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Abstract. Let G1 = (V1, E1) andG2 = (V2, E2) be two edge-colored graphs (without multiple edges or loops).
A homomorphismis a mappingφ : V1 7→ V2 for which, for every pair of adjacent verticesu andv of G1, φ(u)
andφ(v) are adjacent inG2 and the color of the edgeφ(u)φ(v) is the same as that of the edgeuv.

We prove a number of results asserting the existence of a graphG, edge-colored from a setC, into which every
member from a given class of graphs, also edge-colored fromC, maps homomorphically.

We apply one of these results to prove that every three-dimensional hyperbolic reflection group, having rotations
of orders from the setM = {m1,m2, . . . ,mk}, has a torsion-free subgroup of index not exceeding some bound,
which depends only on the setM .
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1. Introduction

Let G1 = (V1, E1) andG2 = (V2, E2) be two edge-colored graphs (without multiple edges
or loops). We define a mappingφ : V1 7→ V2 to be ahomomorphismif, for every pair of
adjacent verticesu andv of G1, φ(u) andφ(v) are adjacent inG2 and the color of the edge
φ(u)φ(v) is the same as that of the edgeuv. In Section 2, we prove a number of results
asserting the existence of a graphG, edge-colored from a setC, into which every graph
from a given class of graphs, also edge-colored fromC, maps homomorphically. In each
case we also give explicit upper bounds for the number of vertices inG.

Homomorphisms arise naturally when dealing with Coxeter groups. For each Coxeter
groupG the edges of the corresponding Coxeter graph are “colored” by integers or∞,
and there is a simple relationship between homomorphisms of the Coxeter graph (in a
slightly modified form) and those of the associated group. Hence some results about group
homomorphisms have a natural restatement in terms of graph homomorphisms.

∗Research supported in part by a USA Israeli BSF grant and by the Fund for Basic Research administered by the
Israel Academy of Sciences.
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We apply these ideas to prove that every hyperbolic reflection group, having rotations
of orders from the setM = {m1,m2, . . . ,mk}, has a torsion-free subgroup of index not
exceeding some bound, which depends only on the setM . We compare this theorem with
known results about torsion-free subgroups of Fuchsian groups [4], and of arbitrary Kleinian
groups [5]. In outline, the method is to reduce statements about torsion-free subgroups to
statements about group homomorphisms, to reformulate these in terms of graph homomor-
phisms, and then to apply the purely graph-theoretic results of Section 2.

We tacitly identify graphs edge-colored from a set of only one color with uncolored
graphs. We say that a colored graph is planar, complete etc., if the underlying uncolored
graph has the corresponding property.

We denote byC(Y) the Cayley graph obtained from the generating setY (where the
group will be clear from the context). In all the cases we consider,Y will be closed under
taking inverses, and we will regardC(Y) as anundirectedgraph.

2. Edge-colored graphs and their homomorphisms

In this section we prove the following.

Theorem 2.1 For every integer n≥ 1 there is a finite graph Gn whose edges are colored
by the n colors1, 2, . . . ,n so that every planar graph whose edges are colored with these
colors maps homomorphically into Gn.

It is of interest to know how small the graphsGn in the above theorem can be made. Let
λn denote the minimum possible number of vertices of a graphGn. We have,

Proposition 2.2 For every positive integer n,

n3+ 3≤ λn ≤ 5n4.

We prove the upper bound of this proposition as a consequence of a more general result.
For a family of graphsG and for an integern ≥ 1, letλ(G, n) denote the minimum possible
number of vertices in an edge colored graphH so that each member ofG whose edges are
colored by colors from the set{1, 2, . . . ,n} maps homomorphically into it.(λ(G, n) = ∞
if there is no such finiteH ). Theacyclic chromatic numberof a graphG is the minimum
number of colors in a proper vertex coloring ofG so that the vertices of each cycle receive
at least 3 distinct colors. This notion was introduced by Gr¨unbaum and has been studied
by various researchers. In particular, it has been proved by Borodin [2] that the acyclic
chromatic number of any planar graph is at most 5. Thus, the upper bound of Proposition
2.2 follows from the following more general result, proved below.

