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Abstract. A type II matrixis a square matrixW with non-zero complex entries such that the entrywise quotient
of any two distinct rows ofW sums to zero. Hadamard matrices and character tables of abelian groups are easy
examples, and other examples calledspin modelsand satisfying an additional condition can be used as basic data
to construct invariants of links in 3-space. Our main result is the construction, for every type II matrixW, of a
Bose-Mesner algebra N(W), which is a commutative algebra of matrices containing the identityI , the all-one
matrix J, closed under transposition and under Hadamard (i.e., entrywise) product. Moreover, ifW is a spin
model, it belongs toN(W). The transposition of matricesW corresponds to a classical notion ofduality for the
corresponding Bose-Mesner algebrasN(W). Every Bose-Mesner algebra encodes a highly regular combinatorial
structure called anassociation scheme, and we give an explicit construction of this structure. This allows us to
computeN(W) for a number of examples.
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1. Introduction

The main motivation for the present work comes from the study ofspin models for link
invariants. Such a spin model can be viewed as a square matrix with complex entries which
satisfies two equations, thetype II andtype III equations. Any solution to these equations
yields an invariant of knots and links in 3-space via a construction due to V. Jones [21]
for symmetric matrices and generalized in [26] to arbitrary matrices. The problem of the
classification of solutions to the type II and type III equations seems to be very difficult,
and it was soon realized (see [17]) that it is deeply related with a classical topic in algebraic
combinatorics, namely the study ofassociation schemes.

Roughly speaking, an association scheme on a (finite) setX is a partition ofX× X
into relations which exhibits nice regularity properties. A standard example is given by
distance-regular graphs(see [7]): X is the vertex-set and the relations correspond to the
possible values of the distance function. Another standard example is given by transitive
actions of finite groups onX (see [5]): the relations are the orbits of the corresponding
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action onX × X. The regularity properties of the relations are conveniently described in
terms of their adjacency matrices: they span an algebra of matrices with unitI closed under
transposition. This algebra is called theBose-Mesner algebraof the association scheme. It
is also an algebra with unitJ (the all-one matrix) for the Hadamard (i.e., entrywise) product
of matrices. We always assume here that the ordinary matrix product is commutative. In
this case, Bose-Mesner algebras and association schemes are equivalent concepts.

In October 1994 the first author proved, using the topological interpretation of the type II
and type III equations, that every symmetric solutionW to these equations belongs to some
Bose-Mesner algebra [20]. Moreover, this algebra has aduality, i.e., a linear automorphism
which, up to multiplication by a scalar, exchanges the ordinary and Hadamard product,
and whose square is a scalar multiple of the transposition map. This duality has a nice
expression in terms ofW, or equivalentlyW is given by a solution to the so-calledmodular
invariance equationcorresponding to this duality (see [4]).

Immediately afterwards, the third author gave a purely algebraic proof that any symmetric
matrix W satisfying the type II equation defines some Bose-Mesner algebraN(W), which
will containW if the type III equation is also satisfied [31]. This approach is obviously more
general than that of [20], and this is particularly significant since solutions to the type II
equation (which we calltype II matrices) are of great interest in the theory of Von Neumann
algebras and of some natural generalizations (see [1, 23]). Another advantage of this ap-
proach is that it can be generalized to non-symmetric matrices, and such a generalization
is the main content of the present paper.

To sum up, we shall generalize both the results of [20, 31] by associating with every
type II matrixW a Bose-Mesner algebraN(W), which containsW when this matrix also
satisfies the type III equation. The Bose-Mesner algebraN(tW), wheret W denotes the
transpose ofW, is dual to N(W), which means that there is a linear isomorphism from
N(W) to N(tW) which converts the ordinary (respectively: Hadamard) product inN(W)

into the Hadamard (respectively: ordinary) product ofN(tW). In particular, ifW can be
transformed into a symmetric matrix by multiplying row and columns by non-zero scalars
(this occurs for instance if the type III equation holds),N(W) = N(tW) has a duality.

We give also a direct and explicit construction of the association scheme corresponding
to N(W), and of its symmetrization, in terms of certain graphs associated withW. This
allows us to study effectively the tensor product construction for type II matrices, and a
number of examples: character tables of abelian groups, Hadamard matrices of size 16,
type II matrices of size 4, spin models for the Kauffman polynomial of links (see [17]), and
the spin models defined on Hadamard graphs by the third author (see [29]).

2. Preliminaries

2.1. Association schemes and Bose-Mesner algebras

For more details concerning this section, the reader is referred to [5, 6, 8–10, 32].
Let X be a non-empty finite set. Ad-class association schemeon X is a partition of

X × X into d+ 1 non-empty relationsRi , i = 0, . . . ,d, such that the following properties
hold.
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(1) R0 = {(x, x) | x ∈ X}.
(2) For everyi ∈ {0, . . . ,d} there existsi ′ ∈ {0, . . . ,d} such that{(y, x) | (x, y)∈ Ri }= Ri ′ .
(3) There existintersection numbers pki j (i, j, k ∈ {0, . . . ,d}) such that, for every(x, y) ∈

Rk, |{z ∈ X | (x, z) ∈ Ri , (z, y) ∈ Rj }| = pk
i j .

(4) pk
i j = pk

ji for everyi, j, k ∈ {0, . . . ,d}.

Remark Since all association schemes which appear in the present work satisfy property
(4), we have incorporated this property in our definition. Thus, we agree with the termi-
nology of [10], and our association schemes are commutative in the terminology of [5].

We denote byMX the set of square matrices with rows and columns indexed byX and
entries inC. The(x, y)-entry ofA ∈ MX is denoted byA(x, y). We denote byI the identity
matrix, byJ the matrix with all entries equal to 1, byt A the transpose ofA, and byAB the
(ordinary) matrix product ofA and B. The Hadamard product ofA and B is denoted by
A ◦ B and defined by(A ◦ B)(x, y) = A(x, y)B(x, y).

For everyi in {0, . . . ,d}, let Ai ∈ MX be defined by: Ai (x, y)= 1 if (x, y) ∈ Ri ,
Ai (x, y) = 0 otherwise.

The facts that theAi have entries 0 or 1 and that theRi form a partition ofX × X into
non-empty relations are translated as follows.

(5) Ai 6= 0, Ai ◦ Aj = δ(i, j )Ai (whereδ is the Kronecker symbol).
(6)

∑d
i=0 Ai = J.

Properties (1), (2), (3) and (4) now become

(7) A0 = I .

(8) t Ai = Ai ′ .
(9) Ai Aj = Aj Ai =

∑d
k=0 pk

i j Ak.

LetA be theC-linear span of{Ai | i = 0, . . . ,d}. By (5) and (6),A is a (commutative)
algebra under Hadamard product, with unity elementJ, and {Ai | i = 0, . . . ,d} is a
basis of orthogonal idempotents for this algebra. By (7) and (9),A is also a commutative
algebra under matrix product, with unity elementI . Finally, (8) means thatA is closed
under transposition. The vector subspaceA of MX is called theBose-Mesner algebraof
the association scheme{Ri | i = 0, . . . ,d} on X.

Conversely, it is not difficult to show that every vector subspace ofMX containingI and
J, closed under transposition, which is a commutative algebra under Hadamard product
and also under matrix product, is the Bose-Mesner algebra of some association scheme on
X. The only non-trivial step is the existence of a basis of orthogonal idempotents for the
Hadamard product, for which the reader is referred to [7], Theorem 2.6.1 (i) (the proof
given there obviously works for non-symmetric matrices as well).

A Bose-Mesner algeberaA (or the corresponding association scheme) issymmetricif
every matrix inA is symmetric. For every Bose-Mesner algebraA, its symmetrizationÃ
is the set of symmetric matrices inA. Clearly,Ã is a symmetric Bose-Mesner algebra. Its
Hadamard idempotents are theAi for all i with i = i ′ and theAi + Ai ′ for all i with i 6= i ′.
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Let A be a Bose-Mesner algebra onX with basis of Hadamard idempotents{Ai | i =
0, . . . ,d}.

Since theAi are real matrices,A is closed under complex conjugation, and hence also
under conjugate transposition. Then the commutativity of the matrix product onA implies
the existence of a unitary matrixU such thatU−1AU consists of diagonal matrices. Note that
on this algebra the ordinary matrix product and the Hadamard product coincide. It follows
thatA has a basis{Ei | i = 0, . . . ,d} such that the diagonal matrices1i = U−1Ei U
satisfy the identity1i ◦1 j = δ(i, j )1i (see again [7] Theorem 2.6.1 (i)), or equivalently
1i1 j = δ(i, j )1i . Thus{Ei | i = 0, . . . ,d} is a basis of orthogonal idempotents for the
matrix product:

(10) Ei Ej = δ(i, j )Ei .

SinceI belongs toA,

(11)
∑d

i=0 Ei = I .

Since J A= AJ is a scalar multiple ofJ for all A in A, one easily shows that(1/|X|)
J ∈ {Ei | i = 0, . . . ,d}, and the notation is chosen so that

(12) E0 = 1
|X| J.

Since the1i have entries 0 or 1, theEi are Hermitian matrices, and the uniqueness of
the basis of orthogonal idempotents shows that

(13) For everyi in {0, . . . ,d} there existŝi in {0, . . . ,d} such thatt Ei = Ēi = Eî .

Finally the fact thatA is closed under Hadamard product implies the existence of numbers
qk

i j (i, j, k ∈ {0, . . . ,d}) called theKrein parameterssuch that

(14) Ei ◦ Ej = 1
|X|
∑d

k=0 qk
i j Ek.

We now introduce several notions of isomorphism for association schemes and Bose-
Mesner algebras.

Two association schemes{Ri | i = 0, . . . ,d}and{Si | i = 0, . . . ,d}onX areisomorphic
if there exist permutationsρ : X → X and σ : {0, . . . ,d} → {0, . . . ,d} such that
(ρ(x), ρ(y)) belongs toSσ(i ) if and only if (x, y) belongs toRi .

Two Bose-Mesner algebrasA andB in MX are combinatorially isomorphicif there
exists a permutation matrixP in MX such thatB = P−1AP. It is easy to see thatA and
B are combinatorially isomorphic if and only if the corresponding association schemes are
isomorphic.

ForA andB as above, aBose-Mesner isomorphism fromA toB is a linear isomorphism
ϕ : A → B such thatϕ(AA′) = ϕ(A)ϕ(A′) andϕ(A ◦ A′) = ϕ(A) ◦ ϕ(A′) for every A,
A′ in A. In particular, for every permutation matrixP, settingϕ(A) = P−1AP defines
a combinatorial Bose-Mesner isomorphismfromA to P−1AP. However, a Bose-Mesner
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isomorphism need not be combinatorial. For instance, a 2-class symmetric association
scheme(R0, R1, R2) is determined by the strongly regular graph corresponding to the rela-
tion R1, and the Bose-Mesner algebras of two non-isomorphic strongly regular graphs with
the same parameters (i.e., intersection numbers) such as the Shrikhande graph and the lattice
graphL2(4) (see [7]) will be related by a non-combinatorial Bose-Mesner isomorphism.

