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Abstract. Let0 be a graph andG be a 2-arc transitive automorphism group of0. For a vertexx ∈ 0 let G(x)0(x)

denote the permutation group induced by the stabilizerG(x) of x in G on the set0(x) of vertices adjacent to
x in 0. Then0 is said to be a locally projective graph of type(n,q) if G(x)0(x) containsPSLn(q) as a normal
subgroup in its natural doubly transitive action. Suppose that0 is a locally projective graph of type(n,q), for
somen ≥ 3, whose girth (that is, the length of a shortest cycle) is 5 and suppose thatG(x) acts faithfully on0(x).
(The case of unfaithful action was completely settled earlier.) We show that under these conditions eithern = 4,
q = 2,0 has 506 vertices andG ∼= M23, or q = 4, PSLn(4) ≤ G(x) ≤ PGLn(4), and0 contains the Wells graph
on 32 vertices as a subgraph. In the latter case if, for a givenn, at least one graph satisfying the conditions exists
then there is a universal graphW(n) of which all other graphs for thisn are quotients. The graphW(3) satisfies
the conditions and has 220 vertices.
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1. Introduction

Let0 be a graph which is assumed to be undirected connected and locally finite (the latter
means that every vertex of0 is adjacent to a finite number of other vertices). The vertex set
of 0 will be denoted by the same letter0 while E(0) and Aut(0) will denote the edge set
and the automorphism group of0, respectively. For a vertexx ∈ 0 we denote by0i (x) the
set of vertices at distancei from x with respect to the natural distance on0. The set01(x)
(which consists of the vertices adjacent tox) will be denoted simply by0(x). An s-arc in
0 is a sequencex0, x1, . . . , xs of vertices, such that{xi , xi+1} ∈ E(0) for 0 ≤ i ≤ s− 1
andxi 6= xi+2 for 0 ≤ i ≤ s− 2. Such an arc is acycleof lengths if x0 = xs. Thegirth
of 0 is the length of its shortest cycle. For a subset1 of the vertex set of0 thesubgraph
induced by0 on1 has1 as vertex set and{x, y} is an edge in this subgraph ifx, y ∈ 1
and{x, y} ∈ E(0). LetG be a group of automorphisms of0, that is a subgroup of Aut(0).
If 1 ⊆ 0 thenG(1) andG{1} denote the pointwise and the setwise stabilizers of1 in
G, respectively. We writeG(x, y, . . .) instead ofG({x, y, . . .}) andG{x, y, . . .} instead
of G{{x, y, . . .}}. If H ≤ G{1} then H1 denotes the permutation group induced byH
on1, so that abstractlyH1 ∼= H/H(1). If G acts transitively ons-arcs in0 thenG is
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said to bes-arc transitive. It is easy to see thatG is 2-arc transitive if and only ifG is
vertex-transitive and, forx ∈ 0, the permutation groupG(x)0(x) is doubly transitive. Let
G1(x) := G({x} ∪ 0(x)) so thatG(x)0(x) ∼= G(x)/G1(x).

Let0 be a graph andG be a 2-arc transitive automorphism group of0. Then0 is said to
be alocally projective graph of type(n,q) (with respect to the action ofG) if, for x ∈ 0, the
permutation groupG(x)0(x) contains, as a normal subgroup, the projective special linear
groupPSLn(q) in its natural doubly transitive action. This means that|0(x)| = [n

1]q :=
(qn − 1)/(q − 1) (which is the number of 1-subspaces in ann-dimensionalGF(q)-space)
andPSLn(q) ≤ G(x)0(x) ≤ P0Ln(q). Examples of locally projective graphs come from
actions of finite groups of Lie type on certain incidence graphs of their parabolic geometries
and also from certain actions of the sporadic simple groups. In these examples the kernel
G1(x) is large compared with the size of this group for other 2-arc transitive actions, and
this is one of the reasons for the attention locally projective graphs have received in the
literature, see for example [19, 20].

The present paper contributes to the classification of locally projective graphs of type
(n,q), for n ≥ 3, of small girth. We start with a brief survey of what has already been
achieved in this area (cf. [12] for further details).

If 0 is a locally projective graph of type(n,q) and girth 3, then it is a complete graph
on [n1]q + 1 vertices andG acts triply transitively on the vertex set of0, being a one-point
transitive extension of a projective linear group. All such extensions are classified in [9].

Theorem 1.1 Let0 be a locally projective graph of type(n,q) with n ≥ 3, and of girth
3, with respect to a subgroup G of automorphisms of0. Then0 is a complete graph on
[n
1]q + 1 vertices, and one of the following holds:
(i) q = 2 and G∼= AGLn(2);

(ii) q = 4, n = 3 and M22 ≤ G ≤ Aut (M22).

Locally projective graphs of girth 4 were considered in [5] where complete classification
was achieved in the caseG1(x) 6= 1. The caseG1(x) = 1 was completed in [6].

Theorem 1.2 Let0 be a locally projective graph of type(n,q) with n ≥ 3, and of girth
4, with respect to a subgroup G of automorphisms of0. Then one of the following holds:

(i) 0 is the complete bipartite graph on2 · [n
1]q vertices and PSLn(q)×PSLn(q) < G ≤

P0Ln(q) o 2;
(ii) 0 is the point-hyperplane incidence graph of an(n+ 1)-dimensional GF(q)-space,

G contains PSLn+1(q) extended by a contragredient automorphism and is contained
in Aut (PSLn+1(q));

(iii) the vertices of0 are the maximal totally singular subspaces of a2n-dimensional
GF(q)-space equipped with a non-degenerate orthogonal form of maximal Witt index,
two subspaces are adjacent if their intersection has codimension1 in each; O+2n(q) <
G ≤ Aut (O+2n(q));

(iv) 0 is the standard doubling2.Km of the complete graph on m:= [n
1]q + 1 vertices,

i.e., the vertices of0 are ordered pairs(i, α) where1 ≤ i ≤ [n
1]q + 1, α ∈ {0, 1}

with (i, α) and ( j, β) adjacent if i 6= j and α 6= β, moreover either q= 2 and
G ∼= AGLn(q)× 2 or q = 4, n = 3 and M22 < G ≤ Aut (M22)× 2;
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(v) G contains an elementary abelian normal subgroup E which acts regularly on the
vertex set of0 and E is a quotient of the GF(2)-permutational module of G(x)0(x);

(vi) (n,q) = (3, 4), |0| = 324, U4(3).2 ≤ G ≤ U4(3).(22)122, PSL3(4) ≤ G(x) ≤
P6L3(4);

(vii) (n,q) = (3, 2), |0| = 72, G ∼= G2(2) ∼= U3(3).2, G(x) ∼= PSL3(2).

Remark 1 In the above theoremG1(x) 6= 1 in the cases(i)–(iii ) andG1(x) = 1 in the
remaining cases.

Remark 2 In case(v) the graph0 is a quotient of the [n1]q-dimensional cube. Ifq is odd
then0 is either the cube itself or the folded cube(cf. [4]), while if q is even there are more
quotients of the permutation module and correspondingly more possibilities for0 (cf. [14]
for some information about these quotients).

In [11] the classification problem for locally projective graphs of girth 5 in the case
G1(x) 6= 1 was reduced to the classification of flag-transitive Petersen type geometries,
namely geometries with a diagram of the following type:

2
◦——◦

2
· · ·

2
◦——◦

2
——◦

1

P ,

where the rightmost edge represents the geometry of edges and vertices of the Petersen
graph with the natural incidence relation. The classification of such geometries was re-
cently completed (cf. [15]). All examples come from sporadic simple groups. As a direct
consequence of the classification we have the following:

Theorem 1.3 Let0 be a locally projective graph of type(n,q) with n ≥ 3, and of girth
5, with respect to a subgroup G of automorphisms of0. Suppose that G1(x) 6= 1. Then
q = 2,0 contains the Petersen graph as a subgraph, and there are exactly eight possibilities
for the isomorphism type of0 so that one of the following holds:
(i) n = 3 and M22 ≤ G ≤ Aut (M22) or 3 ·M22 ≤ G ≤ 3 · Aut (M22);
(ii) n = 4 and G∼= Co2, 323 · Co2 or J4;
(iii) n = 5 and G∼= J4, F2 or 34371 · F2.

In the present paper we address the classification problem for locally projective graphs
of girth 5 in the caseG1(x) = 1. One such example, which we denote by0(M23) comes
from the Petersen type geometry associated with the Mathieu group M23 and until recently
it was the only example known. The vertices of0(M23) are the blocks of the Steiner
systemS(5, 8, 24) which do not contain a given point (there are exactly 506 such blocks);
two blocks are adjacent if they are disjoint. The graph is distance-transitive [4] with the
following intersection diagram:

��
��

��
��

��
��

��
��

1 15 210 280
15 1 14 1

2 6

912

0(M23) is a locally projective graph of type(4, 2) with respect to its full automorphism
group G ∼= M23. If x is a vertex and{x, y} is an edge, thenG(x) ∼= PSL4(2) ∼= A8,
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G(x, y) ∼= 23 : PSL3(2) andG{x, y} is an extension ofG(x, y) by an automorphism which
interchanges the two classes of complements toO2(G(x, y)) in G(x, y).

Very recently a new example of a locally projective graph of girth 5 was constructed
using computer calculations performed by L.H. Soicher. This graph is locally projective
of type(3, 4) and we will denote it byW(3). The automorphism group ofW(3) contains
a non abelian normal subgroup of order 220 which acts regularly on the vertex set of the
graph. FurtherW(3) contains as a subgraph the Wells graph on 32 vertices which is a
distance-transitive graph with intersection diagram

��
��

��
��

��
��

��
��

��
��

1 5 20 5 1
5 1 4 1

3

1 4 1 5

and automorphism group isomorphic to 21+4
− .A5. (The Wells graph was constructed by

A. L. Wells in [21] and also earlier by C. Armanios [1, 2].)
We summarise the results of this paper in the following theorem. It shows in particular

the significance of the Wells graph in our context. For a vertexx of a locally projective
graph0 of type(n,q), wheren ≥ 3 andq is a power of a prime numberp, let5x denote
the projective space structure having0(x) as point set and preserved byG(x). Choose a
line λ of 5x and letG(λ) be the pointwise stabilizer ofλ in G. Consider the subgraph in
0 induced by the vertices fixed byOp(G(λ)). Let1 be the connected component of this
subgraph containingx. The isomorphism type of1 is clearly independent of the choices
of x andλ.

