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Abstract. It is shown that anyn-chromatic graph is a full subdirect product of copies of the complete graphsKn

andKn+1, except for some easily described graphs which are full subdirect products of copies ofKn+1 − {◦–◦}
and Kn+2 − {◦–◦}; full means here that the projections of the decomposition are epimorphic in edges. This
improves some results of Sabidussi. Subdirect powers ofKn or Kn+1 − {◦–◦} are also characterized, and the
subdirectly irreducibles of the quasivariety ofn-colorable graphs with respect to full and ordinary decompositions
are determined.
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Introduction

Birkhoff’s theorem on the subdirect decomposition of algebras of an equational class into
subdirectly irreducible factors [1] has been generalized by several authors to other classes of
first-order structures (not to mention generalizations to certain abstract categories). Malcev
[10] to classes of structures axiomatized by positive universal axioms, Sabidussi [15] to
the class of all graphs, Ne˘setr̆il and Pultr [12] to finitely generated quasivarieties of graphs,
Pickett [13] and Burris [3] to classes of structures satisfying certain conditions on their
lattices of equivalence relations, and this author [6] to classes of structures closed under
direct epimorphic limits. In particular, any quasivariety (universal Horn class) or any class
of finite structures satisfies a generalized Birkhoff’s theorem.

Some of these generalizations are equivalent (see the discussion in Fleischer [8]), but
they fall into two groups depending whether we ask the projections of a subdirect product
just to be onto on elements of the domain as in [6, 10, 12], or we ask them to befull also,
that is, onto on atomic relations as in [3, 13, 15]. The first type of subdirectly irreducible
structures form a subclass of the irreducibles of the second type; usually there is a tradeoff
between simpler decompositions in the first case and tighter decompositions in the second.

For the class of all finite graphs (irreflexive, undirected), the subdirectly irreducible
structures in the first sense are the complete graphsKi , i = 1, 2, . . . , and the irreducibles
with respect to full subdirect products are the complete graphs, together with the complete
graphs minus and edge:Ai = Ki+1 − {◦–◦}, i = 2, 3, . . .. In this context, Sabidussi [15]
has shown that any finite graph is a full subdirect product ofKi ’s, possibly for variousi ’s,
or a full subdirect product ofAi ’s.

We improve Sabidussi’s result and answer some of his questions by showing that any
n-chromatic graph is a full subdirect product of copies ofKn andKn+1, with the exception
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of some particular graphs which are full subdirect products of copies ofAn andAn+1. We
determine also the full subdirect powers ofKn and the full subdirect powers ofAn. To this
end, we examine the subdirectly irreducibles of the quasivarietyCn of n-colorable graphs
for finite n. In the first sense they are

Ki (1≤ i ≤ n), An = Kn+1− {◦–◦} and Bn = Kn+2− {◦–◦–◦–◦}, (1)

where a 3-chain is subtracted fromKn+2 in the last graph. The subdirectly irreducibles
for full decompositions also includeA1, . . . , An−1 and several weak subgraphs ofBn, their
number growing quadratically withn.

It follows from (1) thatCn is generated as a quasivariety by the single graphBn, a result first
obtained by Ne˘setr̆il and Pultr [12]. Wheeler [17] proved independently thatCn is generated
by a single finite graph (distinct fromBn), in order to show thatCn has aω-categorical model
companion with a primitive recursive axiomatization. This last property has been shown
by Burris to hold for any quasivariety generated by a single finite structure [4, 5].

1. Preliminaries

By a graphwe will always mean a nondirected simple graph without loops; that is, a first
order structureG = (V, E), whereV is the set ofverticesandE is a binary relation inV
(the set ofedges) satisfying the universal Horn sentences:

A1. (irreflexibity) ∀x(¬x Ex)
A2. (symmetry) ∀x∀y(x Ey→ yEx).

An element(u, v) ∈ E will be denoted sometimesuv, and we will writeuE/v to express
that (u, v) is not an edge ofG.

The notions ofhomomorphism, isomorphism, subgraph, andproduct are defined for
graphs as is costumary for first-order structures in model theory, cf. [9]. Anepimorphism
will be a homomorphismf : (V, E) → (V ′, E′) onto on vertices. It will befull if it is
onto also on edges; that is, for every (u′, v′) ∈ E′ there is (u, v) ∈ E with f (u) = u′ and
f (v) = v′. It will be proper if it is not an isomorphism.