A duality from A to B is a linear isomorphism9 : A → B such that9(AA′) =
9(A) ◦ 9(A′) and9(A ◦ A′) = (1/|X|)9(A)9(A′) for everyA, A′ in A. If there exists
a duality9 fromA to B, B is called adual toA. Then one easily shows that|X|9−1 is a
duality fromB toA, and consequentlyA is a dual toB. We shall say that(A,B) is adual
pair.

Remarks

(i) For the sake of simplicity, we have adopted a non-standard terminology: if there exists
a duality9 from A to B, one usually says thatB is “formally dual” toA. This is
to distinguish the following situation corresponding to an “actual duality”:X is an
abelian group, andA is contained in the Bose-Mesner algebraAX of X (the set of
matricesA in MX such that, writingX additively, A(i + x, j + x) = A(i, j ) for all
i, j, x in X). It is well known (see Section 5.1) that there exist dualities9 : AX → AX,
and, for any such duality9, (A, 9(A)) is a dual pair.

(ii) Not every Bose-Mesner algebraA admits a dual Bose-Mesner algebraB. Indeed a
duality fromA to B sends the basis of ordinary idempotents ofA to the basis of
Hadamard idempotents ofB. By comparing (9) and (14) one sees that the Krein
parameters ofA must correspond to the intersection numbers ofB, and hence be
integers, which is not true in general.

(iii) It is clear from (5), (7), (8) and (9) thatp0
i j 6= 0 iff j = i ′. It easily follows that every

Bose-Mesner isomorphism commutes with the transposition map. Similarly, since the
trace ofEi Ej equals the sum of entries ofEi ◦ t E j , and the sum of entries ofEi is
δ(i, 0)|X| by (12), we obtain from (13) and (14) thatq0

i j 6= 0 iff j = î . This implies
that every duality commutes with the transposition map.

Finally, let9 : A→ A be a duality. To conform to the standard terminology, we shall
call it aduality ofA only if 92 = |X|τA, whereτA is the transposition map onA. We shall
say thatA is self-dualif it has a duality in this sense.

Remark We do not know any example of a Bose-Mesner algebraAwhich is not self-dual
but has a duality9 : A→ A. The question of the existence of such examples is raised by
A. Munemasa in [16].

2.2. Spin models for link invariants

In [21], Vaughan Jones has introduced a construction of invariants of links in 3-space based
on the statistical mechanical concept ofspin model. The main idea is to represent every
link by a connected plane diagram whose regions are colored black or white in such a
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way that adjacent regions receive different colors. Then one defines states of the diagram
as mappings from the set of black regions to some fixed finite setX of spins. There are
two types of crossings, positive and negative, and each one is assigned a weight matrix
W+ or W− in MX. For every stateσ and crossingv incident with the black regionsr , r ′,
let 〈σ | v〉 = W±(σ (r ), σ (r ′)) be the local weight ofσ at v. Let 〈σ 〉 = ∏

v〈σ | v〉 be
the weight ofσ , where the product is over all crossings. Then the partition functionZ is∑

σ 〈σ 〉, where the sum is over all states.
It is shown in [21] that if the matricesW+, W− satisfy certaininvariance equations, then,

after suitable normalization,Z defines a link invariant. The construction in [21] assumes that
W+, W− are symmetric. This restriction was removed in [26], which gives the following
invariance equations:

(15) (i) W+ ◦ I = aI , J W+ = W+J = Da−1J.

(ii) W− ◦ I = a−1I , J W− = W−J = Da J.

(16) W+W− = |X|I , W+ ◦ t W− = J.

(17) For everyα, β, γ in X,

∑
x∈X

W+(x, α)W+(x, β)W−(γ, x) = DW+(α, β)W−(β, γ )W−(γ, α),

wherea ∈ C∗ andD2= |X|.

Remarks

(i) WhenW+, W− are symmetric, this reduces to the invariance equations in [21].
(ii) Assuming (16), Eq. (17) is equivalent to other similar equations usually chosen to

define spin models (see [26], Proposition 2.1).
(iii) (16) and (17) imply that (15) holds for somea ∈ C∗.

We shall also refer to (15), (16) and (17) as the type I, type II and type III conditions
respectively, since they correspond to Reidemeister moves of these types (see [21, 26]).
The types also correspond to the degrees of the equations in terms of the entries ofW+,
W−. It will be convenient to reformulate the above equations in terms ofW = W+ alone.
In particular, we shall say that a matrixW in MX with non-zero entries is atype II matrix
if it satisfies one of the following conditions, each of which is equivalent with (16) for
W+ = W:

(18) (i)
∑

x∈X
W(b,x)
W(c,x) = |X|δ(b, c) for all (b, c) in X,

(ii)
∑

x∈X
W(x,b)
W(x,c) = |X|δ(b, c) for all (b, c) in X.
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2.3. Spin models and commuting squares

Let DX consist of all diagonal matrices inMX and letW be an invertible matrix inMX. We
consider the followingsquare

DX ⊂ MX

∪ ∪
C ⊂ W−1DXW

which is a diagram of inclusions of algebras under the matrix product (hereC is identified
with the algebra of scalar matrices).MX is endowed with the normalized trace tr :MX → C,
with tr(A) = (1/|X|)Trace(A). Then the above square iscommuting(we describe here
a particular case of a very general object—see [12, 1]) if tr(AB) = tr(A)tr(B) for every
A ∈ DX, B ∈ W−1DXW. This situation can also be described in terms of orthogonal pairs
of algebras (see [14], Section 1.5 of [27, 28]). An easy computation shows that the square
is commuting if and only ifW−1(i, j )W( j, i ) = (1/|X|) for all i, j in X, that is if and only
if W is a type II matrix.

The case whenW is unitary is of special importance for the study of subfactors in the
theory of Von Neumann algebras (see [1, 12, 23]). This occurs exactly when all entries of
W have absolute value 1/

√
n, wheren = |X|.

3. A dual pair of Bose-Mesner algebras

3.1. Construction of the dual pair

Let W be a type II matrix inMX. We introduce for each pair(b, c) ∈ X × X two column
vectorsYbc andY′bc indexed byX and defined as follows:

(19) Ybc(x) = W(x,b)
W(x,c) ,

(20) Y′bc(x) = W(b,x)
W(c,x) .

Let

N(W) = {A ∈ MX | Ybc is an eigenvector ofA for all b, c ∈ X},

and

N ′(W) = {A ∈ MX | Y′bc is an eigenvector ofA for all b, c ∈ X }.

Note thatN ′(W) = N(tW). In the sequel we writeN for N(W), N ′ for N ′(W).
For everyA in N, let9(A) ∈ MX be defined by

(21) AYbc = (9(A))(b, c)Ybc for all (b, c) ∈ X × X.
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Similarly, for everyA′ in N ′, we define9 ′(A′) ∈ MX by

(22) A′Y′bc = (9 ′(A′))(b, c)Y′bc for all (b, c) ∈ X × X.

We denote byτN (respectively,τN ′ ) the restriction of the transposition map toN (respec-
tively, N ′).

Theorem 1 N and N′ are Bose-Mesner algebras. Moreover, 9(N) = N ′, 9 ′(N ′) = N,
and9 : N → N ′, 9 ′ : N ′ → N are dualities such that9 ′9 = |X|τN, 99

′ = |X|τN ′ .
Hence(N, N ′) is a dual pair of Bose-Mesner algebras. Moreover when N= N ′ and
9 = 9 ′, N is a self-dual Bose-Mesner algebra.

Proof: It is clear from (21) thatN is a vector subspace ofMX and that9 : N → MX is
a linear map. We observe that

(23) For everyc in X, {Ybc | b ∈ X} is a basis of column vectors.

Indeed, the matrix with(x, b)-entry equal toYbc(x) is 1W, where1 = Diag[1/W
(x, c)]x∈X, and both1 andW are invertible.

It follows that9 is injective.
Note thatI belongs toN, with9(I ) = J.
Moreover, the type II property (18(ii)) can be writtenJYbc = |X|δ(b, c)1, where1 is the

all-one column vector. SinceYbb = 1 for everyb in X, this means thatJ belongs toN,
with 9(J) = |X|I .

Let now A, B be two matrices inN. It is immediate from (21) that, for every(b, c) in
X × X,

ABYbc = B AYbc = (9(A))(b, c)(9(B))(b, c)Ybc.

This, together with (23), shows thatN is a commutative algebra under matrix product,
and that9(AB) = 9(A) ◦9(B).

We now show that9(N) ⊆ N ′.
For A in N anda, b, c in X thea -entry of9(A)Y′bc is

(9(A)Y′bc)(a) =
∑
x∈X

(9(A))(a, x)
W(b, x)

W(c, x)
.

By (21),(9(A))(a, x)Yax = AYax, and by consideringc-entries we obtain

(9(A))(a, x)
W(c,a)

W(c, x)
=
∑
y∈X

A(c, y)
W(y,a)

W(y, x)

and hence

(9(A))(a, x)
W(b, x)

W(c, x)
=
∑
y∈X

A(c, y)
W(y,a)W(b, x)

W(c,a)W(y, x)
.
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It follows that

(9(A)Y′bc)(a) =
∑
y∈X

A(c, y)
W(y,a)

W(c,a)

(∑
x∈X

W(b, x)

W(y, x)

)

=
∑
y∈X

A(c, y)
W(y,a)

W(c,a)
|X|δ(b, y) (by (18)(i))

= |X|A(c, b)W(b,a)

W(c,a)
= |X|A(c, b)Y′bc(a).

Thus9(A)Y′bc = |X|A(c, b)Y′bc.
This shows that9(A) ∈ N ′ with 9 ′(9(A)) = |X| tA.
ReplacingW by tW, we see that all results obtained so far are also valid if we interchange

N andN ′. Let us sum up these results.

(i) N, N ′ are vector subspaces ofMX containingI , J.
(ii) 9 : N → N ′ and9 ′ : N ′ → N are linear injective maps.
(iii) N, N ′ are commutative algebras under matrix product,9(AB) = 9(A) ◦ 9(B) (A,

B in N), and9 ′(A′B′) = 9 ′(A′) ◦9 ′(B′) (A′, B′ in N ′).
(iv) 9 ′(9(A)) = |X| tA for A in N,9(9 ′(A′)) = |X| tA′ for A′ in N ′.