Theorem 2.3 Let Gk be the family of all graphs with acyclic chromatic number not
exceeding k, then, for every odd n, λ(G2, n) = (n+ 1), and for every k and n, λ(Gk, n) ≤
knk−1.
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We note that it is not difficult to show that the familyG ′k−1 of all complete bipartite graphs
with k− 1 vertices in one side consists of graphs with acyclic chromatic number at mostk
and yetn ≥ 2,

λ(G ′k−1, n) = nk−1+ k− 1

showing that the above theorem is nearly tight. We note also that, by known results about
the acyclic chromatic numbers of graphs embeddable on surfaces other than the plane
(see [1]) the assertion of Proposition 2.2 may be extended to more complicated surfaces.

As we have learned from J. Ne´setŕil during the completion of this paper, a notion similar
to the one considered here has been studied by Raspaud and Sopena [8], (see also [7, 11]).
In these papers the authors study homomorphisms betweendirectedgraphs, and show, in
particular, that there exists a directed graphH on 80 vertices, with no cycle of length 2, so
that every orientation of a planar graph maps homomorphically intoH . The proof is based
on acyclic colorings, like our proof here, and although we do not see any way to deduce the
results here from the results in the papers mentioned above or vice versa, it seems that the
same techniques are useful in both cases.

To prove Theorem 2.3 we need the following two simple lemmas.

Lemma 2.4 If T is the family of all forests then, for every odd n, λ(T , n) = n+ 1.

Proof: A star withn edges of distinct colors shows thatλ(T , n) ≥ n + 1. A complete
graphK onn+ 1 vertices with a propern edge-coloring of its edges shows thatλ(T , n) ≤
n+1. Indeed, the vertices of each forest can be mapped into those ofK one by one, always
adding a vertex that has at most one neighbor in the previously mapped vertices, and using
the fact that an edge of each color is incident with each vertex ofK . 2

Lemma 2.5 LetU be a complete bipartite graph on the classes of vertices A= {a1,a2, . . . ,

an} and B= {b1, b2, . . . ,bn}, with a proper coloring of its edges by n colors. Then for any
forest T whose edges are colored by the same n colors and for any bipartition of the set
of vertices of T into vertex classes V and W, for which no two vertices of V or of W are
adjacent, there is a homomorphism of T into U that maps V into A and W into B.

Proof: It suffices to map any connected component ofT . This can be done as in the
previous proof, by mapping the vertices of the component intoU one by one, starting by
mapping a vertex into the appropriate vertex class ofU , and always adding a vertex that
has a unique neighbor among the previously mapped vertices. Since each color is incident
with each vertex ofU , the mapping can indeed be completed. 2

Proof of Theorem 2.3: The assertion thatλ(G2, n) = n + 1 for odd n follows from
Lemma 2.4. To prove the main part of the theorem, letU be a complete bipartite graph
on the two vertex classesA = {a1,a2, . . . ,an} and B = {b1, b2, . . . ,bn}, with a proper
coloring of its edges byn colors.

Define an edge-colored graphG′ as follows:
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The vertices ofG′ are allk-tuples of the form

(i, x1, x2, . . . , xi−1, xi+1, . . . , xk)

where 1≤ i ≤ k and 1≤ xj ≤ n for all j .
An edge ofG′ joins the two vertices

(i, x1, x2, . . . , xi−1, xi+1, . . . , xk)

and

( j, y1, y2, . . . , yj−1, yj+1, . . . , yk)

if and only if i 6= j . Such an edge, wherei < j , is colored the same as the edgeaxj byi in
the graphU .

We claim that every edge-colored graph colored from{1, 2, . . . ,n}with acyclic chromatic
number not exceedingk, maps homomorphically intoG′. To see this, letG be such a graph
and letV1, . . . ,Vk be a partition of the vertices ofG defined by an acyclic coloring of
it. Each induced subgraphGi, j =G[Vi ∪ Vj ](1≤ i < j ≤ k) is then a forest so that by
Lemma 2.5 there is a homomorphismφi, j from eachGi, j into U, mappingVi into A and
Vj into B. Supposeφi, j (v) = aψi, j (v) for all v ∈ Vi and, similarly,φi, j (w) = bψi, j (w) for all
w ∈ Vj .