Notice that what is usually called a “subgraph” by graph theorists (cf. [2]) is a homo-
morphic inclusion orweaksubgraph but not necessarily a subgraph in the model theoretic
sense. The last meaning corresponds to what graph theorists call afull subgraph, or induced
subgraph[2], a meaning that will be utilized in this paper unless stated otherwise.

Given a vertexv in a graphG = (V, E), let G− v denote the result of deletingv and all
edges incident withv; that is, the (full) subgraph ofG with universeV−{v}. Similarly, if uv
is an edge ofG thenG−uv denotes the graph obtained by deleting the edgeuv, but not the
verticesu, v. This is not a (full) subgraph ofG. These notations have natural generalizations
G− {v1, . . . , vn} andG−{uv1, . . . ,unvn} for sets of vertices and edges, respectively.

Definition

(a) A subdirect productof a family of graphs{Gi }i∈I is a subgraphG of the cartesian
product

∏
i Gi such that for eachi ∈ I , πi |G : G → Gi is an epimorphism, where
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πi is thei th projection of the product. Asubdirect decompositionof a graphG is an
isomorphism ofG onto a subdirect product.

(b) Given a classC of graphs,G is asubdirectly irreducible graph(s.i.) of C if G ∈ C and
for any subdirect decompositionf : G→∏

i Gi of G with Gi in C, there isi ∈ I such
thatπi ◦ f is an isomorphism.

(c) Subdirect products and decompositions having full projections will be calledfull sub-
direct productsandfull decompositions, respectively. The irreducibles with respect to
full decompositions will be calledfull subdirectly irreducibles( f.s.i.).

Let IC (respectively,FIC) be the class of s.i. (respectively, f.s.i.) graphs of a classC,
thenIC ⊆ FIC because every full decomposition is also a subdirect decomposition.

We recall the definition of direct limits for the specific case of graphs, which we need for
the next theorem (cf. [9]). Adirected systemof graphs consists of a partially ordered set
(I ,≤) where each finite subset has an upper bound, and a family of graph homomorphisms
D={hi j : Gi → G j : i, j ∈ I , i ≤ j } such thathii = I dGi , andh jk ◦ hi j = hik whenever
i ≤ j ≤ k. It is called achain if (I ,≤) is linearly ordered. It is (fully) epimorphicif each
hi j is a (resp., full) epimorphism.

If Gi = (Vi , Ei ), thedirect limit of D is the graphG∗ = (V∗, E∗) whereV∗ consists
of the equivalence classes(a, i )≡ of ∪i Vi × {i } under the equivalence relation:(a, i ) ≡
(b, j ) ⇔ hik(a) = h jk(b) for some k, and the edge relation is:(a, i )≡E∗(b, j )≡ ⇔
hik(a)Ei h jk(b) for some k.

The induced homomophismshi : Gi → G∗ defined byhi (a) = (a, i )≡ are (full) epi-
morphisms wheneverD is (fully) epimorphic.

Subdirect Decomposition Theorem Any graph of a classC closed under direct limits
of chains of( full) epimorphism is a subdirect product of s.i. ofC (resp. a full subdirect
product of f.s.i. ofC).

Proof: Theorem 4 in [6] yields the decomposition into s.i., and it is easily generalized to
yield the full decomposition into f.s.i.,using the fact that the inducedhi are full epimorphims
when all thehi j are. 2

It follows that a class of graphs closed under direct limits of epimorphic directed sys-
tems has both kinds of decompositions. The theorem applies in particular touniversal
Horn classes orquasivarieties, those axiomatized byuniversal Hornsentences:∀x1 . . .∀xn

(∨ j ¬ θ j ∨± θ) with θ, θ j atomic, because these sentences are easily seen to be preserved
by all direct limits. This is the case of the class of all graphs (axioms A1 and A2) or the
class ofn-colorable graphs for finiten (next section).

Let ISP(A) denote the class of structures isomorphic to substructures of products of
elements of a classA. Quasivarieties are closed under products and subgraphs; hence, the
subdirect decomposition theorem implies for them:C = ISP(IC) = ISP(FIC).