By (ii), both9 and9 ′ are bijective.
Let A, B belong toN. There existsA′, B′ in N ′ such thatA = 9 ′(A′), B = 9 ′(B′). By

(iv) we have9(A) = |X| tA′, 9(B) = |X| tB′. Now, by (iii), A ◦ B = 9 ′(A′) ◦9 ′(B′) =
9 ′(A′B′) belongs toN. ThusN (and similarlyN ′) is closed under Hadamard product.

Also note that by (iv)tA = |X|−19 ′(9(A)) belongs toN. ThusN (and similarlyN ′) is
closed under transposition.

It follows that N and N ′ are Bose-Mesner algebras. By (iv),9 ′9 = |X|τN , 99 ′ =
|X|τN ′ .

Finally,

9(A ◦ B) = 9(9 ′(A′B′)) = |X|t(A′B′) = |X|t(B′A′)
= 1

|X| (|X|
tA′)(|X| tB′) = 1

|X|9(A)9(B)

shows, together with (iii), that9 (and similarly9 ′) is a duality. Thus(N, N ′) is a dual
pair. If N = N ′ and9 = 9 ′,92 = |X|τN andN is self-dual. 2

Remarks

(i) We do not know ifN = N ′ is a sufficient condition for the self-duality ofN (see the
remark at the end of Section 2.1).

(ii) The idea of the construction of Theorem 1 comes from [31]. Actually, Theorem 1
generalizes the main result of [31] which states that (for symmetricW) the set of
symmetric matrices inN(W) is a symmetric Bose-Mesner algebra.
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(iii) The algebraN ′ has an interesting interpretation in the context of commuting squares.
A commuting square associated with a type II matrix has a certainMarkovian property
which allows the application of thebasic constructionto this square. This construction
produces an infinite grid of commuting squares, with the initial square situated in the
left and lowest corner. Our algebraN ′ can be described in terms of this initial square
and the adjacent one on its right:

DX = A1,0 ⊂ MX = A1,1 ⊂ A1,2

∪ ∪ ∪
C = A0,0 ⊂ W−1DXW = A0,1 ⊂ A0,2

Thesecond relative commutantassociated with the initial square is the algebra

A′1,0 ∩ A0,2 = {a ∈ A0,2 | ab= ba for all b ∈ A1,0}

(note thatab andba are well defined elements ofA1,2). It is shown in [1] that this second
relative commutant can be identified with the subalgebraN ′ = N ′(W) of MX via some
appropriate isomorphism. As a consequence, some of the results and examples to follow
may have some interest in the study of towers of algebras and subfactors (see [23]).

3.2. Equivalences and the symmetric case

If W is a type II matrix and1,1′ are invertible diagonal matrices inMX, clearly1W1′ is
also a type II matrix, and we shall say that this matrix is obtained fromW by scaling.

In the sequel,W1 andW2 are type II matrices.

Proposition 2 If W2 is obtained from W1 by scaling, N(W2) = N(W1) and N′(W2) =
N ′(W1).

Proof: The effect of scaling on each vectorYbc or Y′bc defined by (19) and (20) is a
multiplication by a non-zero scalar. 2

Now if P, P′ are permutation matrices inMX, PW P′ is also a type II matrix, and we
shall say that it is obtained fromW by permutation.

Proposition 3 If W2 is obtained from W1 by permutation, N(W2) is combinatorially
isomorphic to N(W1) and N′(W2) is combinatorially isomorphic to N′(W1).

Proof: There exist permutationsα, β of X such thatW2(x, y) = W1(α(x), β(y)).
For all x, b, c in X, let

Yi
bc(x) =

Wi (x, b)

Wi (x, c)
, (i = 1, 2).



P1: SUD

Journal of Algebraic Combinatorics KL583-04-Jaeger May 27, 1998 12:10

BOSE-MESNER ALGEBRAS RELATED TO TYPE II MATRICES AND SPIN MODELS 49

ThusY2
bc(x) = Y1

β(b)β(c)(α(x)). Hence there exists a permutation matrixP such that{
Y2

bc

∣∣ (b, c) ∈ X × X
} = {PY1

bc

∣∣ (b, c) ∈ X × X
}
.

It follows that N(W2) = P N(W1)P−1, so thatN(W2) is combinatorially isomorphic
to N(W1). Working with tW1 and tW2 we also obtain thatN ′(W2) is combinatorially
isomorphic toN ′(W1). 2

Remarks

(i) The equivalence of type II matrices generated by scaling and transposition corresponds
to a natural notion of isomorphism of commuting squares [12]. Propositions 2 and 3
give only a special case of the result that higher relative commutants are invariants of
commuting squares [12].

(ii) If W has entries±1, it is a Hadamard matrix. It is easy to see that in this case the
equivalence generated by scaling and permutation corresponds to the usual notion
of Hadamard equivalence. Hence the combinatorial types ofN(W) and N ′(W) are
invariants of Hadamard matricesW under Hadamard equivalence.

Assume now thatW is a symmetric type II matrix. ThusYbc=Y′bc for everyb, c in
X. HenceN = N ′ and9 = 9 ′. As a consequence of Theorem 1 and of the proof of
Proposition 2, we obtain:

Proposition 4 If a type II matrix W is obtained from some symmetric matrix by scaling,

N(W) = N ′(W) is a self-dual Bose-Mesner algebra.

A matrix W issymmetrizableif it can be obtained from some symmetric matrix by scaling
(this definition is clearly equivalent to the one given in Section 2.1 of [24]). It is easy to
see that a matrix is symmetrizable iff it can be obtained from its transpose by some scaling
(which must be conjugation by a diagonal matrix).

3.3. Graph descriptions of the dual pair

Let W be a type II matrix inMX. The following idea was first introduced by Vaughan Jones
[22]. We shall associate withW two undirected graphsG andH on the vertex setX × X
and use them to describe the dual pair(N, N ′). These graphs will have no multiple edges
(but possibly loops) and two vertices (possibly equal) will be said to be adjacent if they are
joined by an edge.

Given two column vectorsT , T ′ indexed byX, we write〈T, T ′〉 for their usual scalar
product

∑
x∈X T(x)T ′(x), and〈〈T, T ′〉〉 for their Hermitian product

∑
x∈X T(x)T ′(x) =

〈T, T ′〉.
Two vertices(b, c), (d, e) will be adjacent inG (respectively,H ) iff 〈Ybc, Yde〉 6= 0

(respectively,〈〈Ybc, Yde〉〉 6= 0). ThusH has a loop incident with every vertex, andG may
have loops incident with some vertices. We denote byG2 the (proper) squared graph ofG:
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two vertices are adjacent inG2 if there is a vertex to which they are both adjacent inG (this
implies the existence inG2 of a loop incident with every non-isolated vertex ofG).

Let C1, . . . , Cp (respectively,K1, . . . , Kq; L1, . . . , Lr ) be the connected components of
G (respectively,G2; H ).

Let A(Ci ) (respectively,A(Ki ); A(Li )) be the matrix inMX with (b, c)-entry equal to 1
if (b, c) ∈ Ci (respectively,Ki ; Li ) and to 0 otherwise.

Let V(Ci ) (respectively,V(Ki ); V(Li )) be theC -linear span of the set of vectorsYbc

such that(b, c) belongs toCi (respectively,Ki ; Li ). We denote byV the space of column
vectors indexed byX.

Theorem 5
(i) V = ⊕p

i=1V(Ci ). Let E(Ci ) (i = 1, . . . , p) be the matrices in MX, which represent
the projections V→ V(Ci ) in the canonical basis of V . Then{E(Ci ) | i = 1, . . . , p}
is the basis of ordinary idempotents ofÑ, and {A(Ci ) | i = 1, . . . , p} is the basis of
Hadamard idempotents of̃N ′.

(ii) V = ⊕q
i=1V(Ki ). Let E(Ki ) (i = 1, . . . ,q) be the matrices in MX which represent

the projections V→ V(Ki ) in the canonical basis of V . Then{E(Ki ) | i = 1, . . . ,q}
is the basis of ordinary idempotents of N, and{A(Ki ) | i = 1, . . . ,q} is the basis of
Hadamard idempotents of N′.

(iii) V = ⊕r
i=1V(Li ). Let E(Li ) (i = 1, . . . , r ) be the matrices in MX which represent

the projections V→ V(Li ) in the canonical basis of V . Then{E(Li ) | i = 1, . . . , r }
is the basis of ordinary idempotents of N, and{A(Li ) | i = 1, . . . , r } is the basis of
Hadamard idempotents of N′.

As a consequence, q = r ≥ p with full equality if and only if N is symmetric.

Proof: By (23),{Ybc | (b, c) ∈ X × X} spansV , and hence

V =
p∑

i=1

V(Ci ) =
q∑

i=1

V(Ki ) =
r∑

i=1

V(Li ).

Let us show that these sums are direct. Note that by definition theV(Ci ) are mutually
orthogonal with respect to the usual scalar product, and theV(Li ) are mutually orthogonal
with respect to the Hermitian product. Since these products are non-degenerate,

V(Ci ) ∩
∑
j 6=i

V(Cj ) = {0} and V(Li ) ∩
∑
j 6=i

V(L j ) = {0}

for all i , and henceV = ⊕p
i=1V(Ci ) = ⊕r

i=1V(Li ).
Let us now relate the connected components ofG2 with those ofG.
If a connected component ofG is non-bipartite (this occurs for instance if some vertex

is incident with a loop), any two of its vertices can be joined inG by a path of even length
(possibly with repeated vertices and edges) and hence it also defines a connected component
of G2.

On the other hand, a bipartite connected component ofG splits into two connected
components ofG2, each one corresponding to an independent set inG. Let Ki , K j be
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two connected components ofG2 corresponding in this way to a bipartition of a connected
componentCk of G. SinceKi is independent inG, V(Ki ) is orthogonal to itself with
respect to the usual scalar product, and similarly forV(K j ). Hence,V(Ki ) ∩ V(K j ) is
orthogonal toV(Ck), and also to⊕`6=kV(C`). It follows thatV(Ki ) ∩ V(K j ) = {0} and
V(Ck) = V(Ki )⊕ V(K j ). We conclude thatV = ⊕q

i=1V(Ki ).
It is clear from their definition that theE(Ci ) (respectively, E(Ki ); E(Li )) are

orthogonal idempotents inMX. These idempotents belong toN, sinceE(Ci )Ybc = Ybc

if (b, c) ∈ Ci , E(Ci )Ybc = 0 otherwise, and similarly forE(Ki ) and E(Li ). This also
shows that9(E(Ci )) = A(Ci ), 9(E(Ki )) = A(Ki ), 9(E(Li )) = A(Li ). Then, in
view of Theorem 1, the proof of Theorem 5 will be completed if we show that each of
{E(Ki ) | i = 1, . . . ,q} and{E(Li ) | i = 1, . . . , r } spansN, and that{E(Ci ) | i = 1, . . . , p}
spansÑ (the equality9(Ñ) = Ñ ′ comes from the equality9τN = τN ′9 which follows
immediately from Theorem 1—see also Remark (iii) in Section 2.1).