Theorem 1.4 Let0 be a locally projective graph of type(n,q) with n ≥ 3, and of girth
5, with respect to a subgroup G of automorphisms of0. Suppose that G1(x) = 1. Then
one of the following holds:
(i) n = 4, q = 2, 1 is the Petersen graph, and0 ∼= 0(M23), G ∼= M23;
(ii) n ≥ 3, q = 4, 1 is the Wells graph. Graphs with these properties exist if and only if

the graph W(n) defined in Proposition6.9 has girth5. Moreover,
(a) if W(n) has girth5, then every graph0 with these properties is a quotient of W(n);
(b) W(3) has girth5, and has exactly220 vertices;
(c) for every n≥ 3 the automorphism group of W(n) contains a normal subgroup

T acting regularly on the vertex set, such that[T, T, T ] = 1, both T/[T, T ] and
[T, T ] are elementary abelian2-groups of rank less than[n

1]4 and[n
2]4, respectively

(in particular W(n) is finite).

Our theoretical analysis proves thatW(3) has at least 220 vertices (see Proposition 7.7).
The fact that equality holds depends on the computer calculations of Leonard Soicher
mentioned above. An explicit presentation for a 2-arc transitive automorphism group of
W(3) is given in Section 8. We are grateful to Leonard for his assistance. Not only was the
new construction a very nice surprise, but also it suggested the line of investigation which
resulted in the construction of the graphsW(n) for generaln ≥ 3. We are also very thankful
to Sergey Shpectorov for pointing out a few inaccuracies in the first draft of the paper.
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2. The stabilizer of an edge

For the remainder of the paper0 denotes a locally projective graph of type(n,q), where
n ≥ 3, with respect to a 2-arc transitive subgroupG of automorphisms of0. We assume
that the girth of0 is 5 and thatG1(x) = 1 for x ∈ 0. The latter means thatPSLn(q) ≤
G(x) ≤ P0Ln(q), andG(x) acts faithfully as a doubly transitive permutation group on the
set0(x) of sizek := [n

1]q. Let p be the characteristic ofGF(q), that is,p is a prime andq
is a positive power ofp.

Let 5x denote the projective space structure having0(x) as the point set, which is
invariant under the action ofG(x). Let Lx denote the set of lines in5x considered as a
collection of(q + 1)-element subsets of0(x). For y ∈ 0(x) let Lx(y) denote the set of
lines in Lx containingy and forz ∈ 0(x) \ {y} let l x(y, z) denote the unique line inLx

which contains bothy andz. We will usually be working with a given vertexx ∈ 0 and a
given pair of verticesy, z ∈ 0(x), and we set0(x) = {y1 = y, y2 = z, y3, . . . , y[n

1]q} and
λ := l x(z, y) = {y1, y2, . . . , yq+1}.

We start by recalling some basic properties of the projective linear groups in their natural
doubly transitive actions. LetP1 := G(x, y), P2 := G(x) ∩ G{λ}, P12 := P1 ∩ P2,
and R := G(x, y, z). This means thatP1 and P2 are two maximal parabolic subgroups
associated with the action ofG(x) on5x andR≤ P12. We can and will identifyG(x) and
its subgroups with the corresponding subgroups in the automorphism groupA of5x, where
A ∼= P0Ln(q). Let A0 be the largest subgroup inA which consists of projective linear
transformations of5x, so thatA0 ∼= PGLn(q). ForX being one of the subgroupsG(x), P1,
P2, P12, or R, setX0 := X ∩ A0. ThenX0 is normal inX andX/X0 is a subgroup of the
automorphism group ofGF(q)which is independent of the choice ofX from the above list.

To describe the action ofP1 on0(x) \ {y}, we introduce some characteristic subgroups
of P1. First of all C1 := Op(P1) is a characteristic subgroup ofP1. MoreoverC1 is
elementary abelian of orderqn−1, it stabilizes setwise every linel ∈ Lx(y) and induces a
regular permutation group onl \ {y}. Let H andH0 denote the permutation groups induced
on the setLx(y) by P1 andP0

1 , respectively. ThenH0 ∼= PGLn−1(q) (notice that this is true
even ifG(x)0 is a proper subgroup ofPGLn(q)) andPGLn−1(q) ∼= H0 ≤ H ≤ P0Ln−1(q).
Moreover, it is easy to see thatH/H0 ∼= G(x)/G(x)0. The latter means that the kernel
C2 of the action ofP1 on Lx(y) is contained inP0

1 . Let H1 be the unique subgroup ofH0

isomorphic toPSLn−1(q). We claim that bothH0 andH1 are characteristic subgroups of
H . Indeed, if(n−1,q) = (2, 2) or (2, 3) then the claim can be checked directly; otherwise
H1 is the unique minimal non abelian normal subgroup ofH and hence is characteristic.
Let F = P0Ln−1(q)/H1. ThenF is a split extension of a cyclic groupD of orderq − 1
(which is the image ofH0) by a cyclic subgroupE of orderm, whereq = pm. Now if
d ∈ D then the order ofCF (d) is divisible byq − 1 and ife ∈ F \ D then the order of
CF (e) is at most(pm/2 − 1)m. This means that all elements ofF with centralizers having
order divisible byq − 1 are contained inD and henceD is characteristic. HenceP0

1 and
the full preimageP1

1 of H1 in P0
1 are characteristic subgroups ofP1. Let us consider more

closely the kernelC2 of the action ofP1 on Lx(y). In terms of matrix groups, one can
see thatC2 is a split extension ofC1 by a cyclic subgroupK2 whose order dividesq − 1
and is divisible by(q − 1)/gcd(n,q − 1). Moreover, every non-trivial element ofK2 acts
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fixed-point freely onC1. We claim thatC2 is a characteristic subgroup ofP1. Indeed, if
(n,q) = (3, 2) or (3, 3) this is straightforward; otherwiseC2 is the largest solvable normal
subgroup inP1.

Lemma 2.1 Using the above notation let t∈ G{x, y}\G(x, y). Then one of the following
holds:
(i) P1 contains a unique class of complements to C1 and t can be chosen to normalize

such a complement;
(ii) (n,q) = (4, 2) or (n,q) = (3, 4) and G(x) does not contain PGL3(4) in the latter

case; there are more than one class of complements to C1 in P1 but t can be chosen to
normalize such a complement;

(iii) (n,q) = (4, 2) and the amalgam{G(x),G{x, y}} is isomorphic to the amalgam of
vertex and edge stabilizers in M23 acting on0(M23);

(iv) (n,q) = (3, 4); G(x) ∼= PSL3(4) and the amalgam{G(x),G{x, y}} is isomorphic to
the amalgam of vertex and edge stabilizers in the vertex transitive action of Aut(M22)

on2.K22 as in Theorem1.2 (iv);
(v) (n,q) = (3, 4); G(x) ∼= P6L3(4) and the amalgam{G(x),G{x, y}} is isomorphic

to the amalgam of vertex and edge stabilizers in the action of Aut(M22) on K22 as in
Theorem1.1 (ii).

Proof: If (n,q) = (3, 2) or (3, 3) thenP1
∼= S4 or AGL2(3), respectively and obviously

there is a unique class of complements toC1 in P1; andt can be chosen to normalize one
of them. In the remaining cases defineC3 to be the commutator subgroup ofP1

1 , so thatC3

is a split extension ofC1 by a subgroup isomorphic toSLn−1(q). Let (n,q) 6= (4, 2) and
(n,q) 6= (3, 2m) for m ≥ 2. By [3] in this case all complements toC1 in C3 are conjugate
in C3. Since every complement toC1 in P1 is the normalizer inP1 of a complement toC1

in C3 we are again in case (i). Suppose now that(n,q) = (3, 2m) where eitherm ≥ 3, or
m= 2 andG(x) containsPGL3(4). We claim that in both casesK2 is non-trivial. Indeed,
in the former caseq − 1 6= gcd(q − 1, n) and so|K2| ≥ (q − 1)/gcd(q − 1, n) > 1,
and in the latter case it is straightforward to see thatK2

∼= Z3. The subgroupK2 is a
complement toC1 in C2 and it is a Hall subgroup ofC1. Hence all the complements toC1

in C2 are conjugate. SinceK2 acts fixed-point freely onC1, every complement toC1 in P1

is the normalizer inP1 of a complement toC1 in C2 provided that the latter complement is
non-trivial. Hence again we are in case (i).

If (n,q) = (4, 2), then by [3] there are two classes of complements toC1
∼= 23 in

P1
∼= 23 : PSL3(2). If these two classes are permuted by the elements fromG{x, y}\G(x, y)

thenG{x, y} = Aut (G(x, y)) which immediately shows that the isomorphism type of the
amalgam{G(x),G{x, y}} is uniquely determined. This amalgam corresponds to the action
of M23 on0(M23).

Let (n,q) = (3, 4) and G(x) ∼= PSL3(4) or P6L3(4). Then P1
∼= 24 : L, where

L ∼= A5 or S5, respectively. By [3] there are four or two classes of complements toC1 in
P1, respectively. IfG{x, y} normalizes one of these classes then of course we are in case (ii).
On the other hand ifG{x, y} is an extension ofP1 by an automorphism acting fixed-point
freely on the classes of complements and whose square is an inner automorphism, then its
isomorphism type is uniquely determined in each of the two cases. Namely,G{x, y} is a
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split extension byL of the five-dimensional quotient of the six-dimensional permutation
module ofL. In each of the two cases the automorphism group ofG(x, y) is factorized
by the normalizers ofG(x, y) in G(x) andG{x, y}. Hence the isomorphism type of the
amalgam{G(x),G{x, y}} is uniquely determined. In both cases the amalgam is contained
in Aut (M22). 2

We next discuss the relationship betweenP1 and P2. First notice that, even ifG(x)0

is a proper subgroup ofPGLn(q), P0
2 inducesPGL2(q) on the points ofλ. Its subgroup

Op(P2) is elementary abelian of orderq2(n−2) and acts fixed-point freely on0(x) \ λ. Also
the subgroupP12 is the full preimage inP1 of the stabilizer inH = P1/C1 of the lineλ;
Op(P12) has orderq(n−1)+(n−2) and its center isOp(P1) ∩ Op(P2).

Lemma 2.2 Suppose we are not in case(iii) of Lemma2.1. Then there is a bijective
mappingϕ from02(x) onto the set of ordered pairs of distinct vertices in0(x), such that
ϕ commutes with the action of G(x) and ifϕ(u) = (y, z) for u ∈ 02(x), then u and y are
adjacent.