The theorem applies also to nonaxiomatizable classes, as the class ofn-chromatic graphs
which is also closed under all direct limits (but not under subgraphs or products): if each
graphsGi of a directed system isn-chromatic, then the direct limitG∗ is n-colorable, being



P1: GRN

Journal of Algebraic Combinatorics KL600-03-CAICEDO June 30, 1998 10:2

160 CAICEDO

a direct limit ofn-colorable graphs. Moreover, the existence of induced homomorphisms
hi : Gi → G∗ impliesn = χ(Gi ) ≤ χ(G∗); hence,χ(G∗) = n.

It applies as well to any class of finite graphs, say the class of finite planar graphs, since
an epimorphic system of finite graphs has for limit any graph in the system with a maximum
number of edges among those having the minimum number of vertices.

Lemma 1 G = (V, E) is a s.i. ( resp., f.s.i.) graph of a classC of graphs if and only if
there are vertices a, b ∈ V satisfying one of the following conditions:
1. a 6= b and h(a) = h(b) for any (resp., full) proper epimorphism h: G → G′ with

G′ ∈ C.
2. aE/b and h(a)Eh(b) for any(resp., full) proper epimorphism h: G→ G′ with G′ ∈ C.

Proof: By Lemma 1 in [6], which also holds for the full epimorphism version. 2

The pair of vertices{a, b} given by the lemma will be called acritical pair of G of type
1 (moduloC) when it satisfies condition 1, andof type2 if it satisfies condition 2.

2. The quasivariety ofn-colorable graphs

Kn will denote thecomplete graph in n vertices({1, . . . ,n}, {(i, j ) | i 6= j }). An n-
coloring of a graphG is a homomorphismf : G → Kn. A graph isn-colorableif it has
ann-coloring. G is n-chromaticif it is n-colorable but not (n− 1)-colorable.

The classCn of n-colorable graphs is an universal Horn class, although it is not finitely
axiomatizable forn ≥ 2, cf. [7, 16]. A simple axiomatization is obtained from axioms A1,
A2 in Section 1, adding the sentences:

θn
k : ∀x1 . . .∀xk

[ ∨
R∈Rn

k

( ∧
(i, j )∈R

¬xi Exj

)]
, k = 1, 2, . . . ,

whereRn
k is the class of all equivalence relations in{1, . . . , k} having at mostn equivalence

classes. Clearly,G |= θn
k if and only if all subgraphs ofG of power at mostk may

be partitioned in at mostn blocks of independent vertices, that is, they aren-colorable.
Therefore, using a compactness argument in caseG is infinite, G |= {θn

k : k ∈ ω} if and
only if G is n-colorable. Now, using distributivity of∨ and∀ over∧, eachθn

k becomes
equivalent to the set of universal Horn sentences of the form

θ f : ∀x1 . . .∀xk

[ ∨
R∈Rn

k

¬x f1(R)Exf2(R)

]
,

where f = ( f1, f2) runs over all choice functions ofRn
k, that is, f (R) = ( f1(R),

f2(R)) ∈ R.
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The complete graphsKi , i ≤ n, are s.i. inCn because there is no proper epimorphism
defined in any of them (irreflexivity). The graphs:

An = Kn+1− {◦–◦} = Kn + {i n + 1 : 2≤ i ≤ n}
Bn = Kn+2− {◦–◦–◦–◦} = Kn + {i n + 1, j n + 2 : 1≤ i, j ≤ n, i 6= 1, j 6= 2}

are also s.i. inCn by Lemma 1. To see this first notice thatf (i ) = i (modn) colors both
graphs. Moreover, any proper epimorphismh : An→ H ∈ Cn must haveh(1)Eh(n+1) or
h(1) = h(n+1); otherwise,H ≈ An. Since the first possibility yieldsH ≈ Kn+1 /∈ Cn, we
must have the second, showing that{1, n+ 1} is a critical pair of type 1 forAn. Similarly,
for any proper epimorphismh : Bn → H ∈ Cn at least one of the pairs{h(1), h(n + 1)},
{h(n+ 1), h(n+ 2)} or {h(n+ 2), h(2)} must be a singleton or an edge. The alternatives
h(1)Eh(n+ 1), h(n+ 1) = h(n+ 2), or h(n+ 2)Eh(2), imply thatH contains a copy of
Kn+1. That leaves the casesh(1) = h(n+ 1), h(n+ 1)Eh(n+ 2), or h(n+ 2) = h(2); all
of which implyh(n+ 1)Eh(n+ 2), becauseh(1)Eh(n+ 2) andh(2)Eh(n+ 1), showing
that{n+ 1, n+ 2} is a critical pair of type 2 forBn.