Note that

〈Ybc, Ycb〉 =
∑
x∈X

W(x, b)

W(x, c)
· W(x, c)

W(x, b)
= |X| 6= 0

for every(b, c) in X × X and hence eachA(Ci ) is symmetric. It follows thatE(Ci ) ∈ Ñ
for i = 1, . . . , p (using again the equality9τN = τN ′9).

If (b, c) and(d, e) are adjacent vertices ofG, for every matrixA in N,

9(A)(b, c)〈Ybc, Yde〉 = 〈AYbc, Yde〉 = 〈Ybc,
tAYde〉

= (9(tA))(d, e)〈Ybc, Yde〉

implies that9(A)(b, c) = 9(tA)(d, e).
In particular, if A ∈ Ñ, 9(A)(b, c) = 9(A)(d, e) whenever(b, c) and(d, e) belong to

the same connected component ofG. It follows that9(A) belongs to the linear span of the
A(Ci ), i = 1, . . . , p, and henceA belongs to the linear span of theE(Ci ), i = 1, . . . , p.

In general,9(A)(b, c) = 9(A)(d, e) whenever(b, c) and (d, e) belong to the same
connected component ofG2. Then the same argument shows that every matrixA in N
belongs to the linear span of theE(Ki ), i = 1, . . . ,q.

Finally, if (b, c) and(d, e) are adjacent vertices inH , for every matrixA in N,

9(A)(b, c)〈〈Ybc, Yde〉〉 = 〈〈AYbc, Yde〉〉 = 〈〈Ybc,
tAYde〉〉

= (9(tA))(d, e)〈〈Ybc, Yde〉〉

implies that9(A)(b, c) = 9(tA)(d, e). Now9(tA) = 9(A) for every A in N, as can be
easily checked by expressingA in the basis of ordinary idempotents and using (13) and the
fact that Hadamard idempotents are real.

It follows that9(A)(b, c) = 9(A)(d, e) whenever(b, c) and(d, e) belong to the same
connected component ofH . HenceA belongs to the linear span of theE(Li ), i = 1, . . . , r .

2
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It is clear from the above proof thatN is non-symmetric if and only if some component of
G splits into two components ofG2, or equivalently into two components ofH . Moreover
in such a splitting there existb, c in X such that(b, c) is in one of the new components and
(c, b) is in the other. Hence we obtain the following result.

Proposition 6 N is non-symmetric if and only if G has a bipartite connected component.
Moreover, if N is non-symmetric, there exist b, c in X such that the following properties
hold:

(i)
∑
x∈X

W(x, b)2

W(x, c)2
= 0,

∑
x∈X

W(x, c)2

W(x, b)2
= 0

(ii)
∑
x∈X

W(x, b)W(x, c)

W(x, c)W(x, b)
= 0

Consequently, if W is a real matrix, N is symmetric.

Proof:

(i) is equivalent to〈Ybc, Ybc〉 = 〈Ycb, Ycb〉 = 0, i.e., to the fact that there is no loop inG
incident to(b, c) or (c, b). This must hold if(b, c) and(c, b) are not adjacent inG2,
since they are adjacent inG.

(ii) is equivalent to〈〈Ybc, Ycb〉〉=0, i.e., to the fact that(b, c) and(c, b) are not adjacent in
H . 2

Remark When all entries ofW have the same absolute values (i.e.,W is unitary up to a
factor) (i) and (ii) are equivalent.

Remark As suggested by one of the referees, we might have defined type II matrices with
different sets of rows and columns. However, the type III condition can be defined only if
we identify these sets. For the sake of simplicity, we choose the same setX for both rows
and columns. Here we state briefly what occurs if we distinguish the setX of rows and
the setX′ of columns with the same cardinality. We regardW as a linear map fromC[X]
to C[X′], whereC[X] denotes the vector space with basisX. Then, the type II condition
becomes the existence ofW− ∈ Hom(C[X′],C[X]) such that

W ◦ tW− = J ∈ Hom(C[X],C[X′])
W W− = n · I ∈ Hom(C[X′],C[X′]).

Now N(W) is a subalgebra of Hom(C[X′],C[X′]) and N ′(W) is a subalgebra of
Hom(C[X], C[X]), which are dual to each other. Every result in Sections 3 and 4 that
uses only the type II condition forW is still valid. On the contrary, any statement con-
cerning the type I, III conditions or symmetricity ofW, like Propositions 4, 8–10, 12, and
Theorem 11, requires an identification ofX andX′.
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4. Some applications

4.1. Tensor products

Given two finite setsX1, X2, we consider the bilinear map fromMX1 × MX2 to MX1×X2

which associates withA1 ∈ MX1, A2 ∈ MX2 their Kronecker productA1⊗ A2 defined by:

A1⊗ A2((x1, x2), (y1, y2))= A1(x1, y1)A2(x2, y2) for all x1, y1∈ X1, x2, y2∈ X2.

This establishes an isomorphism of vector spaces betweenMX1×X2 and the tensor product
MX1 ⊗ MX2 and legitimates the use in what follows of the symbol⊗ for the Kronecker
product of matrices as well as for the tensor product of vector spaces of matrices.

We note that ifA1,A2 are Bose-Mesner algebras inMX1, MX2 respectively, thenA1⊗A2

(which is the linear span of the matricesA1 ⊗ A2, A1 ∈ A1, A2 ∈ A2) is a Bose-Mesner
algebra inMX1×X2 since(A1⊗A2)(B1⊗B2) = (A1B1)⊗(A2B2), (A1⊗A2)◦(B1⊗B2) =
(A1◦ B1)⊗ (A2◦ B2) andt(A1⊗ A2)= tA1⊗ tA2 for everyA1, B1 inA1 andA2, B2 inA2.

Let now W1 ∈ MX1, W2 ∈ MX2 be two type II matrices. It is easy to check that
W = W1⊗W2 is also a type II matrix.

Using formula (19), we associate withW, W1, W2 the vectorsY(b1,b2)(c1,c2), Y1
b1c1

, Y2
b2c2

respectively, for allb1, c1 in X1 andb2, c2 in X2.

Proposition 7
(i) N(W) = N(W1)⊗ N(W2).
(ii) Ñ(W) 6= ˜N(W1)⊗ ˜N(W2) if and only if both N(W1) and N(W2) are non-symmetric.

Proof: It follows immediately from (19) that

Y(b1,b2)(c1,c2)((x1, x2)) = Y1
b1c1
(x1)Y

2
b2c2
(x2).

Hence, for everyA1 ∈ N(W1), A2 ∈ N(W2), Y(b1,b2)(c1,c2) is an eigenvector ofA1⊗ A2.

This implies thatN(W1) ⊗ N(W2) ⊆ N(W) and ˜N(W1) ⊗ ˜N(W2) ⊆ Ñ(W). Let G,
H be the graphs associated withW as in Section 3.3 and letGi , Hi (i = 1, 2) be the
corresponding graphs forW1, W2. Clearly〈

Y(b1,b2)(c1,c2), Y(d1,d2)(e1,e2)

〉 = 〈Y1
b1c1
, Y1

d1e1

〉〈
Y2

b2c2
, Y2

d2e2

〉
and similarly for the Hermitian product〈〈 , 〉〉.

Hence((b1, b2), (c1, c2)), ((d1, d2), (e1, e2)) are adjacent inG (respectively,H ) if and
only if (b1, c1), (d1, e1) are adjacent inG1 (respectively,H1) and (b2, c2), (d2, e2) are
adjacent inG2 (respectively,H2).

If we identify each vertex((b1, b2), (c1, c2)) of G with the pair((b1, c1), (b2, c2)) formed
with one vertex ofG1 and one vertex ofG2 we see thatG is thecategorical product G1 ·G2

of G1 andG2 (see [34]). SimilarlyH = H1 · H2.
We shall need the following graph-theoretical result (see [34]): the categorical product of

two connected graphs is disconnected if and only if each of these graphs is bipartite. From
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this it easily follows that the number of connected components of the categorical product of
two graphs is different from the product of the number of connected components of these
graphs if and only if each of these graphs has a bipartite component.

Let r , r1, r2 be the numbers of connected components ofH , H1, H2. Each vertex inH1

or H2 is incident with a loop, henceH1 and H2 have no bipartite components. It follows
that r = r1r2. By Theorem 5, this means that dimN(W) = (dimN(W1))(dimN(W2)) =
dimN(W1)⊗ N(W2) and henceN(W) = N(W1)⊗ N(W2).

Now let p, p1, p2 be the numbers of connected components ofG, G1, G2. The same
argument shows that̃N(W) 6= ˜N(W1)⊗ ˜N(W2) iff p 6= p1 p2, that is iff bothG1, G2 have
some bipartite component. By Proposition 6, this occurs if and only if bothN(W1) and
N(W2) are non-symmetric. 2

4.2. The type I property and expressions for duality

Let W+ be a type II matrix inMX. We defineW− so that the equations

(16) W+W− = |X|I , W+ ◦ tW− = J

hold.

Proposition 8
(i) If I ◦W+ = aI for some a∈ C∗,9(A) = a−1W+ ◦ ((tW+ ◦ A) tW−) for every A in

N(W+).
(ii) If W−J = Da J for some a and D inC∗, 9(A) = D−1a−1(tW+ ◦ (W−A)) tW− for

every A in N(W+).

Proof:

(i) Consideringb-entries in the equation

(21) AYbc = (9(A))(b, c)Ybc,

we obtain∑
x∈X

A(b, x)W+(x, b)W−(c, x) = (9(A))(b, c)W+(b, b)W−(c, b)

and hence

(9(A))(b, c) = a−1W+(b, c)
∑
x∈X

A(b, x)W+(x, b)W−(c, x).

It is easy to see that the right-hand side is the(b, c)-entry ofa−1 W+ ◦ ((tW+ ◦ A) tW−).
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(ii) Consideringb-entries in the equation

W−AYbc = (9(A))(b, c)W− Ybc,

we obtain∑
y∈X

W−(b, y)
∑
x∈X

A(y, x)W+(x, b)W−(c, x)

= (9(A))(b, c)
∑
y∈X

W−(b, y)W+(y, b)W−(c, y)

= (9(A))(b, c)
∑
y∈X

W−(c, y) = Da(9(A))(b, c).

It is easy to see that the left-hand side is the(b, c)-entry of(tW+ ◦ (W−A)) tW−. 2

Remarks

(i) Many other similar expressions for9 or9 ′ can be obtained under each of the hypotheses
of Proposition 8.

(ii) Each of these hypotheses can be realized by using scaling.

4.3. Spin models for link invariants

We keep the notations of the preceding section.

Proposition 9 The following properties are equivalent:
(i) W+ ∈ N(W+)
(ii) W+ satisfies the type III condition(17) for some D∈ C∗.