Proof: Suppose first thatq = 2. ThenG(x, y) = P1
∼= 2n−1 : PSLn−1(2). Since we

are not in case (iii) of Lemma 2.1, we can chooset ∈ G{x, y} \ G(x, y) to normalize a
complementN to C1 in P1. Sincet also normalizesC1 and the latter is the natural module
for N, t induces an inner automorphism ofN. Hencet can be adjusted to centralizeN and
C1 as well. Thent2 is in the center ofP1 which is trivial. HenceG{x, y} = P1×〈t〉 where
t2 = 1 andt is uniquely determined by{x, y}. Foru ∈ 0(y) \ {x} defineϕ(u) to be(y, ut ).
It is easy to see thatϕ is bijective and commutes with the action ofG(x).

Now suppose thatq ≥ 3. We observed in the paragraph before the statement of the lemma
that P0

2 inducesPGL2(q) on the points inλ. This means in particular thatR= G(x, y, z)
does not stabilize in0(x) any vertices other thany andz. On the other hand, if the mapping
we are seeking exists, thenR stabilizes the vertexu ∈ 0(y) satisfyingϕ(u) = (y, z). By
symmetryR= G(x, y, u) andR stabilizes only the vertexu in 0(y) \ {x}. Conversely, if
R stabilizes a (unique) vertexu ∈ 0(y) \ {x}, then the mapϕ defined byϕ(u) = (y, z) has
the required properties.

It is clear thatR fixes a vertexu ∈ 0(y) \ {x} if and only if there is an elementt ∈
G{x, y} \G(x, y) which normalizesR. First suppose that we are in case (i) of Lemma 2.1.
Then all complements toC1 in P1 are conjugated inP1 and we can chooset to normalize
one of them, sayN. SinceN acts transitively onLx(y) we can chooset to normalize
the stabilizerN2 of λ in N. SinceN is from the unique class of complements, we have
P12 = C1 : N2. Moreover Op(P1) ∩ Op(P2) is the centralizer ofOp(N2) in C1, and
(Op(P1) ∩ Op(P2)) : N2 is the stabilizer inP1 of a point inλ \ {y}, so we can choosez to
be this point.

Finally let us assume that we are in case (ii), (iv) or (v) of Lemma 2.1 forq > 2. Then
(n,q) = (3, 4), G(x) ∼= PSL3(4) or P6L3(4), andP1

∼= 24 : A5 or 24 : S5, respectively.
There is a unique class of index 5 subgroups inP1 andP12 is one of them. Hence we can
chooset to normalizeP12. There are exactly two elementary abelian subgroups of order
24 in O2(P12). One of them isC1 and the other isO2(P2) = O2(R). Sincet normalizes
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C1 it normalizesO2(R). Finally R is the full preimage of the normalizer of a Sylow 3-
subgroup inP12/O2(R) ∼= A4. Hence we can chooset to normalizeR and the result
follows. 2

3. A characterization of Γ(M23)

Let0 be a locally projective graph of girth 5 which corresponds to case (iii) of Lemma 2.1
with respect to a 2-arc transitive subgroupG of automorphisms of0. We show in this
section that under these conditions0 ∼= 0(M23) andG ∼= M23.

If 0 corresponds to case (iii) of Lemma 2.1, thenG(x) ∼= PSL4(2); G(x, y) ∼= 23 :
PSL3(2); G{x, y} is a split extension of an elementary abelian subgroupQ of order 24

by PSL3(2) and Q is an indecomposableGF(2)-module forPSL3(2). Now O2(G(x, y))
stabilizes setwise every line fromLx(y) ∪ L y(x), while PSL3(2) ∼= G(x, y)/O2(G(x, y))
induces onLx(y) and onL y(x) two equivalent natural actions of degree 7. Hence there is
a unique bijectionψxy of Lx(y) ontoL y(x) which commutes with the action ofG(x, y).

By Lemma 2.1 (iii) the amalgam{G(x),G{x, y}} is isomorphic to the amalgam{M(x),
M{x, y}} associated with the action ofM ∼= M23 on0(M23). Let 0̂ be the covering tree
of 0 and letĜ be the free amalgamated product ofG(x) andG{x, y} acting naturally on
0̂. Then0̂ is also a covering tree of0(M23) and Ĝ is the free amalgamated product of
M(x) andM{x, y}. This means that every local property of the action ofG on0 (that is, a
property shared with the action ofĜ on 0̂) is also shared with the action of M23 on0(M23).
This applies in particular to the action ofG(x) on02(x) and to the action ofG(x, y) on
0(x) ∪ 0(y).

As usual, letλ = {y1 = y, y2 = z, y3} ∈ Lx and set

1 := {x} ∪ λ
3⋃

i=1

ψxyi (λ).

The properties of0(M23) stated in the next lemma follow from standard facts about the
action of M24 on S(5, 8, 24) and from the Petersen type geometry structure associated with
0(M23), see [13].

Lemma 3.1 Let0 ∼= 0(M23) and G∼= M23. Then
(i) the subgraph induced by0 on1 is isomorphic to the Petersen graph;

(ii) G{1} ∼= 24 : (3× A5) : 2, G{1}/G(1) ∼= S5, the center of G(1) is trivial and G(1)
acts transitively on0(x) \1.

SinceG is 2-arc transitive and0 is of girth 5, there areu ∈ 0(y)\ {x} andv ∈ 0(z)\ {x}
which are adjacent. Setµ := ψyx(l y(u, x)), ν := ψzx(l z(v, x)).

Lemma 3.2 Let 0 be an arbitrary locally projective graph of girth5 with respect to a
2-arc transitive subgroup G of automorphisms of0, and suppose that0 corresponds to
case(iii) in Lemma2.1. Then
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(i) G(x, y, u) acts transitively on the Cartesian product(µ \ {y})× (0(x) \ µ);
(ii) µ = ν = λ;
(iii) the subgraph induced by0 on1 is isomorphic to the Petersen graph.

Proof: Since the action ofG on0 is locally isomorphic to that of M23 on0(M23), part
(i) follows directly from Lemma 3.1.

To prove part (ii) suppose first thatµ= ν. Thenµ containsz and hence must be equal
to l x(y, z)= λ. So we may assume thatµ 6= ν. Notice thatG(x, y, z, u) must fixv since
otherwise there would be more than one 2-arc joiningu andzwhich is impossible, since the
girth of0 is 5. HenceG(x, y, z, u) stabilizeslz(v, x) and alsoν. Suppose thatµ= λ. Then
by part (i),G(x, y, z, u) acts transitively on0(x) \ µ and hence it does not stabilize in5x

any lines other thanµ= λ, which is a contradiction. Henceµ 6= λ. Because of the obvious
symmetry betweeny andz, alsoν 6= λ, and soµ, ν andλ are pairwise distinct. Let4 be the
hyperplane in5x which containsλ andµ. By (i), G(x, y, z, u) acts transitively onµ \ {y}
which means thatG(x, y, z, u) does not stabilize lines in4 not passing throughy. Hence
ν does not lie in4. Finally, G(x) ∩ G(4) (which is the same asG(4) since there are no
4-cycles in0) permutes transitively the eight points in0(x) \4 andG(x, y, z, u) ∩G(4)
has index at most 2 inG(x) ∩ G(4). HenceG(x, y, z, u) does not stabilize lines outside
4, which is a contradiction. Thus part (ii) holds.

Now by (i) and (ii) it is easy to observe that the subgraph induced by0 on1 is regular of
valency 3, girth 5, with 10 vertices. Hence it is isomorphic to the Petersen graph and (iii)
follows. 2

Lemma 3.3 Let0 be a locally projective graph of girth5 which corresponds to case(iii)
of Lemma2.1 with respect to a subgroup G of automorphisms of0. Then0 ∼= 0(M23)

and G∼= M23.

Proof: Let 1 be the Petersen subgraph in0 as in Lemma 3.2 (iii). By Lemma 3.1
and since the actions ofG on 0 and of M23 on 0(M23) are locally isomorphic, we have
(G(x)∩G{1})1 ∼= S3× Z2. Furthermore, one can see that1 consists of{x, y}, λ,ψxy(λ)

and the vertices on the shortest paths joining vertices fromλ to vertices fromψxy(λ).
This observation shows that there existst ∈ G{x, y} \ G(x, y) which stabilizes1 as a
whole. HenceG{1}/G(1) ∼= S5. We claim that the isomorphism type of the amalgam
G = {G(x),G{x, y},G{1}} is uniquely determined. Indeed, the isomorphism type of the
amalgam{G(x),G{x, y}} is uniquely determined. HenceG{1} is a homomorphic image
of the free amalgamated productF of G(x) ∩ G{1} andG{x, y} ∩ G{1}. Let K be the
corresponding kernel. Since the center ofG(1) is trivial andG{1}/G(1) acts faithfully
on G(1), we haveK ≥ CF (G(1)). On the other handF/(G(1)CF (G(1))) ∼= S5.
HenceK = CF (G(1)) and the isomorphism type ofG is uniquely determined. ThusG
is isomorphic to the analogous amalgamM associated with the action of M23 on0(M23).
By the main result of [13] the Petersen type geometry associated with0(M23) is 2-simply
connected. In accordance with a standard principle (cf. Section 12.4.3 in [17]) this is
equivalent to the fact that M23 is the universal completion of the amalgamM. SinceM
andG are isomorphic and M23 is a non-abelian simple group, M23 is the unique completion
of the amalgamG and the result follows. 2
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4. The geometrical subgraphs

From now on we assume that, for everyx ∈ 0, there is a bijectionϕ of 02(x) onto the set
of ordered pairs of distinct vertices in0(x) which commutes with the action ofG(x) and,
if ϕ(u) = (y, z), thenu andy are adjacent (see Lemma 2.2).

Let σ be a subspace in5x of projective dimensionm− 1, where 2≤ m ≤ n. Consider
the subgraph in0 induced by the fixed vertices of the pointwise stabilizerG(σ ) of σ in
G. Let 6 = 6[σ ] be the connected component of this subgraph containingx. In what
follows the subgraph6[σ ] will be called thegeometrical subgraphcorresponding toσ .
SetH ∼= G{6}6 be the action induced byG{6} on6.

Lemma 4.1 With the above notation6 is a locally projective graph of type(m,q) with
respect to H. The set6(x) of vertices adjacent to x in6 coincides withσ . The action of
H(x) on this set is faithful and if m≤ n− 1 then H(x)6(x) contains PGLm(q).