Define a mapφ from the vertices ofG to those ofG′ by takingv ∈ Vi to the vertex

(i, ψ1,i (v), ψ2,i (v), . . . , ψi−1,i (v), ψi,i+1(v), . . . , ψi,k(v))

of G′.
Now let v ∈ Vi , w ∈ Vj be adjacent vertices inG, (i < j ). Thenw is mapped byφ to

the vertex

( j, ψ1, j (w), ψ2, j (w), . . . , ψ j−1, j (w), ψ j, j+1(w), . . . , ψ j,k(w))

of G′. By the definition ofG′ the verticesφ(v) andφ(w) are adjacent and joined by an
edge of the same color as that of the edgeaψi, j (v)bψi, j (w) = φi, j (v)φi, j (w) in U . Sinceφi, j

is a homomorphism, this is also the color ofvw in G. We have thus shown thatφ is a
homomorphism. SinceG′ hasknk−1 vertices the proof is complete. 2

To complete the proof of Proposition 2.2, we need to establish the lower bound forλn.
To do this we define a class of graphs, thetriangular graphs,1, inductively as follows:

(1) A triangular circuit is in1
(2) If G ∈ 1, then the graph obtained by putting a new vertex in one of the faces ofG and

by joining it to the three existing vertices of this face, is also in1.

Clearly all triangular graphs are planar. By a simple counting argument we show,
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Lemma 2.6 λ(1, n) ≥ n3+ 3

Proof: Let H be a graph edge-colored from the colors{1, 2, . . . ,n} into which every
triangular graph, edge-colored from the same set, maps homomorphically. We suppose for
a contradiction thatH has fewer thann3+ 3 vertices.

For eachG ∈ 1, let h(G) be the set of homomorphisms fromG to H (ignoring colors),
andc(G) the set of edge-colorings ofG from the colors{1, 2, . . . ,n}. Each mapφ ∈ h(G)
induces a unique coloring ofG for which φ is also a homomorphism ofcoloredgraphs.
This gives a mappingh(G)→ c(G) which, by assumption, is onto. We thus have,

|c(G)| ≤ |h(G)| (1)

Now construct the graphG′ ∈ 1 by subdividing a face ofG. A homomorphism inh(G)
can be extended toG′ in at mostn3−1 ways (the image of the new vertex must differ from
that of its three neighbors) so that,|h(G′)| ≤ (n3−1)|h(G)|. Each of the three new edges in
G′ can be colored inn ways so that|c(G′)| = n3|c(G)|. Hence by repeatedly subdividing,
we obtain a graphG′′ ∈ 1 for which |c(G′′)| > |h(G′′)|, contrary to (1). 2

It is well known that there is a homomorphism of an uncolored graphG into a graph with
k vertices if and only ifG has a proper vertex coloring byk colors. To see this, observe
that given such a coloring, we can form the complete graph whosek vertices are the colors
used. The mapping that takes each vertex to its color is then a homomorphism. Conversely
given a homomorphismφ of G into the complete graph onk vertices, coloring each vertex
by its image underφ gives a proper vertex coloring. In particular, we haveλ1 = 4, as a
consequence of the four-color theorem.

3. Coxeter groups

3.1. Coxeter groups and homomorphisms

Edge colored graphs arise naturally fromCoxeter groups. These are groups with a presen-
tation of the form

G = 〈X | R〉

whereX = {ai : i ∈ I } andRcomprises the relatorsa2
i (i ∈ I ) and possibly some additional

relators of the form(ai aj )
mi j (i 6= j ),mi j ≥ 2. If ai aj is of infinite order we setmi j = ∞.

We will assume henceforth that the generating setX is finite, X = {a1, . . . ,an}. We
refer to the members ofX ascanonical generatorsof G.

From G (or more precisely from its presentation) we may form an edge colored graph
γ (G) by taking as vertices the canonical generators and joiningai andaj by an edge colored
mi j whenevermi j 6= ∞. The graphγ (G) is closely akin to the familiar Coxeter diagram,
but differs in thatai andaj are joined whenmi j = 2 and not whenmi j = ∞. If γ (G) is
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disconnected thenG can be expressed as a free product of two or more Coxeter groups. We
shall suppose henceforth thatγ (G) is connected.

