − 1 · · · xm

y1 y2 · · · yj · · · ym

}
.

(2) yj is i -good for M(λ) and

Rp(λ\A) =
{

x1 x2 · · · xj · · · xm

y1 y2 · · · yj + 1 · · · ym

}
if ( j, i ) 6= (1, 0),

Rp(λ\A) =
{

x2 · · · xm

y2 · · · ym

}
if j = 1, i = 0 .

Proof: The proof is by induction on|λ|. Suppose first thatA occurs in the first column
of λ. Then the first column inGp(λ\A) is obtained from the first column inGp(λ) by
subtracting 1 in each entry and all other entries are unchanged; note that in the case where
Gp(λ) = ( 1

1), we have a degenerate case andGp(λ\A) is the empty symbol. By definition
of the residue symbol this means thatym in Rp(λ) is replaced byym + 1 in Rp(λ\A); of
course, in the degenerate case alsoRp(λ\A) is the empty residue symbol. On the other
handym is i -good forM(λ) by Lemma 4.10, and in the degenerate casey1 is 0-good for
M(λ), and so we are done in this case.
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Now we assume thatA doesnot occur in the first column ofλ. Let B be the node ofµ
corresponding toA. Clearly B is a good node of residuei − 1 for µ. We may apply the
induction hypothesis toµ andB. Suppose that

Rp(µ) =
{

x′1 x′2 · · · x′m
y′1 y′2 · · · y′m

}
By the induction hypothesis we know that one of the following cases occurs:

Case I. x′j in Rp(µ) is replaced byx′j − 1 in Rp(µ\B) andx′j is (i − 1)-good forM(µ).
Case II. y′j in Rp(µ) is replaced byy′j + 1 in Rp(µ\B) andy′j is (i − 1)-good forM(µ),

respectively in the degenerate casey′1 is 0-good forM(µ), and then the first column
x′1
y′1

in Rp(µ) is omitted inRp(µ\B).

We treat Case I in detail. Case II is treated in a similar way.

Case I: By Lemma 4.6 we have one of the following cases:

Case Ia:yj−1 is i -good forM∗(λ) andδ j = 0
Case Ib:xj is i -good forM∗(λ) andδ j = 1

We add a first column toµ\B to getλ\A. ThenRp(λ\A) is obtained fromRp(µ\B)
using Lemma 2.4. We fix the notation

Rp(µ\B) =
{

x′′1 · · · x′′m
y′′1 · · · y′′m

}
and

Rp(λ\A) =
{

x̄0 x̄1 · · · x̄m

ȳ0 ȳ1 · · · ȳm

}
Case Ia. We knowx′j = i −1 since we are in Case I andyj−1 = i , since we are in Case Ia.

Moreover sinceδ j = δ′j = 0 (see Remark 2.5) we havey′j = x′j = i . Also x′j = xj and
y′j = yj−1 by Lemma 2.2. By Lemma 2.4

ȳj−1 = y′′j + δ′′j
where

δ′′j =
{0 if x′′j + 1= y′′j

1 otherwise

But x′′j + 1 = (x′j − 1)+ 1 = x′j = i − 1 andy′′j = y′j = yj−1 = i by the above. Thus
δ′′j = 1 andȳj−1 = y′j + 1 = i + 1. It is readily seen that all other entries inRp(λ\A)
coincide with those ofRp(λ). Thus possibility (2) occurs in the theorem.
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Case Ib. We knowx′j = i − 1 since we are in Case I andxj = i since we are in Case Ib.
Also sinceδ j = 1, y′j = yj−1− 1. Moreovery′′j = y′j andx′′j = x′j − 1, i.e.,x′′j = i − 2.
Let δ′′j again be defined by

δ′′j =
{

0 if x′′j + 1= y′′j
1 otherwise

.

Then by Lemma 2.4̄xj = x′′j + δ′′j = i − 2+ δ′′j . We claim thatδ′′j = 1. Otherwise
i − 1= x′′j + 1 = y′′j = y′j and we also know thatx′j = i − 1. But if x′j = y′j then by
definition ofM(µ) x′j is not a peak, contrary to our assumption that we are in Case I. Thus
δ′′j = 1 andx̄ j = i − 1, as desired. Again it is easily seen that all other entries ofRp(λ\A)
coincide with those ofRp(λ). Thus possibility (1) occurs in the theorem. 2

We illustrate the theorem above by giving Kleshchev’sp-good branching graph for
p-regular partitions forp = 3 up to n = 5 in both the usual and the residue symbol
notation; we recall that thep-good branching graph forp-regular partitions is also the
crystal graph for the basic representation of the quantum affine algebra (see [11] for these
connections).

Below, an edge labelledr is drawn from a partitionλ of m to a partitionµ of m− 1 if µ
is obtained fromλ by removing a node of residuer .

We can now easily deduce the combinatorial conjecture to which the Mullineux conjecture
had been reduced by Kleshchev:
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Corollary 4.12 Suppose that the p-regular partitionλ has a good node A of residue i.
Then its Mullineux conjugateλM has a good node B of residue−i satisfying

(λ\A)M = λM\B.

Proof: Considering the residue symbol ofλ it is easily seen that the Mullineux sequence
of λ and its conjugateλM are very closely related. Indeed, the peak and end values for each
residuei in M(λ) equal the corresponding values for the residue−i in M(λM), and if there
is a i -good node at columnk in the residue symbol ofλ, then there is a−i -good node at
columnk in the residue symbol ofλM . More precisely, in the regular case these good nodes
are one at the top and one at the bottom of the column, whereas in the singular case both
are at the top. Comparing this with Theorem 4.11 implies the result. 2
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