Proof: Since0 is locally projective with respect toG and every point of5x fixed by
G(σ ) is in σ , we see that6(x) = σ and thatH(x)6(x) containsPGLm(q) provided that
m ≤ n − 1. Hence the elementwise stabilizer of6(x) in G coincides withG(σ ) which
fixes by the definition every vertex of6. Thus all we have to show is thatH acts vertex-
transitively on6. Suppose thaty ∈ σ . Then a pointu ∈ 0(y) \ {x} is fixed byG(σ ) if
and only ifϕ(u) = (y, w) with w ∈ σ . It is easy to observe that the points in5y fixed
by G(σ ) form a subspaceσ ′ of projective dimensionm andG(σ ) = G(σ ′). Now since
G is vertex-transitive on0 andG(x) acts flag-transitively on5x, it follows that H acts
vertex-transitively on6. 2

In the rest of the paper we shall use1 to denote the geometrical subgraph1 = 6[λ]
defined with respect to the lineλ = {y1 = y, y2 = z, . . . , yq+1}.

Lemma 4.2 Every cycle of length5 passing through the2-arc (y, x, z) is contained in1.

Proof: SinceG is 2-arc transitive and the girth of0 is 5, there is a vertexu ∈ 0(y) \ {x}
which is adjacent to a vertexv ∈ 0(z) \ {x}. Letϕ(u) = (y, t) andϕ(v) = (z, s). To prove
the lemma we have to show that botht andsare contained inλ. Suppose thatt /∈ λ and letµ
denote the plane in5x which containsλ andt . Observe thatG(x, y, z, u) = G(x, y, z, t)
must fixv ands, since otherwise there would be more than one 2-path joiningu andzwhich
is impossible since the girth of0 is 5. Hences is contained in8 \ {z} where8 is the set of
vertices in0(x) fixed byG(x, y, z, t). It follows from basic properties of projective linear
groups that one of the following holds:

(i) q ≥ 3 and8 = {y, z, t};
(ii) q = 2 and8 = µ.

If s = t , thenG(x, t) acts doubly transitively onλ sincet /∈ λ. Hence the vertices
w ∈ 02(x) with ϕ(w) = (r, t) for r ∈ λ must be pairwise adjacent, which is impossible
since the girth of0 is 5. If s = y thenG(x, y, z, s) = G(x, y, z) and every vertexu′ with
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ϕ(u′) = (y, t ′), for somet ′ /∈ λ, must adjacent to bothy andv. So in this case we would
have 4-cycles in0. This rules out case (i).

Now we turn to case (ii). Without loss of generality we may assume thatn = 3, that is,
that the geometrical subgraph6[µ] is the whole of0. Let2 denote the graph on02(x)
in whichu andv are adjacent if they are adjacent in0 and if they are not contained in any
of the images of02(x) ∩1 under elements ofG(x). Then2 is a graph on the 42 ordered
pairs of points of the projective plane of order 2 which is invariant under the natural action
of PSL3(2). In addition the valency of2 is at most 6 (since the valency of0 is 7) and the
girth of 2 is at least 5. We claim that such a graph has no edges. Clearly2 must be a
union of orbitals ofG(x) ∼= PSL3(2) on 02(x). Elementary calculations with characters
show that the rank of the action is 15 and that exactly 7 of the orbitals are self-paired.
MoreoverG(x, y, z) stabilizes exactly 6 vertices in02(x), namely those contained in1.
By the definition of2 the corresponding 6 orbitals of valency 1 are not involved in2. It
is easy to see that exactly 4 of the orbitals of valency 1 are self-paired. This implies that
the remaining 9 orbitals all have valency 4 and exactly 3 of them are self-paired. If2

involved a non-self-paired orbital of valency 4 it would also involve its paired orbital which
is impossible since the valency of2 is less than eight. The self-paired orbitals of valency
4 are the following:

R1 = {(y, t), (z, s) | t = s, t /∈ l x(y, z)};
R2 = {(y, t), (z, s) | y = z, s /∈ l x(y, t)};
R3 = {(y, t), (z, s) | l x(y, t) ∩ l x(z, s) ∩ {y, t, z, s} = ∅}.

It is easy to see that the orbital graph associated with each of the above three orbitals has
girth 3 and the claim follows. Thus2 has no edges, and the lemma is proved. 2

5. Wells subgraphs

As in the previous section let1 be the geometrical subgraph in0 defined with respect to the
line λ = {y1 = y, y2 = z, y3, . . . , yq+1}. By Lemma 4.1,1 is a locally projective graph of
type (2,q) with respect to the action ofH = G{1} andH(x)1(x) containsPGL2(q). By
Lemma 4.2 the girth of1 is 5.

Lemma 5.1 Every2-arc of1 is in exactly a2 cycles of length5, where a2 is independent
of the2-arc and equals1, q− 1 or q. The stabilizer in H of a5-cycle induces the dihedral
group D10 on the vertices of the cycle. Moreover, if a2 = q, then q= 2 and1 is the
Petersen graph.

Proof: Since H acts transitively on the 2-arcs of1, the number of cycles of length 5
containing a given 2-arc is a constanta2, independent of the 2-arc. Letu ∈ 12(x) such
thatϕ(u) = (y, z). ThenH(x, u) = H(x, y, z) acts transitively onλ \ {y, z}. On the other
hand, for 2≤ i ≤ q + 1, the 3-arc(u, y, x, yi ) is contained in at most one 5-cycle, since
the girth of1 is 5. Thusa2 equals 1,q − 1 orq.
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Let C be a 5-cycle containing(x, y, u), and note that there exists an elementh in H(y)
interchangingx andu. If a2 = 1 or q − 1 thenH(x, u) acts transitively on the 5-cycles
containing(x, y, u), and so we may assume thath fixesC setwise. It follows thatH{C}C =
D10. Finally, if a2 = q then1 is a Moore graph of valencyq+1 and hence (see [4, p. 207])
it is the Petersen graph and we haveH{C}C = D10 in this case also. 2

Already the available properties of1 are strong enough to restrict dramatically the
possibilities for the isomorphism type of1, but we shall exploit further the fact that1
appears as a geometrical subgraph in a larger locally projective graph. We will show that
1 must be isomorphic to the Wells graph of valency 5 on 32 vertices, so thatq = 4.

Letµ be a plane containingλ andF = G{6[µ]}, where6[µ] is the geometric subgraph
defined with respect toµ. (The definition of6[µ] is given before Lemma 4.1.) We will
study the natural homomorphism fromF{1} into the automorphism group ofOp(F(1)).
Without loss of generality and to simplify the notation we assume thatn = 3 which means
thatµ = 5x andF = G. In this caseG(1) is a split extension ofQ := Op(G(1)), which
is elementary abelian of orderq2, by a cyclic subgroupK such that(q−1)/gcd(q−1, 3) ≤
|K | ≤ (q−1). Letξ denote the natural homomorphism fromG{1} into the automorphism
group ofQ.

Lemma 5.2
(i) If q 6= 4 thenξ(G{1}) = ξ(G(x) ∩ G{1});

(ii) if q = 4 with0 and G corresponding to case(iv) or (v) of Lemma2.1thenξ(G{1}) ∼=
S6.

Proof: Suppose first thatq 6= 4. If q = 2 thenξ(G(x) ∩ G{1}) ∼= PSL2(2) ∼= Aut (Q)
and the claim is obvious. So we may assume that the cyclic subgroupK in G(1) is non-
trivial. Observe that in this case, ifq = pm for an integerm, then|K | does not dividepa−1
for a < m. It is clear thatξ(G{1}) normalizesξ(G(1)) ∼= K and by the above observation
we haveξ(G{1}) ≤ 0L2(q). On the other hand (see Lemma 4.1)ξ(G(x)∩G{1}) contains
eitherGL2(q) or a subgroup of index 3 inGL2(q). This shows thatξ(G(x) ∩ G{1}) is
normal in0L2(q) and hence inξ(G{1}) as well. LetC = (x, y, u, v, z) be a 5-cycle in
1. By Lemma 5.1 there are elementst ands in G{1} which induce onC the permutations
(x, y)(u, z)(v) and(x)(y, z)(u, v), respectively. Note thatt generatesG{1} together with
G(x) ∩ G{1}. On the other hand,ts induces a 5-cycle onC and so we may chooset to
be a conjugate ofs by an element of〈ts〉 ⊆ G{1}. Then, sinces ∈ G(x) ∩ G{1} and
ξ(G(x) ∩ G{1}) is normal inξ(G{1}), it follows thatξ(t) ∈ ξ(G(x) ∩ G{1}), and part
(i) follows.

Now suppose thatq = 4 and we are in case (iv) or (v) of Lemma 2.1. In this case
Q is elementary abelian of order 24 and henceA := Aut (Q) ∼= PSL4(2) ∼= A8. Let
N1 = G(x) ∩ G{1} and N2 = G{x, y} ∩ G{1}. Then it is clear thatN1 = NG(x)(Q)
andN2 = NG{x,y}(Q). ConsiderA1 = N1/CN1(Q) and A2 = N2/CN2(Q) as subgroups
in A. SinceG{1} is generated byN1 andN2, ξ(G{1}) is the subgroup inA generated by
A1 andA2. It is easy to see that the subamalgam{A1, A2} in A is uniquely determined by
the isomorphism type of the amalgam{G(x),G{x, y}} (i.e., it is independent of particular
choice of the completionG of the amalgam). By Lemma 2.1 Aut(M22) is a completion of the
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amalgam{G(x),G{x, y}}. It is easy to observe that ifG = Aut (M22) thenG{1} ∼= 24 : S6

is the stabilizer of a block of the Steiner systemS(3, 6, 22) and Q = O2(G{1}). This
specifies{A1, A2} uniquely and henceξ(G{1}) ∼= S6 for any completionG. 2

Lemma 5.3 If q 6= 4 then there is a normal subgroup N of G{1}/G(1) which acts
regularly on the vertices of1.

Proof: By Lemma 5.2 it follows thatG{1} = CG{1}(Q)(G(x) ∩ G{1}), and hence
that CG{1}(Q) is transitive on the vertices of1. Moreover,CG{1}(Q) ∩ G(x) = Q ⊆
G(1), and soCG{1}(Q) acts regularly on the vertices of1. Thus the subgroupN :=
CG{1}(Q)G(1)/G(1) has the required properties. 2

We now come closer to our first objective of showing that1 is the Wells graph, by
showing that either this is true, or1 is a pentagraph. A connected graph1 is called a
pentagraphif it has girth 5, and contains a collection5 of 5-cycles such that every 2-arc
of 1 is contained in a unique cycle in5.

Lemma 5.4 One of the following holds:
(i) 1 is a pentagraph of valency at most5;

(ii) 1 is the Wells graph of valency5 on32vertices.