Proof: (17) can be written

t W+Yβγ = DW−(β, γ )Yβγ (for all β, γ in X).

Thus (17) is equivalent to the property thattW+ ∈ N(W+) with 9(tW+) = DW−, or,
by Theorem 1, to the property thatW+ ∈ N(W+) with 9(W+) = D tW−.

Conversely, ifW+ ∈ N(W+), or equivalentlytW+ ∈ N(W+), let F = 9(tW+). Then
the equalitytW+Yβγ = F(β, γ )Yβγ can be written∑

x∈X

W+(x, α)W+(x, β)W−(γ, x) = F(β, γ )W+(α, β)W−(γ, α) (for all α ∈ X).

Whenα = γ this becomes∑
x∈X

W+(x, β) = F(β, α)W+(α, β)W−(α, α).
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SinceN(W+) is a Bose-Mesner algebra, there exist constantsa, D in C∗ such thatJ W+ =
Da−1J, I ◦W− = a−1I (note thatW− has non-zero entries, so that a diagonal element is
of the forma−1 for somea ∈ C∗, andW+ is invertible, so thatJ W+ is non-zero).

Thus we obtainDa−1 = F(β, α)W+(α, β)a−1, i.e., F(β, α) = DW−(β, α). Hence
9(tW+) = F = DW− as required. 2

Remark If (17) holds for some arbitraryD in C∗, we may multiplyW+ by a suitable
constant to obtain the same property withD2= |X|. This normalization is needed to realize
the topological invariance of the partition function.

Proposition 10 If the type III condition(17) holds then W+ is symmetrizable.

Proof: The exchange ofα, β in (17) leaves the left-hand side invariant. Consideration of
the right-hand side leads to the identity

W+(α, β)W−(β, γ )W−(γ, α) = W+(β, α)W−(α, γ )W−(γ, β),

which for any fixedγ in X is equivalent to the equation

1W+1′ = 1′ tW+1

where1 = Diag[W−(γ, x)]x∈X,1′ = Diag[W−(x, γ )]x∈X. Since1 and1′ are invertible
and1W+1′ is symmetric,W+ is symmetrizable. 2

We may now state the following result.

Theorem 11 Let W be a type II matrix. Then W∈ N(W) if and only if some scalar
multiple W+ of W gives a solution to the invariance equations(15), (16), (17) and hence
defines a link invariant. In this case, N(W) = N(W+) is a self-dual Bose-Mesner algebra,
with duality9 given by

9(A) = a−1W+ ◦ ( tW−( tW+ ◦ A))

= D−1a−1 tW−( tW+ ◦ (W−A)) ( for all A ∈ N(W+)).

Proof: This is an immediate consequence of Propositions 9, 10, 4 and 8 using the com-
mutativity of the matrix product ofN(W+), and the remark thatW− and tW− belong to
N(W+) sincetW− is the inverse ofW+ under Hadamard product. 2

Remark Theorem 11 generalizes the main result of [20], which states that symmetric
matricesW+, W− satisfying (15), (16) and (17) belong to some symmetric self-dual Bose-
Mesner algebra with duality expressed in a similar way as in Theorem 11. The Bose-
Mesner algebra in [20] is the image of a certain algebra of tangles under a matrix-valued
partition function map. It can be shown that this algebra is contained inN(W+) (see [20],
Proposition 6). The proof relies on a diagrammatic description ofN(W+)given in [1] for the
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second relative commutant of a commuting square associated with a spin model. The two
algebras need not be equal, even if they are both symmetric, as shown by the following exam-
ple. If a symmetric Hadamard matrixW+ satisfies the type III property (17), one can show
that the algebra from [20] has dimension 3 (when|X|> 4). This is becauseW+ = W− and
hence the partition function map “forgets” the spatial structure of tangles. On the other hand,
we shall give in Section 5.2 examples of Hadamard matricesW in MX, where|X| is any
even power of 2, which yield an algebraN(W) of dimension|X| containingW.

We now point out that the expression of the duality9 given in Theorem 11 means that
W+ is given by a solution of themodular invariance equationfor the Bose-Mesner algebra
N(W+) (see [4] where slightly different notations are used).

Let P be the matrix of9 in the basis of ordinary idempotents{Ei | i = 0, . . . ,d} of
N(W+). Thus the indices of the Hadamard idempotentsAj , j = 0, . . . ,d can be chosen
so thatAj =

∑d
i=0 P(i, j )Ei = 9(Ej ) for i = 0, . . . ,d (and P is afirst eigenmatrixof

N(W+)). We writetW− in the formD
∑d

i=0 ti Ei and reformulate the identity

9(A) = a−1W+ ◦ (tW−(tW+ ◦ A)) (A ∈ N(W+))

in terms of theti . Let T = Diag[ti ] i∈{0,...,d}.

Proposition 12 The identity

9(A) = a−1W+ ◦ (tW−(tW+ ◦ A)) (A ∈ N(W+))

is equivalent to the equation(PT)3 = aD3I .

Proof: Recall from the proof of Proposition 9 that9(tW+) = DW− and hence9(W−) =
DW+ (this also follows easily from the above identity applied toA = W−). Hence
tW+ = ∑d

i=0 ti Ai . Clearly T is the matrix of the mapA→ t W+ ◦ A in the basis of
Hadamard idempotents. Similarly, the matrix of the mapA→ tW−A in the basis of ordinary
idempotents isDT . Hence, the matrix of this map in the basis of Hadamard idempotents
is DP−1T P.

Since t(tW+ ◦ tA) = W+ ◦ A, the matrix of the mapA → W+ ◦ A in the basis of
Hadamard idempotents isRT RwhereR is the matrix of the transposition map in this basis.

Finally, the matrix of9 in the basis of Hadamard idempotents isP−1P P = P.
Thus the identity of Theorem 11 translates into

P = a−1(RT R)(DP−1T P)T.

SinceP2 = D2R, this becomesP = a−1D−1RT PT PTor (PT)3 = aD3I . 2

This is the modular invariance equation considered in [4], whose origin is to be found in
[2].

We conclude that spin models for link invariants in the sense of [26] can be classified in
terms of solutions of the modular invariance equations for self-dual Bose-Mesner algebras.



P1: SUD

Journal of Algebraic Combinatorics KL583-04-Jaeger May 27, 1998 12:10

58 JAEGER, MATSUMOTO AND NOMURA

Note, however, that there exist solutions of the modular invariance equations which do not
satisfy the type III condition (see [4]).

5. Examples

5.1. Abelian group schemes

Let X be a finite abelian group written additively.
For all i in X we defineAi in MX by the identityAi (x, y) = δ(y− x, i ). Then properties

(5)–(7) trivially hold, and properties (8), (9) also hold withi ′ = −i , pk
i j = δ(k, i + j ).

Thus theAi are the Hadamard idempotents of a Bose-Mesner algebraAX (the corresponding
association scheme is thegroup schemeof X) of dimension|X|. For convenience we replace
the index set{0, . . . ,d} (whered = |X| − 1) by X.

Let {Ei | i ∈ X} be the basis of ordinary idempotents ofAX, and write Aj =
∑

i∈X
P(i, j )Ei for all j in X: this defines thefirst eigenmatrix Pof AX (for some choice
of indexes of the idempotents).

The equalityAj Ak = Aj+k translates into the identityP(i, j )P(i, k) = P(i, j + k).
Thus each row ofP represents a character ofX. It is well known that there exists exactly
|X| such characters, and sinceP is invertible each one appears as a row ofP. In the sequel
we write P(i, j ) = χi ( j ) (i, j ∈ X), and {χi | i ∈ X} is the set of characters ofX.
Property (18(ii)) forW = P reduces to the classical identity

∑
i∈X χi (b− c)= |X|δ(b, c),

or equivalently property (18(i)) reduces to the orthogonality relations of characters. Thus
P is a type II matrix.

By (19),Yb,c(i ) = χi (b− c) for all i , b, c in X. Hence the set of vectorsYb,c (b, c in X)
is identical to the set of columns ofP. It follows thatN(P) is the set of matricesA in MX

such thatAP = P1 for some diagonal matrix1 and hence has dimension|X|. Moreover,
for A in N(P), the Eq. (21)AYbc = (9(A))(b, c)Ybc shows that9(A) ∈ AX sinceYbc

only depends onb− c. It then follows from Theorem 1 thatN ′(P) = AX.
N(P) itself is not in general equal toAX. However it is possible to choose the indexing

of the characters ofX so thatχi ( j ) = χ j (i ) for all i , j in X (see for instance [7] Proposition
2.10.7). ThenP is symmetric andN(P) = N ′(P),9 = 9 ′.

Remark One can show that dualities ofAX correspond exactly to the indexings of the
idempotents for whichP is symmetric. These dualities are classified in [6].

Assume now thatP is symmetric.
In [4] it is shown that the modular invariance equation(PT)3 = λI , whereλ 6= 0

andT = Diag[ti ] i∈X, is equivalent to the identityχi ( j )ti t j = ti+ j (for some appropriate
normalization). Let thenW =∑i∈X ti Ai ∈ AX.

One easily checks that

W(x, b)

W(x, c)
= tb

tc
χx(c− b)

and it follows thatW is a type II matrix. Moreover, one shows as above thatN(W) = AX.
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Now it follows from Theorem 11 that (after suitable normalization)W defines a link invariant
(see also [4, 18] for other proofs of this fact).

Remarks

(i) If for instanceX is a cyclic group of odd ordern, ω is a primitiventh root of unity and
χi ( j ) = ω2i j , settingti = ωi 2

we obtain a symmetric matrixW = ∑
i∈X ti Ai such

that N(W) is the non-symmetric Bose-Mesner algebraAX.
(ii) We leave it to the reader to reprove the above results using the graph descriptions of

Theorem 5.

Conversely, suppose now thatN(W) has dimension|X| = n for a type II matrixW in
MX. We shall show thatW is obtained by scaling from a character table for some additive
group structure onX.

By Theorem 1,N ′(W) has also dimensionn.
Let A′0, . . . , A′n−1 be the Hadamard idempotents ofN ′(W). These matrices commute

with J (by (6) and (9)) and hence have constant (non-zero) row sum. Since
∑n−1

i=0 A′i = J
by (6), eachA′i is a permutation matrix. It then easily follows from (9), (7) and (8) that
thesen permutation matrices form an abelian group with identity elementA′0. From now on
we identify{0, . . . ,n− 1} with X, so that the basis of Hadamard idempotents ofN ′(W) is
{A′x | x ∈ X}. We equipX with the additive group structure such thatA′x(y, z) = δ(z−y, x)
for everyx, y, z in X, and we denote bye∈ X the zero element of this group.