Theorem 1 Modulo isomorphism, K1, . . . , Kn, An and Bn are all the subdirectly irre-
ducible graphs ofCn, n ≥ 2.

Proof: By the previous remarks these graphs are s.i. They are the only ones by
Corollary 2(b) in Section 3 and the Definition of s.i. 2

Corollary 1 (Nes̆etr̆il and Pultr [12]) Cn= ISP(Bn), that is, any n-colorable graph is
isomorphic to a subgraph of a power of Bn.

Proof: SinceCn is a quasivariety,Cn = ISP(ICn)by the Subdirect Decomposition Theorem,
but all subdirectly irreducible graphs ofCn are easily seen to be subgraphs ofBn. 2

Figure 1 gives the list of subdirectly irreduciblen-colorable graphs forn = 2, 3, 4:

Remarks

1. The only critical pair ofAn is {1, n+1}, of type 1, and the only one ofBn is {n+1, n+2},
of type 2. Moreover, these graphs are uniquelyn-colorable.

2. SinceB4 is planar, Corollary 1 and the4-Color Theorem imply thatC4 is the smallest
universal Horn class containing the classP of all planar graphs. Hence,C4 andP share
all properties describable by classes of universal Horn sentences, and have the same
subdirectly irreducibles. It may be shown, without using the 4-Color Theorem, that any
subdirectly irreducible graph ofP must be maximal planar, and therefore any planar
graph is a subdirect product of maximal planar graphs.

3. In [12], Bn is described as a disjoint sum ofKn−2 and a 3-chain. Wheeler [17] gives a
distinct generator forCn. His generator forC4 is not planar since it contains a subgraph
homeomorphic toK5.
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Figure 1.

3. Full subdirect decompositions

In addition to the complete graphs, the following graphs are f.s.i. inCn due to Lemma 1:

Ai = Ki+1− {◦−◦}, i = 1, . . . ,n,

because any proper full epimorphism defined inAi must identify its unique unconnected
pair, making it critical. Moreover, the following weak subgraphs ofBn:

Bn, j,k = Bn(S, T) =Kn + {i n + 1, m n+ 2 : i ∈ S,m ∈ T},

whereS∪ T = V(Kn), j = |S− T |, k = |T − S|, and 1≤ j ≤ k, because any proper
full epimorphism defined in one of them must identify two elements at least (otherwise, it
would not be full). Now, the only possible identifications are:n+ 1 with somei /∈ S, or
n+ 2 with somem /∈ T , since identifyingn+ 1 with n+ 2 would produceKn+1. In any
case,n+ 1 becomes connected ton+ 2, showing that{n+ 1, n+ 2} is a critical pair for
full epimorphisms.

A straightforward counting shows that there are [n/2]+ (n(n−1)− [n/2])/2= [n2/4];
therefore, the number of such graphs grows quadratically. Evidently,Bn = Bn,1,1. For
bipartite graphs, they reduce toB2. Forn = 3, 4 they are shown in figure 2 (exceptBn).

Figure 2.
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Figure 3.

Theorem 2 Ki , Ai (1≤ i ≤ n) and Bn, j,k (2≤ j + k ≤ n) are all the f.s.i. ofCn.

Proof: By the previous remarks and Corollary 2(a) below. 2

Definition A graphG will be a crown if it has at least two vertices (a andb in figure 3)
connected to all vertices of a covering ofG.

Recall that a (vertex) coveringof G is a set of verticesB such that any edge ofG has at
least one end vertex inB (cf. [2]). The covering of a crown will be called itsbase. The
vertices not in the base form an independent set (a andb at least). They will be called the
topvertices of the crown.