Proof: We consider the possible values ofa2 given in Lemma 5.1. Ifa2 = q then by
Lemma 5.1,q = 2 and1 is the Petersen graph. Since neither of the 2-arc transitive
automorphism groups of the Petersen graph has a normal subgroup acting regularly on the
set of vertices, this possibility cannot be realized by Lemma 5.3.

Suppose next thata2 = 1. Then every 2-arc of1 is in a unique 5-cycle and there are no
cycles of length less than 5. Thus, by definition of a pentagraph,1 is a pentagraph which
is a locally projective graph of type(2,q). SinceH(x)1(x) ≥ PGL2(q) (by Lemma 4.1), it
follows from the main result of [18] thatq ≤ 4. Thus part (i) holds.

Finally, suppose thata2 = q− 1> 1. Then every vertex of12(x) is adjacent to exactly
one vertex of13(x) (by the same reason used inductively we observe that the action of
G{1} on1 is distance-transitive). In particularH(x) acts transitively on13(x). Let c3

denote the number of vertices in12(x) adjacent to a given vertex of13(x). Letu ∈ 12(x)
with ϕ(u) = (y, z) andw ∈ 1(x). Then the distance fromu tow in 1 is 1 if w = y, 3 if
w = z and 2 otherwise. Letv ∈ 12(x) ∩ 1(u) andϕ(v) = (a, b). From what we have
just observed,a 6= y, z, and by symmetryy 6= a, b. Also if z = b then, sinceq > 2, we
find (by considering the actions ofH(x, y, z) and H(x,a, z)) that1 contains a triangle
(u, v, w), whereϕ(w) = (c, z) for somec ∈ 1(x) \ {y, z,a}. Since0 has girth 5, we must
therefore havez 6= b. Thus the intersection{y, z} ∩ {a, b}must be empty. This shows that
each of theq−1 vertices in12(x) adjacent tou, and also the vertexy, are in12(z). Hence
c3 ≥ q.

Suppose thatc3 = q + 1. Then13(x) has sizeq andH(x) ≥ PGL2(q) acts faithfully
and transitively on this set. By [8, Section 263],q = 5, 7 or 11, and sincePGL2(q) acts,
only q = 5 is possible. In this case1 is a distance-transitive graph with intersection
array {6, 5, 1; 1, 1, 6}, and hence (see [4, p. 223])1 is the graph(6 · K7)1 induced on
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the set of 42 points at distance 2 from a given vertex in the Hoffman-Singleton graph and
Aut (1) = S7. Again, since neither of the 2-arc transitive automorphism groups of this graph
has a normal subgroup acting regularly on the set of vertices, this possibility contradicts
Lemma 5.3.

Thusc3 = q, |13(x)| = q + 1, andH(x)/H(1) acts naturally and doubly transitively
on this set. Now it is easy to conclude that1 is a distance-transitive graph with intersection
array{q+ 1,q, 1, 1; 1, 1,q,q+ 1}. If q = 4 then1 is the Wells graph (cf. [4, p. 223]), so
suppose thatq 6= 4. From the intersection array we see that1 is antipodal with antipodal
classes of size 2. Let̄1 be the antipodal quotient of1. Then1̄ is distance-transitive of
diameter 2 with intersection array{q + 1,q; 1, 2}. By Lemma 5.3,H acting on1̄ has a
regular normal subgroup̄N. Forw ∈ 1 let w̄ denote the image ofw in 1̄. We can identify
n̄ ∈ N̄ with the vertexx̄n̄. The vertices in̄12(x̄) are the antipodal classes of size 2 contained
in12(x). By Lemma 2.2 the vertices in12(x) are indexed by the ordered pairs of vertices
in 1(x). It is easy to see thatH(x) ≥ PGL2(q) preserves a unique equivalence relation
on12(x) with classes of size 2. The classes of this relation are indexed by the unordered
pairs of vertices in1(x). Hence the vertices in̄12(x̄) = 1̄ \ ({x̄} ∪ 1̄(x̄)) are indexed by
the unordered pairs of vertices in1(x). We claim that the exponent of̄N is 2. In fact by
the above description for anȳw ∈ 1̄ \ {x̄} the subgroupH(x̄) ∩ H(w̄) does not stabilize
vertices in1̄ other thanx̄ andw̄. On the other hand if̄w (considered as an element ofN̄)
had order greater than 2 thenH(x̄)∩H(w̄)would stabilizew̄2, a contradiction. HencēN is
an elementary abelian 2-group. This means thatN̄ is a quotient of theGF(2)-permutation
module forH(x)1(x) and1̄ is a quotient of the(q+1)-dimensional cube. SinceH(x)1(x) is
triply transitive,1̄must be the halved cube (cf. [13]). The halved(q+1)-dimensional cube
has intersection array{q + 1,q; 1, 2} if and only if q = 4. This contradiction completes
the proof. 2

Now to obtain the main result of the section it remains to show that1 does not satisfy
case (i) of Lemma 5.4, i.e., that1 cannot be a pentagraph.

We start by defining a series of pentagraphs coming from a class of Coxeter groups.
Let Hk denote the Coxeter group generated by involutionsei , i = 1, . . . , k, subject to the
relations(ei ej )

mi j = 1, wheremi j = 2 if |i − j | ≥ 2, mi j = 3 if |i − j | = 1 and both
i < k and j < k, andmk−1,k = mk,k−1 = 5. It is well known thatH3

∼= A5 × 2 (the
automorphism group of the dodecahedron);H4

∼= (SL2(5) ∗ SL2(5)).2 (where∗ denotes
the central product) andHk is infinite for k ≥ 5. Let H v

k , He
k andHc

k be the subgroups in
Hk generated by all the generators except forek, ek−1 andek−2, respectively. Define3k to
be the graph with vertices the right cosets ofH v

k in Hk such that two cosets are adjacent if
and only if they intersect non-trivially the same right coset ofHe

k . Then (cf. [10])Hk acts
2-arc transitively on3k and the stabilizer of a vertex induces the natural action of Sk on
the adjacent vertices. Moreover, every 2-arc is in a unique 5-cycle andHc

k is the setwise
stabilizer of one of these 5-cycles. Notice that33 is just the dodecahedron. LetH+k be the
index 2 subgroup inHk which contains the products of even numbers of generators only.
Then H+k acts naturally on3k and the vertex stabilizer induces Ak on the set of adjacent
vertices. ClearlyHk containsHl for l ≤ k in the obvious way. We will make use of the
following result.
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Lemma 5.5 Every non-trivial homomorphic image of H+5 contains an element of order
15.

Proof: Let K be a normal subgroup ofH+5 . By definition, H+5 is the subgroup ofH5

generated by the elementsfi j := ei ej , for 1≤ i < j ≤ 5. It follows from the presentation
given for H5 that f12 has order 3,f45 has order 5, and the commutator [f12, f45] = 1. If
K ∩ 〈 f12, f45〉 = 1 thenH+5 /K contains an element of order 15, for examplef12 f45K .
Suppose then thatK intersects〈 f12, f45〉 non-trivially. ThenK contains eitherf12 or f45

or both. SetS1 := 〈 f12, f23, f34〉 and S2 := 〈 f34, f45〉. ThenS1
∼= S2

∼= A5. SinceK
containsf12 or f45 at least one ofK ∩ S1 andK ∩ S2 is non-trivial. Hence, sinceK ∩ Si is
normal inSi andSi is simple, at least one ofS1, S2 is contained inK . Then, sinceS1 ∩ S2

contains f34, bothK ∩ S1 andK ∩ S2 are non-trivial, and so bothS1 andS2 are contained
in K . It is not difficult to see that, for all 1≤ i < j ≤ 5, fi j belongs to〈S1, S2〉 which in
turn is contained inK . HenceK = H+5 . 2

The following result (cf. [18, 10]) characterizes the locally projective pentagraphs of
type(2,q) with q ≤ 4.

Proposition 5.6 Let6 be a pentagraph of valency q+1 with q ≤ 4, and let F be a2-arc
transitive subgroup of automorphisms of6. Suppose that F(x)6(x) contains PGL2(q) as a
normal subgroup. Then one of the following holds:
(i) 6 is a quotient of3q+1 and F is a factor group of either Hq+1 or H+q+1;

(ii) q = 3 and PSL2(11) ≤ F ≤ (PSL2(11)× 3).2;
(iii) q = 4 and F is isomorphic to PSL2(31).

Lemma 5.7 The subgraph1 is isomorphic to the Wells graph.

Proof: By Lemma 5.2 and its proof there is a homomorphismξ of F := G{1}/G(1)
into the automorphism group of an elementary abelian group of orderq2 such that either
the image containsPGL2(q) as a normal subgroup, orq = 4 andξ(F) = S6. Suppose that
1 is not the Wells graph. Then, by Lemma 5.4,1 is a pentagraph of valencyq + 1 ≤ 5,
and soF = G{1}/G(1) satisfies one of (i)–(iii) of Proposition 5.6. It is obvious that there
is no such homomorphismξ in any of these cases except whenF is a factor group ofH5 or
H+5 . In these latter cases we have a contradiction by Lemma 5.5. 2

Thus we have established the following:

Proposition 5.8 Let0 be a locally projective graph of type(n,q), n ≥ 3 of girth 5 with
respect to a2-arc transitive subgroup G of automorphisms of0, such that G1(x) = 1.
Then either
(i) 0 ∼= 0(M23) and G∼= M23; or
(ii) q = 4 and the geometrical subgraph of valency5 in 0 is isomorphic to the Wells

graph.
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6. The structure of W(n)

From now on0 will be a locally projective graph of type(n, 4) with respect to a 2-arc
transitive subgroupG of automorphisms of0, such that the geometrical subgraph1 defined
with respect to the lineλ = {y1 = y, y2 = z, y3, y4, y5} is isomorphic to the Wells graph.

The Wells graph is the unique distance-transitive graph with intersection array{5, 4, 1, 1;
1, 1, 4, 5}. An elementary description of this graph may be made as follows. Consider the
dodecahedronD as a solid body in three-dimensional space. There are exactly ten 4-subsets
Ti , 1≤ i ≤ 10, of vertices ofD which are the vertex sets of tetrahedrons. Under the action
of the rotation groupR∼= A5 of D, these tetrahedrons split into two orbitsO1 andO2, each
of length 5. The vertices of the Wells graph may be identified with the vertices ofD, the ten
tetrahedronsTi , and the orbitsO1, O2, with adjacency being the natural adjacency relation
in D and set inclusion as appropriate. The full automorphism group is an extension byR of
the extraspecial group 21+4

− of order 32 of minus type. The Wells graph has antipodal classes
of size 2 and the folded graph is the folded five-dimensional cube whose complement is
known as the Clebsch graph. The following two results are straightforward.