Using appropriate scaling we may assume thatW(x, e) = W(e, x) = 1 for everyx ∈ X.
For any two elementsy, z of X, consider the vertices(y, y+ z) and(e, z) of the graph

H defined in Section 3.3. Clearly these vertices belong to the connected component ofH
corresponding to the Hadamard idempotentA′z as stated in Theorem 5 (iii). Hence each of
Yy,y+z andYe,z is orthogonal (with respect to the Hermitian product) to all vectors of the
form Yz′,e, wherez′ 6= −z, and, by (23),Yy,y+z andYe,z are collinear. Comparinge-entries
we obtain thatYy,y+z = Ye,z. By (19) this givesW(x, y)W(x, y + z)−1 = W(x, z)−1 for
everyx ∈ X. Thus, for everyx, y, z in X, W(x, y + z) = W(x, y)W(x, z). This means
that for everyx in X, the mappingy→ W(x, y) from X to C∗ is a character of the additive
groupX. There aren such characters andn rows ofW. SinceW is invertible, each char-
acter ofX appears exactly once as a row ofW, andW is a character table for the additive
groupX.

5.2. Hadamard matrices

Keeping the notations of the preceding section, ifX is an elementary abelian 2-group
its characters take their values in{+1,−1} and henceP is a Hadamard matrix (called a
Sylvester matrix). Thus there exists Hadamard matricesW in MX such that dimN(W) =
|X| whenever|X| is a power of 2.

Moreover, if|X| is an even power of 2, let us identifyX with GF(2)2m for somem≥ 1,
and letQ be a quadratic form onX associated with some symplectic formB. That is,B is
a non-degenerate bilinear form onX with B(x, x) = 0 for all x ∈ X, andQ : X→ GF(2)
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satisfies the identity

Q(x)+ Q(y)+ Q(x + y) = B(x, y).

The characters ofX can be labeled such thatχi ( j ) = (−1)B(i, j ) for all i , j in X, and then
χi ( j ) = χ j (i ). Moreover, if we setti = (−1)Q(i ) for everyi in X, the modular invariance
equationχi ( j )ti t j = ti+ j is satisfied. HenceW = ∑i∈X ti Ai is a Hadamard matrix with
W ∈ N(W) = AX.

When|X| = 16 andX is identified withGF(2)4, our computations show that for every
Hadamard matrixW in MX, N(W) is contained inAX (up to combinatorial isomorphism)
and thus we have dual pairs of Bose-Mesner algebras coming from an “actual duality” as
described in Remark (i) at the end of Section 2.1. More precisely, it is well known that
there exist exactly 5 Hadamard equivalence classes, calledHall’s Classes I–V(see [33],
p. 420), of Hadamard matrices of order 16. Using Theorem 5 we have computedN ′(W)

for one representative matrixW in each class. The resulting Bose-Mesner algebras can be
described as follows (up to combinatorial isomorphism).

(i) As shown above, there is a symmetric Hadamard matrixW with W ∈ N(W) =
N ′(W) = AX. This matrixW belongs to Hall’s Class I.

(ii) Write X = X1 × X2, whereX1 ' X2 ' GF(2)2, and identifyAX with AX1 ⊗ AX2

(see Section 4.1). A second symmetric Hadamard matrixW (which belongs to Hall’s
Class II) yields the Bose-Mesner algebraN ′(W) = AX1⊗ I + J⊗AX2. If 91 and92

are dualities ofAX1 andAX2 respectively,(91⊗92)(N ′(W)) = AX1⊗ J+ I ⊗AX2.
It is now easy to show, using appropriate combinatorial isomorphisms fromAX1⊗AX2

toAX2 ⊗AX1, and betweenAX1 andAX2, thatN ′(W) is self-dual.
(iii) For a third symmetric Hadamard matrixW (which belongs to Hall’s Class III),N ′(W)

is the linear span of the matricesI , J, Ai , Ej inAX, whereAi is a Hadamard idempotent
distinct from I , Ej is an ordinary idempotent distinct fromJ, andAi Ej = Ej . It is
easy to show that this Bose-Mesner algebra is self-dual.

(iv) Finally, we have a Hadamard matrixW (which belongs to Hall’s Class IV) which is
not equivalent to its transpose (which belongs to Hall’s Class V). The Bose-Mesner
algebraN ′(W) is the linear span ofI , J, Ai , whereAi is a Hadamard idempotent of
AX distinct from I (or equivalently, the Bose-Mesner algebra of the graph formed by
8 disjoint edges), andN ′( tW) is the linear span ofI , J,9(Ai ) for some duality9 of
AX (or equivalently, the Bose-Mesner algebra of the complete bipartite graphK8,8).
This example is used in [23] to construct a subfactor which is not self-dual.

In contrast with the above case|X| =16, one can show that whenn ≡ 4 (mod 8),
n ≥ 12, andW is a Hadamard matrix of ordern, N(W) = N ′(W) is always the linear span
of I andJ (see [1]). Indeed this follows easily from Theorem 5 and from the fact that

〈Ybc, Yde〉 =
∑
x∈X

W(x, b)

W(x, c)

W(x, d)

W(x, e)

is non-zero wheneverb, c, d, eare all distinct. To check this last statement, we may assume
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without loss of generality thatW(x, b) = 1 for allx. Let A, B,C, D be the sets of row indices
x such that(W(x, c), W(x, d)) equals(1, 1), (1,−1), (−1, 1), (−1,−1) respectively. It is
well known and easy to prove that|A| = |B| = |C| = |D| = n/4. Now letA+, B+, C+,
D+ be the sets of row indicesx in A, B, C, D respectively such thatW(x, e) = +1. The
orthogonality of the columnewith the columnsb, c, d gives|A+|+ |B+|+ |C+|+ |D+| =
n/2, |A+|+ |B+|+ |C−C+|+ |D− D+| = n/2, |A+|+ |C+|+ |B− B+|+ |D− D+| =
n/2, and hence|A+| + |B+| = |C+| + |D+| = |A+| + |C+| = |B+| + |D+| =
n/4. On the other hand,〈Ybc, Yde〉 = 2|A+| − |A| + 2|D+| − |D| − (2|B+| − |B|) −
(2|C+| − |C|) = 2(|A+| + |D+| − |B+| − |C+|). This is non-zero since otherwise|A+| +
|D+| = |B+|+|C+| = n/4 and the three numbers|A+|+|B+|, |B+|+|C+|, |C+|+|A+|
are odd, a contradiction.

5.3. Type II matrices of size four

Let X = {1, 2, 3, 4}. Consider the following symmetric matrixU (λ) in MX for each
complex numberλ 6= 0:

U (λ) =


1 1 1 1

1 1 −1 −1

1 −1 λ −λ
1 −1 −λ λ

 ,
As easily shown,U (λ) satisfies the type II condition (18).

Proposition 13
(i) Every type II matrix W∈ MX is obtained by scaling and permutation from U(λ) for

someλ.
(ii) U (λ) is obtained from U(µ) by scaling and permutation if and only ifµ = ±λ±1.

(iii) Set N= N(U (λ)). We havedimN = 4 if and only ifλ4 = 1 (otherwisedim N = 3),
and we havedimÑ = 4 if and only ifλ2 = 1 (otherwisedimÑ = 3).

Proof:

(i) We may assumeW(1, x) = W(x, 1) = 1 for all x ∈ X by scaling. Then the type II
condition implies

(24)
∑

x∈X W(b, x) =∑x∈X
1

W(b,x) =
∑

x∈X W(x, b) =∑x∈X
1

W(x,b) = 0

for all b ∈ {2, 3, 4}.

Claim Forb ∈ {2, 3, 4}, W(b, d) = W(e, b) = −1 holds for somed, e∈ X.

This can be shown as follows. By (24) we have

1+W(b, 2)+W(b, 3)= −W(b, 4) and 1+ 1

W(b, 2)
+ 1

W(b, 3)
= − 1

W(b, 4)
.
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Multiplying these two equations, we obtain

(1+W(b, 2)+W(b, 3))

(
1+ 1

W(b, 2)
+ 1

W(b, 3)

)
= 1,

and this is equivalent to

(W(b, 2)+W(b, 3))

(
1+ 1

W(b, 2)

)(
1+ 1

W(b, 3)

)
= 0.

So if W(b, 2) 6= −1 andW(b, 3) 6= −1, then we must haveW(b, 2)+W(b, 3) = 0, and
henceW(b, 4) = −1. The proof thatW(e, b) = −1 for somee∈ {2, 3, 4} is similar.

By the above claim, we may assumeW(2, 2) = −1. We distinguish the following three
cases forW(2, 3).

First let us consider the caseW(2, 3) = 1. In this case we haveW(2, 4) = −1 by (24)
and alsoW(3, 3) = W(4, 3) = −1 by the above claim and (24). Let us setW(3, 2) = λ.
Then we haveW(4, 2) = W(3, 4) = −λ andW(4, 4) = λ by (24). ThenW is obtained
from U (λ) by exchanging the second column and the third column.

The caseW(2, 3) = −1 (in this case we haveW(2, 4) = 1 by (24)) can be reduced to
the above case by exchanging the third column and the fourth column.

Next let us consider the caseW(2, 3) 6= ±1. Let us setW(2, 3) = λ. ThenW(2, 4) = −λ
by (24). By the above claim, one ofW(3, 3) and W(4, 3) must be equal to−1. We
may assumeW(3, 3) = −1 (exchange the third and the fourth row if necessary). Then
W(4, 3) = −λ by (24). Let us consider the fourth column. SinceW(2, 4) 6= −1, one
of W(3, 4) andW(4, 4) must be−1 by the claim. IfW(4, 4) = −1, thenW(3, 4) = λ

by (24), and the type II condition applied to the third column and the fourth column im-
pliesλ2 = 1, contradictingW(2, 3) 6= ±1. Therefore we must haveW(3, 4) = −1 and
W(4, 4) = λ. ThenW(3, 2) = 1 andW(4, 2) = −1 by (24). NowW is obtained from
U (λ) by exchanging the second row and the third row. This completes the proof of (i).

(ii) Assumeµ = ±λ±1. Whenµ = −λ, U (λ) can be obtained fromU (µ) by exchanging
the third row and the fourth row. Whenµ = λ−1, U (λ) can be obtained fromU (µ) by
the following steps: multiply the third row byλ and the fourth row by−λ, exchange the
first column with the third column, exchange the second column with the fourth column,
and then multiply the second row by−1. The caseµ = −λ−1 is reduced to the above two
cases.

To show the converse, we introduce the following set3(W) for each type II matrixW:

3(W) =
{

W(b, d)W(c, e)

W(b, e)W(c, d)

∣∣∣∣ b, c, d, e∈ X

}
.

Clearly3(W1) = 3(W2) holds if W1 is obtained fromW2 by permutation and scaling.
As easily shown, we have3(U (λ)) = {±1, ±λ±1}. Hence, ifU (λ) is obtained from

U (µ) by permutation and scaling, we have{±1, ±λ±1} = {±1, ±µ±1}. This implies
µ = ±λ±1.