FromG we may form the index two subgroupG0 comprising products of an even number
of canonical generators. This subgroup is generated byT = {ri j = ai aj | mi j < ∞} (we
use here the assumption thatγ (G) is connected) and has presentation

G0 = 〈T | R′〉

whereR′ contains the relations of the formr
mi j

i j and

ri1i2ri2i3 . . . rimi1 (2)

While the generators ofG correspond to vertices ofγ (G), those ofG0 correspond to its
directed edges,ri j being expressed graphically by the directed edge fromai to aj . There is
a one to one correspondence between directed circuits ofγ (G) (including those of length
two) and relations of the form (2).

Now suppose we have a groupH with generating setY. We color edges of the Cayley
graphC(Y) by the orders of the corresponding generators.

Let φ : G0 → H be a homomorphism which maps every generator inR′ to a generator
in Y of the same order. We define a homomorphismφ̃ from γ (G) to C(Y) as follows. Let
φ̃ be defined arbitrarily at one vertex ofγ (G). We then extend the definition of̃φ to the
other vertices ofγ (G) one by one. Ifφ̃(ai ) is defined andaj is adjacent toai then we set
φ̃(aj ) = φ̃(ai )φ(ai aj ). The mapφ̃ is well defined becauseφ takes relations of the form (2)
to the identity.

In the other direction letϕ be a graph homomorphismγ (G)→ C(Y). We obtain a group
homomorphismϕ′ from G0 to H , which mapsT to Y, as follows. Each generator inT
corresponds to a directed edge ofγ (G), which is mapped to a directed edge inC(Y), which
corresponds to a generator inY. This determines a homomorphismϕ′ with the required
properties. The following theorem is an easy consequence of the definitions.

Theorem 3.1 If the mapsφ → φ̃ andϕ → ϕ′ are as defined above, then(φ̃)
′ = φ and,

if ϕ̃′ = ϕ at one point, thenϕ̃′ = ϕ.

3.2. Reflection groups and their torsion-free subgroups

We now apply the foregoing ideas in a geometrical context. ACoxeter polyhedron Pin
hyperbolic 3-spaceH3 is one whose dihedral angles are all integer submultiples ofπ .
Poincaré’s polyhedral theorem [6] gives that the groupG = G(P) generated by reflections
through the faces ofP is discrete. Letx1, . . . , xm denote these reflections. Clearlyx2

i =
1(1≤ i ≤ m) and ifxi andxj are reflections through adjacent faces which meet at an angle
of π/p then (xi x j )

p = 1—sincexi x j is a rotation through 2π/p. Again by Poincar´e’s
theorem, every relation inG(P) is a consequence of these, so thatG(P) is a Coxeter group.
A (hyperbolic) reflection groupis the order two subgroupG0(P) of such aG(P). In
geometric terms,G0(P) is the subgroup of orientation preserving isometries inG(P), and
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the graphγ (G(P)) is simply the dual of the edge skeleton ofP. As such it is connected
and planar.

According to Selberg’s Lemma [9], every finitely generated matrix group has a torsion-
free subgroup of finite index. In particular, finitely generated Coxeter groups (being matrix
groups) have this property. We consider the problem of determining the smallest index of
a torsion-free subgroup of a given groupG. We denote this index bym(G).

Let`(G0) denote the least common multiple of the orders of all finite subgroups ofG0. It
is easy to show thatm(G0)must be a multiple of̀(G0) (see e.g., [4]). WhenG is a Fuchsian
group, Edmonds Ewing and Kulkarni [4] have shown thatm(G0)/`(G0) is either 1 or 2
according to the individual group. By contrast, for Kleinian groups, Jones and Reid [5]
have shown thatm(G0)/`(G0) can be made arbitrarily large, even if only cocompact groups
are considered. For reflection groups the largest known value ofm(G0)/`(G0) seems to be
4 (e.g., for the group0(0)1,6(9) of [3]). Now we prove the following theorem.