Lemma 6.1 Let1 be the Wells graph and let H be a2-arc transitive subgroup of auto-
morphisms of1. Let x∈ 1 and{x, y} ∈ E(1). Then
(i) H is the full automorphism group of1, it is a semidirect product of a normal subgroup

N ∼= 21+4
− and H(x) ∼= A5;

(ii) H(x, y) ∼= A4 and H{x, y} ∼= H(x, y)× 〈txy〉 where txy is an involution from N.

Lemma 6.2 Let X be a coset of A5 in S5, so that X consists of either all the even
permutations or all the odd permutations of a5-element set. Let M be a group generated
by five involutions si , 1 ≤ i ≤ 5, subject to the relation sπ(1)sπ(2) . . . sπ(5) = 1 for every
permutationπ ∈ X. Then M∼= 21+4

− and ifσ ∈ S5 \ X then sσ(1)sσ(2) . . . sσ(5) is the unique
non-trivial element in the center of M.

Lemma 6.3 Let0 and G be as above. Then
(i) G(x) ∼= PSLn(4) or PGLn(4);

(ii) either G(x, y) ∼= 22(n−1) : GLn−1(4), or G(x) ∼= PSLn(4), n is divisible by3, and
G(x, y) ∼= 22(n−1) : SLn−1(4);

(iii) G{x, y} ∼= G(x, y)× 〈txy〉, where txy is an involution which is the unique non-trivial
element of the center of G{x, y};

(iv) if v ∈ 0(y) \ {x} with ϕ(v) = (y, w) then txy mapsw ontov.

Proof: Since1 is the Wells graph, by Lemma 6.1,G(x)∩G{λ} induces A5 on the points
of λ. Thus part (i) follows and immediately implies part (ii). To prove part (iii) assume first
thatn = 3. By Lemma 6.1,G{1}/G(1) ∼= 21+4

− : A5. Let Q := O2(G(1)) ∼= 24 and let
ξ be the natural homomorphism fromG{1} into Aut (Q) ∼= PSL4(2). Then it is clear that
ξ(G{1}/G(1)) ∼= A5 and by Lemma 5.2 (ii) we are not in case (iv) or (v) of Lemma 2.1.
This means that we can chooset ∈ G{x, y} \G(x, y) such thatt normalizes a complement
K to O2(G(x, y)) in G(x, y). If t can be chosen to centralizeK , then it is easy to see
that (iii) follows. OtherwiseG{x, y} ∼= 24 : S5 or 24 : 3 : S5. SinceG{x, y} ∩ G{1} is
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of index 5 inG{x, y}, it must be isomorphic, respectively, to 24 : S4 or 24 : 3 : S4, and
|O2(G{x, y})| = 26. On the other hand by Lemma 6.1 (ii),G{x, y} ∩G{1} ∼= 24 : (A4×2)
or 24 : 3 : (A4 × 2) and |O2(G{x, y})| = 27 (notice thatξ(G{1}) ∼= A5). This is a
contradiction, so we have proved part (iii) forn = 3. If n ≥ 4 then we may still choose
t ∈ G{x, y} \ G(x, y) to normalize a complementK ∼= SLn−1(4) to O2(G(x, y)) in the
commutator subgroup ofG(x, y). Consider the geometrical subgraph6 in 0 defined with
respect to a plane containingy and stabilized byt . Since part (iii) is proved for the case
n = 3, one can easily see thatt cannot induce a non-trivial field automorphism onK and
hencet can be chosen to centralizeK and part (iii) follows. FinallyG(x, y) acts transitively
on the set of pairs

P =
{
{yi , ui }

∣∣∣∣ϕ(ui ) = (y, yi ), 2≤ i ≤
[

n

1

]
4

}
andtxy centralizes this action. Sinceq = 4, G(x, y, z) does not stabilise in0(x) vertices
other thany andz. This implies that different pairs inP have different stabilizers inG(x, y).
Hence the action oftxy onP is trivial and part (iv) follows. 2

In what follows, for 1 ≤ i ≤ [n
1]4, we setti := txyi , the involution defined as in

Lemma 6.3 (iii) forG{x, yi }, and letT be the subgroup ofG generated by the elementsti ,
i = 1, . . . , [n

1]4.

Lemma 6.4 Let N= 〈ti | 1≤ i ≤ 5〉. Then one of the following holds:
(i) N ∼= 21+4

− and N acts regularly on the vertex set of1;
(ii) n = 3, G(x) ∼= PSL3(4) and N contains G(1).

Proof: Since1 is the Wells graph, by Lemma 6.1 the action induced byN on 1 is
isomorphic to 21+4

− . Let L be the kernel of the action. It is clear thatL is contained in
G(1) andL is normal inG{1} ∩ G(x). By Lemma 6.3 (iii)ti commutes withG(1) for
1 ≤ i ≤ 5 and henceL is in the center ofG(1). If n ≥ 4 or n = 3 andG(x) = PGL3(4)
then the center ofG(1) is trivial and we are in case (i). In the casen = 3, G(x) = PSL3(4)
the action ofG{1} ∩ G(x) on G(1) is irreducible and hence if we are not in case (i),L
should be equal to the wholeG(1). 2

Lemma 6.5 The case(ii) in Lemma6.4 is impossible.

Proof: The result follows from the triviality of groups defined in terms of generators
and relations which are implied by the conditions in Lemma 6.4 (ii). NamelyG(x) ∼=
PSL3(4) and by Lemma 6.3 (iii)G{x, y} ∼= G(x, y) × 〈t1〉. This specified the amalgam
B = {G(x),G{x, y}} up to isomorphism. Moreover, for 1≤ i ≤ 5 the elementti is equal
to tai

1 whereai is an element inG(x)which mapsy = y1 ontoyi . Notice that the embedding
of G(x) into P0L3(4) and the fact thatG{x, y} is a direct product shows that the amalgam
B possesses an automorphism which normalizes the set{t1, t2, t3, t4, t5} and induces an
odd permutation on this set. In view of this symmetry and since1 is the Wells graph,
by Lemma 6.2 we can assume without loss of generality that the productq := t1t2t3t4t5 is
contained inG(1). If the product is the identity element then we are in case (i) of Lemma 6.4.



P1: ICA

Journal of Algebraic Combinatorics KL559-03-Ivanov February 18, 1998 11:32

276 IVANOV AND PRAEGER

Otherwiseq is one of 15 non-trivial elements inG(1) and we arrive with 15 possible
presentations. A coset enumeration with explicit presentations (cf. Section 8) performed
by L.H. Soicher has shown that each of the 15 presentations defines the trivial group.2

Let 0̂ be the covering tree of0, and letĜ be the free amalgamated product ofG(x)
andG{x, y} over G(x, y) acting naturally on̂0. For an edge{û, v̂} let t̂ûv̂ be the unique
non-trivial element (involution) in the center of the stabilizer inĜ of this edge. Let̂x be a
preimage ofx in 0̂, and let{ŷ1, ŷ2, . . . , ŷ[n

1]4} be the set of vertices adjacent tox̂ in 0̂. Set
t̂i := t̂x̂ ŷi , for 1≤ i ≤ [n

1]4, and letT̂ be the subgroup of̂G generated by these elementst̂i .

Lemma 6.6
(i) T̂ acts transitively on the vertex set of0̂;

(ii) T̂ is normal inĜ andT̂ ∩ Ĝ(x̂) = 1;
(iii) T̂ is freely generated by the involutionst̂i for 1≤ i ≤ [n

1]4.

The proof of the lemma uses the notion of permutation isomorphism of permutation
representations. We say that permutation representationsα : G→ Sym(Ä) andα′ : G′ →
Sym(Ä′) (of groupsG andG′ on setsÄ, Ä′ respectively) arepermutationally isomorphic
if there exist a bijectionϕ : Ä → Ä′ and an isomorphismγ : (G)α → (G′)α′ such that,
for all g ∈ G and alli ∈ Ä, (i (g)α)ϕ = (iϕ)(g)αγ .

Proof: We prove part (i) by induction. Let2 be the orbit ofT̂ containingx̂ on the vertex
set of0̂. Clearly every vertex adjacent tôx is in2. Suppose that2 contains all vertices
whose distance from̂x is less than or equal tok. Let v̂ be at distancek+ 1 from x̂ and let
(v̂, . . . , û, x̂) be a path of shortest length joiningv̂ andx̂. Thenû = ŷi for somei and the
image ofv̂ undert̂i is at distancek from x̂. Thusv̂ t̂i , and hence alsôv, lie in 2. Part (i)
now follows by induction.

LetÄ = {1, 2, . . . , [n
1]4}. We will construct a homomorphism of̂G into Sym(Ä) whose

kernel isT̂ . The bijectionyi 7→ i is such that the mappingα : G(x)→ Sym(Ä) defined
by i (g)α = j if and only if yg

i = yj , for g ∈ G(x), is a permutation representation ofG(x)
onÄ which is permutationally isomorphic to the permutation representation ofG(x) on
0(x). Also the bijection{yi , yt1

i } 7→ i is such that the mappingβ : G{x, y} → Sym(Ä)
defined byi (g)β = j if and only if {yg

i , yt1g
i } = {yj , yt1g

j }, for g ∈ G{x, y}, is a permutation
representation ofG{x, y} on Ä which is permutationally isomorphic to its permutation
representation on{ {

yi , yt1
i

} ∣∣∣∣ i = 2, . . . ,

[
n

1

]
4

}
.

Note that the image(G{x, y})β is contained in the stabilizer of the point 1 in Sym(Ä).
Note also that the restrictions ofα andβ to G(x, y) are identical. Henceα andβ define a
homomorphismγ of the free amalgamated productĜ of G(x) andG{x, y} into Sym(Ä).
Let K be the kernel ofγ . It is clear thatK containsT̂ and so, by part (i),K is transitive
on the vertex set of̂0. On the other hand the restriction ofγ to G(x) is an isomorphism.
HenceK acts regularly on the vertex set of0̂, soK = T̂ and part (ii) follows.