P1: SUD

Journal of Algebraic Combinatorics KL583-04-Jaeger May 27, 1998 12:10

BOSE-MESNER ALGEBRAS RELATED TO TYPE II MATRICES AND SPIN MODELS 63

Table 1.

(b, c) Entries ofYbc

(1,1) (2,2) (3,3) (4,4) 1 1 1 1

(1,2) (2,1) (3,4) (4,3) 1 1 −1 −1

(1,3) (2,4) 1 −1 λ−1 −λ−1

(3,1) (4,2) 1 −1 λ −λ
(1,4) (2,3) 1 −1 −λ−1 λ−1

(4,1) (3,2) 1 −1 −λ λ

(iii) By Theorem 5, the dimension of̃N (respectively,N) is given by the number of con-
nected components of the graphG (respectively,H ) on the vertex setX × X. The
vectorsYbc (see (19)) are given in Table 1.

Let us determine the connected components of the graphG. Clearly

C1 = {(1, 1), (2, 2), (3, 3), (4, 4)} and C2 = {(1, 2), (2, 1), (3, 4), (4, 3)}

are components ofG. Since〈Y13, Y31〉 = 〈Y14, Y41〉 = 4 6= 0,

C3 = {(1, 3), (3, 1), (2, 4), (4, 2)} and C4 = {(1, 4), (4, 1), (2, 3), (3, 2)}

induce connected subgraphs inG. Moreover, we have〈Y13, Y14〉 = 2(1− λ−2). So when
λ 6= ±1, (1, 3) is adjacent to(1, 4), and henceC3 ∪ C4 forms a connected component of
G. Whenλ = ±1, it is easy to show that there is no edge betweenC3 andC4, and soC3

andC4 are connected components ofG. Therefore we have dim̃N = 4 whenλ = ±1, and
dimÑ = 3 otherwise.

Next let us determine the connected components of the graphH . Clearly,C1 andC2 are
connected components ofH . The values of some Hermitian products〈〈Ybc, Yde〉〉 are given
in Table 2.

Therefore, we have〈〈Y13, Y31〉〉 = 〈〈Y14, Y41〉〉 = 0 if and only ifλ
√−1 is real, we have

〈〈Y13, Y41〉〉 = 〈〈Y31, Y14〉〉 = 0 if and only if λ is real, and we have〈〈Y13, Y14〉〉 =
〈〈Y31, Y41〉〉 = 0 if and only if |λ| = 1. Then it can be easily shown that the setX ×

Table 2.

Y31 Y14 Y41

Y13 2(1+ λ−1λ) 2(1− λ−1λ
−1
) 2(1− λ−1λ)

Y31 2(1− λλ−1
) 2(1− λλ)

Y14 2(1+ λ−1λ)
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X − (C1 ∪ C2) is not connected (and splits into two connected components) if and only if
λ4 = 1. Thus we have dimN = 4 if λ4 = 1, and dimN = 3 otherwise. 2

Remarks

(i) It is not difficult to see that there is a unique type II matrix of sizen = 2 or 3 up to
permutation and scaling.

(ii) When λ = ±1, N is the Bose-Mesner algebra of the group(Z/2Z)2, and whenλ =
±√−1, N is the Bose-Mesner algebra of the groupZ/4Z. OtherwiseN is the Bose-
Mesner algebra of the square (i.e., the cycle on 4 vertices, which is a strongly regular
graph).

5.4. Spin models for the Kauffman polynomial

The Kauffman polynomial is an invariant of links which can be characterized by a certain
exchange equation(see [25]). It is shown in [13, 17] that one can obtain symmetric spin
models whose associated link invariant is an evaluation of the Kauffman polynomial by
adding to the invariance equations (15)–(17) the following matrix version of the exchange
equation:

(25) W+ −W− = z(DI − J).

Herez is some parameter which is related to the parametersa, D appearing in (15)–(17)
by the equation

(26) a− a−1 = z(D − 1)

((26) is obtained by considering the diagonal entries in (25)).

Remark There is another version of (25) where the minus signs are replaced by plus
signs, but it is essentially equivalent to the previous one. To simplify the exposition we
shall consider only (25).

We now studyN(W+)whenW+, W− are symmetric and satisfy (15)–(17) and (25). Let
A be the linear span of{I , J, W+}. It is easy to show (see [17]) thatA is a (symmetric)
self-dual Bose-Mesner algebra.

If A has dimension 2,W+ is a linear combination ofI and J: we have a Potts model,
and the associated link invariant is the Jones polynomial. The algebraN(W+) for this case
is studied in [1].

From now on we assume thatA has dimension 3 and hence|X| ≥4.
If z = 0, W+ = W− is a Hadamard matrix (by (25) and (16)). Some examples of

such matrices satisfying (15)–(17) witha = 1 andD = ±2m for some integerm have
already been described in Section 5.2 in terms of a quadratic form onGF(2)2m (the proof
that one can takeD = ±2m in (15) and (17) is easy and left to the reader). IfW+ is
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such a matrix,N(W+) is the Bose-Mesner algebra of (the group scheme of)GF(2)2m and
hence has dimension 22m. We do not know if other types of symmetric Hadamard matrices
W+ = W− satisfying (15)–(17) can exist.

From now on we assume thatz 6= 0.
Let us write W+ = aI + t1A1 + t2A2, where A0 = I , A1, A2 are the Hadamard

idempotents ofA. Then, by (16),W− = a−1I + t−1
1 A1 + t−1

2 A2. Considering the non-
diagonal entries in (25) yieldsz = t−1

1 − t1 = t−1
2 − t2. SinceA is three-dimensional,

t1 6= t2 and hencet2 = −t−1
1 . If |X| = 4, let us assume without loss of generality thatA1 is

the adjacency matrix of the square. Then it is shown in [17] that we have a spin model for
the Kauffman polynomial as soon asa = t−1

1 . In this case one easily shows thatW+ can be
obtained fromU (t−4

1 ) (see Section 5.3) by scaling and permutation. By Proposition 13 (iii),
dimN(W+) = 4 if and only ift16

1 = 1 (otherwise dimN(W+) = 3), and dim( ˜N(W+)) = 4
if and only if t8

1 = 1 (otherwise dim ˜N(W+) = 3).
From now on we assume|X|> 4.
Let us compute

〈Ybc, Ybd〉 =
∑
x∈X

W+(x, b)W+(x, b)
W+(x, c)W+(x, d)

for everyb, c, d ∈ X.
By (25), (15) and (16) we have

W+ ◦W+ = W+ ◦ (W− + zDI − z J) = J + zDaI − zW+

and hence

W+(x, b)2 = 1+ zDaδ(x, b)− zW+(x, b).

This gives

〈Ybc, Ybd〉 =
∑
x∈X

1

W+(x, c)W+(x, d)
+ zDa

W+(b, c)W+(b, d)

− z
∑
x∈X

W+(x, b)
W+(x, c)W+(x, d)

.

Using (16) this becomes

(27) 〈Ybc, Ybd〉 =
∑

x∈X W−(x, c)W−(x, d)+ zDaW−(b, c)W−(b, d)

− z
∑

x∈X W+(x, b)W−(x, c)W−(x, d).

The first term of (27) is the(c, d)-entry of(W−)2. By (25), (15) and (16),

(W−)2 = W−(W+ − zDI + z J) = |X|I − zDW− + zDa J,
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and hence the first term of (27) is|X|δ(c, d) − zDW−(c, d) + zDa. It is easy to show
that if (16) and (17) hold for the matricesW+, W−, they also hold if we exchange
W+ andW−. Hence the third term of (27) is equal to−zDW−(c, d)W+(b, c)W+(b, d).
Thus finally

〈Ybc, Ybd〉 = |X|δ(c, d)− zDW−(c, d)+ zDa+ zDaW−(b, c)W−(b, d)
− zDW−(c, d)W+(b, c)W+(b, d).

Assume now thatAi (b, c) = Ai (b, d) = Aj (c, d) = 1 for somei , j ∈ {1, 2}. Then

〈Ybc, Ybd〉 = zD
(− t−1

j + a+ at−2
i − t2

i t−1
j

)
= zD

(
1+ t2

i

)(
at−2

i − t−1
j

)
.

We may now distinguish the following cases.

(i)
(
1+ t2

i

)(
at−2

i − t−1
j

) 6= 0 for all i , j ∈ {1, 2}.

Let G be the graph defined on the vertex setX × X as in Section 3.3:(b, c) and(d, e)
are adjacent iff〈Ybc, Yde〉 6= 0. Let Gi (i = 0, 1, 2) be the subgraph ofG induced by
{(b, c) ∈ X × X | Ai (b, c) = 1}. ClearlyG0 is connected (actuallyG0 is a clique and
forms a connected component ofG).

SincezD 6= 0, our hypothesis implies that if(b, c), (b, d) are distinct vertices ofGi

(i = 1, 2) they are adjacent. Since(b, c) and(c, b) are also adjacent, it easily follows that
G1 andG2 are connected.

Hence by Theorem 5 (i), ˜N(W+) has dimension at most 3. By Proposition 9, and since
W+ is symmetric,W+ ∈ ˜N(W+) and henceA ⊆ ˜N(W+). It follows that ˜N(W+) = A.

Note that if bothA1 and A2 have row sum at least 3,G1 andG2 have triangles induced
by sets of vertices of the form{(b, c), (b, d), (b, e)}. Since|X|> 4, G0, G1, G2 are non
bipartite and, by Proposition 6,N(W+) = ˜N(W+) = A.

Otherwise, since it is shown in [17] thatA1, A2 are adjacency matrices of complementary
strongly regular graphs which are connected for|X| ≥5, we must have|X| = 5 (thenA1, A2

correspond to complementary pentagons). This case is settled using Section 3.6.3 of [17]
and Remark (i) of Section 5.1:N(W+) is the Bose-Mesner algebra of the group scheme of
Z/5Z.

(ii) t2
1 = −1 or t2

2 = −1.

Sincet2 = −t−1
1 , we havet1 = t2, and this is ruled out sinceA has dimension 3.

(iii) at−2
1 = t−1

1 or at−2
2 = t−1

2 .

In this case,a = t1 or a = t2, andz = a−1 − a. By (26) we getD = 0, which is
excluded.
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(iv) at−2
1 = t−1

2 or at−2
2 = t−1

1 .

Up to the exchange ofA1 and A2 we may assume thatat−2
1 = t−1

2 . Thena = −t3
1 ,

z= t−1
1 − t1. We are in the situation described in Section 3.6.4 of [17] (wheret1 is denoted

by−t): A1 is the adjacency matrix of a lattice graph with(t2
1 + t−2

1 + 2)2 vertices. Then
one can show thatW+ is a tensor product of a Potts model with itself. HenceN(W+) can
be determined from Proposition 7 (i) and the results in [1].