Theorem 3.2 If G0 is a hyperbolic reflection group then m(G0) is bounded above by a
constant that depends only on`(G0).

To prove this we require the following well-known lemma (see e.g., [10]).

Lemma 3.3 If G is a ( finitely generated) Coxeter group for which G0 has a torsion-free
subgroup of index n, then there is a homomorphism from G0 onto a transitive group of
permutations of{1, 2, . . . ,n} for which every edge relator ri j is mapped to a permutation
consisting only of mi j -cycles. If G0 is a reflection group then the converse holds.

If the transitivity condition is omitted we have a torsion-free subgroup of index not
exceedingn.

Sketch of Proof: Given a torsion free subgroupH of indexn, the required permutation
representation is obtained by considering the action ofG0 on then cosets ofH .

The converse requires the fact that a finite order element of a reflection group must be
conjugate to the power of an edge relator. It then follows that the stabilizer of any point in
the set being permuted is torsion free. 2

Let Cn(m1,m2, . . . ,mk) denote the Cayley graph generated by permutations of
{1, 2, . . . ,n} consisting entirely ofmi cycles(1 ≤ i ≤ k). Using Theorem 3.1, we have
the following result, which is essentially a restatement of Lemma 3.3 in terms of graph
homomorphisms,

Lemma 3.4 If G is a finitely-generated Coxeter group with edge relators of orders
m1,m2, . . . ,mk, and there exists an index n torsion-free subgroup of G0, then there is
a homomorphism fromγ (G) to Cn(m1, . . . ,mk). If G0 is a reflection group, and such a
homomorphism exists, then G0 has a torsion-free subgroup of index not exceeding n.

Proof of Theorem 3.2: From Theorem 2.1 there exists a graphU with edges colored
m1,m2, . . . ,mk with the property thatγ (G) maps homomorphically intoU wheneverG0
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is a reflection group whose edge relators have orders in{m1, . . . ,mk}. SinceU can be
construed asγ (G) for some Coxeter group, Selberg’s lemma and Lemma 3.4 give ann for
whichU maps homomorphically intoCn(m1,m2, . . . ,mk). Since clearly the composition
of two homomorphisms is again a homomorphism, everyγ (G)maps homomorphically into
thisCn(m1,m2, . . . ,mk), whenever the orders of the edge relators ofG0 are in{m1, . . . ,mk}.
The theorem then follows from Lemma 3.4. 2

There are some cases where we can find a precise value form(G0). When all the dihedral
angles ofP are equal toπ/m, all the edges of the graphγ (G(P)) are coloredm. In this
caseγ (G(P)) maps homomorphically intoCn(m), if and only if it contains an imbedded
copy of Kc, wherec is the chromatic number ofγ (G(P)). It is readily verified thatC4(2)
is isomorphic toK4, so that, whenm = 2, G0(P) has a torsion-free subgroup of index
at most 4. Generally (and in all cases whereP is bounded), this index will be exactly 4
and, of course, inG(P), the same subgroup has index 8. This result was noted by Vesnin
[12], and can be used to construct compact hyperbolic manifolds by glueing together 8
copies ofP.

From Andreev’s theorem ([13], Chapter 6, Theorem 2.8), the polyhedronP is unbounded
whenm ≥ 3, but may have finite volume whenm = 3. SinceC6(3) contains a copy of
K4 (e.g., the Cayley graph generated by the three permutations (125)(364), (156)(234) and
(163)(245)), we conclude, as above, that, whenm= 3, G0(P) has a torsion-free subgroup
of index at most 6.

We note that one of the main theorems of Edmonds et al. ([4], Theorem 1.4) can be
formulated naturally in terms of graph homomorphisms (although this does not seem to
lead to any purely combinatorial proof of it). It is equivalent to the statement that every
circuit colored from(m1, . . . ,mk) maps homomorphically intoCn(m1, . . . ,mk) where
eithern = `(G0) or n = 2`(G0), depending on the individual case. Since, whenG is a
Dyck group (two-dimensional hyperbolic reflection group),γ (G) is a circuit, the existence
of indexn (or 2n) torsion-free subgroups follows, for these groups, from Lemma 3.4. This
result is relatively easily proved for the other Fuchsian groups.
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