SinceT̂ acts regularly on a tree, it is easy to see that part (iii) holds. 2
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It follows from the above lemma that the tree0̂ may be considered as a Cayley graph for
T̂ with respect to the generating set{t̂i | 1≤ i ≤ [n

1]4}.
By the definition ofĜ there is a group homomorphismχ : Ĝ → G, corresponding to

the graph coverinĝ0 → 0 andχ(t̂i ) = ti for 1 ≤ i ≤ [n
1]4. Let N̂ = 〈t̂i | 1 ≤ i ≤ 5〉. By

Lemma 6.6 (iii),N̂ is freely generated by these five involutions and there is a subgroup of
the automorphism group of̂N which is isomorphic to S5 and which permutes naturally the
generatorŝt1, . . . t̂5. Let X1 andX2 be the cosets of A5 in S5. For j = 1, 2, let K j be the
smallest normal subgroup of̂N such thatK j contains the productŝtπ(1) t̂π(2) . . . t̂π(5) for all
π ∈ X j . By Lemma 6.2 we have the following.

Lemma 6.7 Let N be as in Lemma6.4 andν be a homomorphism of̂N onto N which
maps{t̂i | 1≤ i ≤ 5} onto{ti | 1≤ i ≤ 5}. Then the kernel ofν is either K1 or K2.

For j = 1, 2, letRj be the smallest normal subgroup ofĜ containingK j . By Lemma 6.7
we have the following.

Lemma 6.8 The kernel of the homomorphismχ : Ĝ→ G contains Rj for j = 1 or 2.

Thus, for j = 1 or 2, K j is contained inT̂ and the latter is normal in̂G, and henceRj

is also contained in̂T . We may consider̂G as a semidirect product of̂T by G(x) ∼= Ĝ(x̂).
The latter acts as a permutation group on the setD̂ = {t̂i | 1 ≤ i ≤ [n

1]4} of generators
of T̂ preserving onD̂ a projective space structure isomorphic to5x . Let B be the full
automorphism group of5x, that isB ∼= P0Ln(4). Then the semidirect product̂B of T̂
by B containsĜ as a normal subgroup. Since the setwise stabilizer ofλ in B induces S5
on the points ofλ, the normal subgroupsR1 and R2 are conjugate in̂B. In particular the
groupsT̂/R1 andT̂/R2 are isomorphic.

Next we shall determine the structure ofT̂/R, whereR := R1R2. First of all if K :=
K1K2 then, by Lemma 6.2,L := N̂/K is an elementary abelian group of order 24. SinceL
is abelian, it is a quotient of̄N := N̂/N̂ ′ ∼= 25. In turn N̄ may be considered as theGF(2)-
vector space of all subsets ofλ (considered as a set of size five) with addition defined by
the symmetric difference operation. ThenL is the quotient ofN̄ over the one-dimensional
subspace consisting of the improper subsets ofλ (that is, the empty set and the setλ itself).
Since any two points of5x are collinear, every pair of the generators inD̂ are contained
in a conjugate ofN̂ and hence their images in̂T/R commute. This means that̂T/R is
abelian and so it is a quotient ofT̄ := T̂/T̂ (1) whereT̂ (1) = [T̂, T̂ ]. We may identifyT̄
with theGF(2)-vector space of all subsets of the point set of5x. The image ofK in T̄ is
one-dimensional and containsλ (considered as a subset of points of5x). ThusT̂/R is the
quotientT̄/M , whereM is the subspace generated by all lines of5x. It is well known and
easy to see (cf. [14]) that this quotient is always non trivial. Let0̄ be the Cayley graph of
T̂/R with respect to the imagêDR/R of D̂. Then0̄ is a quotient of the [n1]4-dimensional
cube. LetW(n) be the Cayley graph of̂T/R1 with respect to the imagêDR1/R1 of the
generating set̂D. Then obviously there is a graph covering% : W(n)→ 0̄. In particular
W(n) is locally projective of type(n, 4) with respect to the semidirect product ofT̂/R1

by G(x). Moreover,% is a proper covering unlessR1 = R2 = R. If % is proper then
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N̂ ∩ R1 = K1, K1 is of index 2 inK and the images in̂T/R1 of the t̂i , for 1 ≤ i ≤ 5,
generate the extraspecial group 21+4

− . This means that the geometrical subgraph inW(n)
defined with respect toλ is isomorphic to the Wells graph. It is easy to see that in this
caseW(n) does not have cycles of length less than 5, that is, the girth of the graph is
5. We summarise the above discussion in the following proposition which also implies
Theorem 1.4 (ii) (a).

Proposition 6.9 For n ≥ 3, let T̂ be the group freely generated by the involutions from the
setD̂ = {t̂i | 1≤ i ≤ [n

1]4}. Suppose that a structure5 of an(n−1)-dimensional projective
GF(4)-space is defined on̂D, so thatλ = {t̂1, . . . , t̂5} is a line. Let A be a subgroup of
the automorphism group of5 isomorphic to PGLn(4) and letĜ be the semidirect product
of T̂ by A with respect to the natural action of A. Let R1 be the normal closure in̂G of
the element̂t1t̂2t̂3t̂4t̂5. Let W(n) be the Cayley graph of̂T/R1 with respect to the image
D̂R1/R1 of the generating set̂D. Then W(n) is a locally projective graph of type(n, 4),
and its girth is5 if and only ifT̂/R1 is not abelian. If the girth of W(n) is 5 then any graph
satisfying Proposition5.8 (ii) for this value of n is a quotient of W(n).

Notice that if in the above proposition we considerPSLn(4) instead ofPGLn(4) thenR1

and hence the resulting graphW(n) will be the same.

7. The girth of W(3) is 5

In this section we show that the graphW(3) has girth 5 and that it has at least 220 vertices.
Let T̂ be a group freely generated by 21 involutions from the setD̂ = {t̂i | 1≤ i ≤ 21}.

Suppose that a structure5 of projective plane of order 4 is defined on̂D so thatλ =
{t̂1, . . . , t̂5} is a line, and set̂N := 〈t̂i | 1≤ i ≤ 5〉. We will use the same letter5 to denote
the point set of5. Let B ∼= P0L3(4) be the full automorphism group of5 and letA be a
normal subgroup ofB isomorphic toPGL3(4). ThenA andB are permutation groups on̂D
and hence they may be identified with the corresponding subgroups in the automorphism
group of T̂ . Let Ĝ and B̂ be the semidirect products of̂T by A and B respectively, so
that B̂ containsĜ as a normal subgroup. LetR1 and R2 be the normal closures in̂G of
the elementŝte := t̂1t̂2t̂3t̂4t̂5 and t̂o := t̂1t̂2t̂3t̂5t̂4 respectively, and notice that bothR1 and
R2 are contained in̂T . Since the setwise stabilizer ofλ in B induces S5 on the points of
λ, it follows that R1 and R2 are conjugate in̂B. Let W(3) be the Cayley graph of̂T/R1

defined with respect to the imagêDR1/R1 of the generating set̂D. ThenW(3) is a locally
projective graph with respect to the action ofĜ/R1 and by Proposition 6.9 the girth ofW(3)
is 5 if and only if T̂/R1 is non abelian, or equivalently, if and only ifR1 6= R2.

As above letT̂ (1) = [T̂, T̂ ], T̄ = T̂/T̂ (1) and putT̂ (2) = [T̂, T̂, T̂ ]. For an element
ĥ ∈ T̂ let h̄ denote its image in̄T . ThenT̄ is an elementary abelian 2-group of rank 21
with basis{t̄i | 1 ≤ i ≤ 21} and the elements of this basis are indexed by the points of5.
This enables us to identifȳT with theGF(2)-vector space of all subsets of5 with addition
defined by the symmetric difference operation. We will use the following well-known result
(cf. [14]) on the structure of̄T as a module forB.
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Lemma 7.1 With the above notation the following assertions hold:
(i) T̄ = T̄e⊕ T̄1, whereT̄e consists of the even subsets of5 andT̄1 consists of the empty

set and the whole set5;
(ii) T̄e is uniserial: 0< T̄e

9 < T̄e
11 < T̄e, whereT̄e

i has dimension i for i= 9 and11;
(iii) T̄e

9 is generated by the complements of lines in5 and it is dual toT̄e/T̄e
11;

(iv) B induces S3 on T̄e
11/T̄

e
9 , so that CB(T̄e

11/T̄
e
9 )
∼= PSL3(4);

(v) T̄e
11 andT̄e/T̄e

9 are indecomposable, even as modules for PSL3(4);
(vi) B has three orbits on the non-zero elements ofT̄e

9 ,with lengths21, 210and280,which
consist, respectively, of the complements of lines, the symmetric differences of pairs
of lines, and the complements of the symmetric differences of triples of lines in general
position.

Let S̄ be theGF(2)-permutation module ofA acting on the line set of5. Then S̄ is
the image ofT̄ under the contragredient automorphism ofA so the structure of̄S can be
deduced from Lemma 7.1. NamelyS̄= S̄e⊕ S̄1 whereS̄e is uniserial 0< S̄e

9 < S̄e
11 < S̄e.

MoreoverT̄e/T̄e
11
∼= S̄e

9 andT̄e
9
∼= S̄e/S̄e

11 asA-modules.
The element̄te (which is equal tōto) can be identified withλ (considered as a 5-element

subset of5). By Lemma 7.1 this means the following:

Lemma 7.2 The imageR̄1 of R1 in T̄ coincides withT̄e
9 ⊕ T̄1, in particular it is 10-

dimensional and hencêT/R1T̂ (1) is 11-dimensional.

Next we study the quotient̃T := T̂ (1)/(R1 ∩ T̂ (1))T̂ (2). Let s̃i j be the image inT̃ of
the element [̂ti , t̂ j ] from T̂ (1) for 1 ≤ i, j ≤ 21, i 6= j . Since the generatorŝti of T̂ are
involutions and the image iñT of [ t̂i , t̂ j , t̂k] is trivial, it is easy to see that thẽsi j are pairwise
commuting involutions which generatẽT . In particularT̃ is an elementary abelian 2-group.
Furthermore, if 1≤ i, j, k, l ≤ 5 with i 6= j , k 6= l then both [̂ti , t̂ j ] and [t̂k, t̂l ] are equal to
the unique non-trivial element in [N̂, N̂]. Hence the image of [t̂i , t̂ j ] in T̃ depends only on
the line of5 containingi and j . Thus we have the following:

Lemma 7.3 The groupT̃ is generated by21 pairwise commuting elements ml indexed
by the lines of5 such that m2

l = 1. If l is the line containing the points i and j then
ml = s̃i j is the image inT̃ of the element[ t̂i , t̂ j ]. ThusT̃ is isomorphic to a quotient of the
GF(2)-permutation modulēS of A acting on the line set of5.

For t̂ ∈ T̂ let S(t̂ ) be the subset of{1, 2, . . . ,n} such that ifû is the product (in some
order) of thet̂i , for i ∈ S(t̂ ), thenū = t̄ . Note thatS(t̂ ) is well-defined sincēT is abelian.