5.5. Spin models on Hadamard graphs

Let H be a Hadamard matrix of size 4m. Then one can construct fromH a distance-
regular graph0 with 16m vertices, called aHadamard graph, with intersection array (see
[7] Theorem 1.8.1)

{4m, 4m− 1, 2m, 1; 1, 2m, 4m− 1, 4m}.

Thus0 is a (simple and undirected) connected graph of diameter 4, and the relations
Ri (i = 0, . . . ,4) on the vertex setX of 0, defined byRi = {(x, y) | ∂(x, y) = i } (where
∂(x, y) denotes the usual distance ofx andy in the graph0), form a symmetric association
scheme whose non-zero intersection numbers of the formpk

i 1 are

p0
11 = 4m, p1

21 = 4m− 1, p2
31 = 2m, p3

41 = 1,

p1
01 = 1, p2

11 = 2m, p3
21 = 4m− 1, p4

31 = 4m.

Let Ai (i = 0, . . . ,4) be the Hadamard idempotents of the Bose-Mesner algebraA of this
association scheme.

Forq, ω ∈ C∗ such that

q4+ q−4+ 2= 4m, ω4 = 1,

let us define a matrixW by W =∑4
i=0 ti Ai , where

t0 = −q−3, t1 = ω, t2 = q, t3 = −t1, t4 = t0.

It is shown in [29] (see also [30] for an alternative proof) thatW+ = W satisfies (with
appropriateW−, a andD) the invariance Eqs. (15)–(17), and the corresponding invariant
of links is determined in [18, 19].

The purpose of this section is to show thatN(W) = Ñ(W) = A.
Remark thatω2 and q2 are real. Remark also that the graph0 is bipartite, so that

we have a bipartitionX = X1 ∪ X2, |X1| = |X2| = 8m, with R0 ∪ R2 ∪ R4 =
(X1 × X1) ∪ (X2 × X2) andR1 ∪ R3 = (X1× X2) ∪ (X2 ∪ X1).

Lemma 14 W is obtained by scaling from a real matrix, and hence N(W) = Ñ(W).
Moreover, when m= 1, W is obtained by scaling from a Hadamard matrix.
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Proof: For (x, y) ∈ (X1× X1)∪ (X2× X2) we haveW(x, y) ∈ {t0, t2, t4} = {−q−3,q},
and for(x, y) ∈ (X1× X2) ∪ (X2× X1) we haveW(x, y) ∈ {t1, t3} = {ω,−ω}. Multiply
thex th row ofW byωq for all x ∈ X1, multiply they th column byω−1 for all y ∈ X1, and
multiply the y th column byq for all y ∈ X2. Then the resulting matrixW′ has its entries
in {−q−2,q2,±1,±ω2q2}, so thatW′ is a real matrix. ThusN(W) = N(W′) is symmetric
by Propositions 2 and 6, and hencẽN(W) = N(W). Whenm = 1, we haveq4 = 1, so
thatW′ has entries±1, and hence is a Hadamard matrix. 2

Whenm = 1, W is obtained by scaling from a Hadamard matrix of size 16 by Lemma
14, and soN(W) can be determined using Section 5.2.

From now on we assumem> 1. Remark that we haveq8 6= 1 in this case.

Lemma 15 A ⊂ N(W).

Proof: We haveW∈ N(W) by Proposition 9 sinceW satisfies the type III condition (17).
Consider thè th power ofW with respect to the Hadamard product:W` =

∑4
i=0 t`i Ai

(` = 1, . . . ,4). Sincet1, . . . , t4 are easily seen to be distinct,I , W1, . . . , W4 are linearly
independent (this is shown by a non-zero Vandermonde determinant). HenceA is generated
by I andW with respect to Hadamard product. Clearly, this impliesA ⊂ N(W). 2

LetG be the graph onX×X defined in Section 3.3 with respect to the usual scalar product.
In the following we shall show thatRi is a connected subgraph ofG (i = 0, . . . ,4). This
will imply dim Ñ(W) ≤ 5 by Theorem 5, and henceA = Ñ(W) = N(W) by Lemmas 14
and 15.

ClearlyR0 is connected, so we start withR1. In the sequel we use implicitly the fact that
〈Ybc, Ycb〉 6= 0 for all b, c in X.

Lemma 16 For (b, c) and(b, d) in R1 with c 6= d, 〈Ybc, Ybd〉 6= 0.

Proof: We have

〈Ybc, Ybd〉 =
∑
x∈X

W(x, b)W(x, b)

W(x, c)W(x, d)

=
∑

i, j,k∈{0,...,4}

∑
x∈0i (b)∩0 j (c)∩0k(d)

W(x, b)W(x, b)

W(x, c)W(x, d)

=
∑

i, j,k∈{0,...,4}
Pi jk

ti ti
t j tk

,

where as usual0`(y) denotes the set of vertices at distance` from y andPi jk denotes the
size of0i (b)∩0 j (c)∩0k(d). The non-zero values ofPi jk are the following constants (see
[29]):

P011= P102= P120= P324= P342= P433= 1,

P122= P322= 4m− 2, P211= P233= 2m− 1, P213= P231= 2m.
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From these values and the relationst3 = −t1, t4 = t0, we obtain

〈Ybc, Ybd〉 = 2

(
t0t0
t1t1
+ t1t1

t0t2
+ t1t1

t2t0

)
+ 2(4m− 2)

t1t1
t2t2
− 2

t2t2
t1t1

.

Sincet0 = −q−3, t1 = ω, t2 = q, 4m− 2= q4+ q−4 andω2 = ω−2, we obtain

〈Ybc, Ybd〉 = ±4q−6(q8− 1) 6= 0. 2

From Lemma 16, any two directed edges(b, c), (b, d) in 0, which have a common initial
vertexb, are adjacent inG. This implies thatR1 is connected inG since0 is connected.

Next let us considerR2.

Lemma 17 For (b, c) and(b, d) in R2 with ∂(c, d) = 2, 〈Ybc, Ybd〉 6= 0.

Proof: The non-zero values ofPi jk = |0i (b) ∩ 0 j (c) ∩ 0k(d)| are

P022= P202= P220= P224= P242= P422= 1,

P111= P113= P131= P133= P311= P313= P331= P333= m,

P222= 8m− 6.

Then, as in the proof of Lemma 16, we obtain〈Ybc,Ybd〉 = 2q−8(1+q4)(1−q8) 6= 0. 2

Lemma 18 For (b, c)and(d, e) in R2 with∂(b, d) = ∂(c, e) = 1and∂(b, e) = ∂(c, d) =
3, 〈Ybc, Yde〉 6= 0.

Proof: We have

〈Ybc, Yde〉 =
∑
x∈X

W(x, b)W(x, d)

W(x, c)W(x, e)
=

∑
i, j,k,`∈{0,...,4}

Pi jk`
ti tk
t j t`

,

wherePi jk` denotes the size of0i (b) ∩ 0 j (c) ∩ 0k(d) ∩ 0`(e). The values ofPi jk` can be
determined in a similar way as in [29]. The non-zero values are given as

P0213= P2031= P1302= P1324= P3120= P3142= P2413= P4231= 1,

P1322= P3122= P2213= P2231= 2m− 2,

P1122= P2211= P2233= P3322= 2m.

Then we obtain〈Ybc, Yde〉 = 4q−4(q4+ 1)2 6= 0. 2

Now we consider the graph0(2) = (X, R2). Clearly,0(2) has two connected components
X1, X2.

We claim thatR2 ∩ (Xi × Xi ) is connected inG (i = 1, 2). SinceX1 and X2 are
connected in0(2), it is enough to show that(b, c) and (b, d) are in the same connected
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component ofG for all (b, c), (b, d) in R2 ∩ (Xi × Xi ) with c 6= d. When∂(c, d) = 2,
(b, c) and (b, d) are adjacent inG by Lemma 17. When∂(c, d) = 4, there is a vertex
e ∈ Xi such that(b, e) ∈ R2 and∂(c, e) = ∂(e, d) = 2, since|02(c) ∩ 02(d)| = 8m− 2
and hence02(c) ∩ 02(d) contains(8m− 2) − 2 verticese with ∂(b, e) 6= 0, 4. Then, by
Lemma 17,(b, e) is adjacent to both(b, c) and(b, d) in G.

It is clear that there exist four verticesb, c, d, e which satisfy the conditions of Lemma
18. Hence, by Lemma 18,(b, c) and (d, e) are adjacent inG, so that there is an edge
connectingR2 ∩ (X1× X1) andR2 ∩ (X2× X2). Therefore,R2 is connected inG.

It is not difficult to show that the graph0(3) = (X, R3) is also a Hadamard graph, and
that the relationsR(3)i = {(x, y) | ∂(3)(x, y) = i } defined by its distance function∂(3) are
R(3)i = Ri if i is even,R(3)1 = R3, R(3)3 = R1. Thus the connectedness ofR3 is implied by
the connectedness ofR1 by exchangingt1 andt3.

Finally, the connectedness ofR4 is implied by the following lemma.

Lemma 19 For (b, c) and(d, e) in R4 with b, c, d, e distinct,〈Ybc, Yde〉 6= 0.

Proof: Remark that∂(b, d) = ∂(c, e). We proceed as in Lemma 18.
When∂(b, d) = 1, the non-zero values ofPi jk` are

P0413= P1304= P3140= P4031= 1,

P1322= P3122= P2213= P2231= 4m− 1,

and we obtain〈Ybc, Yde〉 = −16m 6= 0.
When∂(b, d) = 2, the non-zero values ofPi jk` are

P0422= P4022= P2204= P2240= 1,

P1313= P1331= P3113= P3131= 2m,

P2222= 8m− 4,

and we obtain〈Ybc, Yde〉 = 16m 6= 0.
When∂(b, d) = 3, the non-zero values ofPi jk` are

P0431= P1340= P3104= P4013= 1,

P1322= P3122= P2213= P2231= 4m− 1,

and we obtain〈Ybc, Yde〉 = −16m 6= 0. 2

This completes the proof of the equalityA = Ñ(W) = N(W).

6. Conclusion

We have given a construction which associates a dual pair of Bose-Mesner algebras with
every type II matrix, and we have worked out some examples. But we are very far from
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understanding the power and applicability of this construction. Could we use it to obtain
new association schemes, and possibly solve some open questions on the existence of such
objects or related ones? Are there natural necessary conditions for a dual pair to come
from a type II matrix? The general question is thus: what dual pairs are of the form
(N(W), N( tW)) for some type II matrixW? It leads to more specific questions, such as:
what self-dual Bose-Mesner algebras are of the formN(W) with W symmetric?

Some progress on the above question could shed new light on the classification problems
for type II matrices and for spin models.
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