Lemma 7.4 If t̂ ∈ T̂ thent̂ 2 ∈ T̂ (1). The imagẽt 2 of t̂ 2 in T̃ is equal to the product of
the elements̃si j taken for all ordered pairs(i, j ) with i, j ∈ S(t̂ ) and i < j .

Proof: SinceT̄ = T̂/T̂ (1) is of exponent 2, it is clear thatt̂ 2 ∈ T̂ (1). SinceT̂ (1)/T̂ (2) is
in the center ofT̂/T̂ (2) andT̃ is of exponent 2, the imagẽt 2 of t̂ 2 in T̃ depends only on the
image oft̂ in T̄ , that is onS(t̂ ). To see that the assertion made in the second sentence is true,
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we argue as follows. Without loss of generality we may assume thatS(t̂ ) = {1, 2, . . . , r }
for somer ≤ n. By the definition ofS(t̂ ), t̂ = t̂1 . . . t̂r x for somex ∈ T̂ (1). Then since
T̂ (1)/T̂ (2) is central inT̂/T̂ (2), we havet̂ 2 = (t̂1 . . . t̂r )2 modulo T̂ (2). We “collect” t̂ 2 as
follows. Working moduloT̂ (2), for eachi = 1, . . . , r , and eachj = r, r − 1, . . . , i + 1, in
turn replacêt j t̂i by t̂i t̂ j [ t̂ j , t̂i ] and move [̂t j , t̂i ] to the right hand end of the expression fort̂ 2.
(Note that we may do this since [t̂ j , t̂i ] is central moduloT̂ (2)). Then, since eacĥt2

i = 1,
we have modulôT (2), t̂ 2 =∏1≤i< j≤r [ t̂ j , t̂i ], and the result follows. 2

For t̂ ∈ T̂ Lemma 7.4 gives us a method for expressing the imaget̃ 2 of t̂ 2 in T̃ in
terms of the generatorsml as in Lemma 7.3. Namely the generatorml is involved in the
decomposition of̃t 2 if and only if S(t̂ ) ∩ l contains an odd number of pairs of distinct
points, that is, if|S(t̂ )∩ l | = 2 or 3. Now if t̂ ∈ R1, then clearlŷt 2 ∈ R1 and hencẽt 2 is the
identity. In this way we will obtain further relations on the generatorsml . By Lemma 7.2,
t̂ ∈ R1 if and only if t̄ ∈ T̄e

9 ⊕ T̄1. By Lemma 7.1 (vi) there are 6 types of non empty
subsets of̄Te

9 ⊕ T̄1 and the collection of these subsets is closed under taking complements.
Now if a line l intersects a subsetS in 2 or 3 points then it intersects the complement ofS
in 3 or 2 points, respectively. Hence it is sufficient to consider just one subset from each
complementary pair. We do this below.

(1) Let Sbe a line. Then there are no lines intersectingS in 2 or 3 points.
(2) Let S be the symmetric difference of two linesl1 andl2 and setp := l1 ∩ l2. Then a

line l intersectsS in 2 or 3 points if and only ifl does not containp (clearly in this case
l intersectsS in 2 points).

(3) Let Sbe the symmetric difference of three linesl1, l2, l3 in general position, that is, the
pi j := l i ∩ l j are pairwise different for 1≤ i < j ≤ 3. Then a linel intersectsS in 3
points if and only if it intersects{p12, p13, p23} in an even number of elements (that is,
in zero or 2 elements). This means thatl intersectsS in 3 points if and only ifl is in the
symmetric difference of the setsM(p) for p = p12, p13 andp23, whereM(p) denotes
the set of lines missingp.

One can see that the relations implied by (3) are consequences of the relations implied
by (2). This can be summarised as follows.

Lemma 7.5 Let p be a point of5 and M(p) be the set of lines missing p. Then in terms of
Lemma7.3the product of the ml for all l ∈ M(p) is the identity inT̃ . In other wordsT̃ is a
quotient of the module(S̄e/S̄e

9) and the only faithful B-section involved iñT is isomorphic
to S̄e/S̄e

11
∼= T̄e

9 (in terms introduced in and after Lemma7.1).

The groupT̂ (1)/T̂ (2) is generated by 210 linearly independent pairwise commuting in-
volutionsŝi j which are images of the commutators [t̂i , t̂ j ] for 1 ≤ i, j ≤ 21 andi 6= j . Let
ν be the homomorphism of̂T (1)/T̂ (2) onto S̄e/S̄e

9 which commutes with the natural action
of A. This means thatν maps the generatorŝi j onto the involutionml wherel is the line
containingi and j and the involutionsml satisfy the relations described in Lemma 7.5. Let
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U be the full preimage in̂T (1) of the kernel ofν, so thatT̂ (1)/U ∼= S̄e/S̄e
9. Let W be the

full preimage ofR̄1 = T̄e
9 ⊕ T̄1 with respect to the homomorphism̂T → T̄ = T̂/T̂ (1) and

setV := W/U .

Lemma 7.6 With the above notation V is an elementary abelian2-group of rank22 and
as a module for A it involves exactly two non-trivial irreducible sections, both isomorphic
to T̄e

9 .

Proof: By the arguments given before Lemma 7.5, ifw ∈ W, thenw2 ∈ U . Hence the
image ofw in V is of order at most 2. Thus all non trivial elements inV are involutions and
V is elementary abelian. The proof that the order ofV is 222 is straightforward. Finally the
non trivial irreducible sections ofV/(T̂ (1)/U ) ∼= W/T̂ (1) ∼= T̄e

9 ⊕ T̄1, andT̂ (1)/U are both
isomorphic toT̄e

9 . 2

By the above lemma we may considerV as aGF(2)-module forA ∼= PGL3(4). Let ve

andvo be the images inV of the elementŝte and t̂o, respectively. Notice that if̂t is the
product of the five elementŝti for 1≤ i ≤ 5, in any order, then the image oft̂ in V coincides
either withve or with vo and thatvevo = mλ. Since the stabilizer ofλ in A induces A5 on
the points ofλ, it stabilizesve. So there are 21 images ofve underA indexed by the lines
of 5. SinceV is abelian, these 21 images generateR1U/U . This means thatR1U/U is
a quotient of theGF(2)-permutation modulēS of A acting on the line set of5. By the
remark after Lemma 7.1,̄S involves only one section isomorphic tōTe

9 . By Lemma 7.6,
V involves two such copies of̄Te

9 . We know thatR1T̂ (1)/T̂ (1) involves a copy ofT̄e
9 , and

hence the second copy is involved in(W ∩ T̂ (1))/(R1 ∩ T̂ (1)). In particular the latter has
order at least 29. Thus we have proved the following:

Proposition 7.7 The graph W(3) has girth5 and the order ofT̂/R1T̂ (2) is at least220.
Moreover,
(i) T̂/R1T̂ (1) ∼= T̄/(T̄e

9 ⊕ T̄1) is of order211;
(ii) T̂ (1)/(R1 ∩ T̂ (1))T̂ (2) involves a section isomorphic tōTe

9
∼= S̄e/S̄11, in particular it

has order at least29.

L. H. Soicher has shown, by running a coset enumeration on a presentation exploiting the
description from Proposition 6.9, that the index ofAR1/R1 in Ĝ/R1 is 220 (cf. Section 8
for an explicit presentation). This means that|T̂/R1| = 220, and hence the bound in Propo-
sition 7.7 is exact, andW(3) has exactly 220 vertices. This, together with Proposition 7.7
imply Theorem 1.4 (ii) (b) and also the following result:

Lemma 7.8 Let n= 3 andT̂ be as in Proposition6.9. Then R1 containsT̂ (2).

Now suppose thatn ≥ 4. Then for every 21-point subplaneÄ in5 the image inT̂/R1 of
the subgroup generated by thet̂i , for i ∈ Ä, is a quotient of the group̂T/R1 corresponding
to the casen = 3. Since any triplei, j, k of points in5 are in a subplane, [t̂i , t̂ j , t̂k] ∈ R1 by
Lemma 7.8 and hencêT (2) is contained inR1 for all n ≥ 3. This and the obvious analogue
of Lemma 7.3 imply Theorem 1.4 (ii) (c). Thus the proof of Theorem 1.4 is complete.
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8. Generators and relations

In this final section we present generators and relations for a 2-arc transitive subgroupG of
automorphisms of the graphW(3). It is included for the convenience of readers who may
wish to construct the graphW(3) by computer.

We start with a presentation forG(x) ∼= PSL3(4) which is similar to the Steinberg
presentation. Suppose that the fieldGF(4) = {0, 1, α, β}. We treat the elements ofG(x)
as 3× 3 matrices overGF(4). Let ei j denote the elementary matrix all of whose entries
are equal to zero except for thei j -entry which is equal to 1, and letI denote the identity
matrix. ThenG(x) = 〈a, b, c, d, e, f, g, h, i 〉, where

a = I + e12, b = I + αe12, c = I + e31, d = I + αe31, e= I + e32,

f = I + αe32, g = e11+ αe22+ βe33, h = e11+ e23+ e32, i = e12+ e21+ e33.

The relations definingG(x) are the following:

a2, b2, c2, d2, e2, f 2, [a, b], [a, c], [a, d], [a, e]c, [a, f ]d, [b, c], [b, d],

[b, e]d, [b, f ]cd, [c, d], [c, e], [c, f ], [d, e], [d, f ] , [e, f ], g3, atb, btba,

ctcd, dtc, et f, f te f, h2, i 2, tht, t i t, (eh)3, (ai)3, ahc, bhd, ei c, f i d, (ih)3.

We assume thatG(x, y) = 〈a, b, c, d, e, f, g, h〉andG(x)∩G{λ} = 〈a, b, c, d, e, f, g, i 〉.
ThenG{x, y} = G(x, y)× 〈t〉, wheret2 = 1 and [t, x] = 1 for x ∈ {a, b, c, d, e, f, g, h}.
Let1 be the geometrical subgraph corresponding toλ. ThenG(1) = 〈c, d, e, f 〉.

The additional relation which guarantees that1 is the Wells graph is of the form

t t i t ia t ib t iab = p,

where p is an element fromG(1) = 〈c, d, e, f 〉. Let G be the group with generators
a, b, c, d, e, f, g, h, i, t subject to the above relations. Ifp is one of the 15 non trivial
elements ofG(1) then it turns out thatG is the trivial group. However ifp is the identity
element then the groupG has order 220. A verification of these assertions was done by a
coset enumeration performed by L. H. Soicher.
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