Theorem 3 Any n-chromatic graph distinct form Kn is a full subdirect product of copies
of An and the Bn, j,k. If it is not a crown then it is a full subdirect product of copies of the
Bn, j,k.

Proof: We check that for any pair of distinct verticesa, b in G with aE/b there is a
full epimorphismhab = h′ onto one of the required graphs such thath′(a) 6= h′(b) and
h′(a)E/h′(b). If G is notKn, at least one such pair of vertices will exist, and the nonempty
family {hab}ab will induce the required embedding.

Case 1 h(a) 6= h(b) for any n-coloring h of G. Fix h, then |h−1(h(a))| ≥ 2 and
|h−1(h(b))| ≥ 2; otherwise, for exampleh−1(h(b)) = {b}, we could change the color of
a to that ofbbecauseaE/b, obtaining a coloring that identifies them. Moreover,G−{a, b}
is n-chromatic, otherwise we couldn− 1 color this subgraph and assign toa, b thenth
color, which also contradicts the hypothesis. The functionh′ : G→ Bn. defined by

h′(x) =
h(x) if x 6= a, b

n+ 1 if x = a
n+ 2 if x = b,

will be an epimorphism in vertices withh′(a)E/h′(b), h′(a) 6= h′(b). Moreover, its full
imageh′(G) is someBn, j,k. By n-chromaticity,h′(G− {a, b}) = Kn. If the edges from
n + 1 andn + 2 to Kn in h′(G) did not cover togetherKn then we could assign the
noncovered color ton + 1 andn + 2, obtaining again ann-coloring which identifiesa
andb.
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Figure 4.

Case 2 h(a) = h(b) for somen-coloring h. Fix one suchh with h(a) = h(b) = 1 and
h−1(1) extended to a maximal independent set of vertices (Zorn Lemma). Then we have:

(i) B = ⋃
i 6=1 h−1(i ) is a vertex covering such that anyx ∈ B is connected to some

vertex inh−1(1), otherwisex could be moved toh−1(1) contradicting its maximality.
(ii) a is connected to some vertex ofai ∈ h−1(i ) for eachi 6= 1; otherwise we could

change the color ofa to i , contradicting (i). Similarly,b E bi ∈ h−1(i ) for each
i 6= 1.

Changing the colorh(b) ton+1, yields a full epimorphismh′ : G→ An which separates
and disconnectsa andb.

Subcase 2.1Assume in addition thatG is not a crown, then somed ∈ B is not connected to
a or b, sinceB satisfies all other properties to makeG a crown. However,d is connected
to somec ∈ h−1(1) as noticed in (i) above. Suppose that there is no edge fromd to b,
for example, as shown in figure 4. Thend 6= bi for i 6= 1 (butd may beai ) and we may
define a full epimorphismh′ : G→ Bn which separates and disconnectsa andb by

h′(x) =
h(x) if x 6= b, d

n+ 1 if x = b
n+ 2 if x = d.

h′ is full at least ontoBn,1,n−1 because the edges leavingb cover all original colors distinct
from 1 by condition (ii) and the fact thatd 6= bi , and the edge(d, c) covers the color 1.
Moreover,h′(G − {b, d}) = Kn fully; otherwise, we couldn− 1-colorG − {b, d} and
give the colorn to b andd, contradicting (i). 2

Lemma 3 Each Bn, j,k is a full subdirect product of copies of Kn and Kn+1.

Proof: The following family of full epimorphisms, whereB = Bn({1, . . . , p}, {m, . . . ,
n}), induces a full subdirect decompositionf : B→ Kn+1× K m+n−p−1

n .

f0 : B→ Kn+1, wherei 7→ i for 1≤ i ≤ n+ 1, andn+ 2 7→ n+ 1,

which separates any pair of distinct vertices inB, except{n+ 1, n+ 2}, and maintains the
disconnection betweenn+ 1 andn+ 2 becausef0(n+ 1) = f0(n+ 2);

fr : B→ Kn (r < m), wherei 7→ i for 1≤ i ≤ n, n+ 1 7→ n, andn+ 2 7→ r,
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which maintains the disconnection betweenn+ 1 andr , and separates{n+ 1, n+ 2};

fs : B→ Kn(s> p), wherei 7→ i for 1≤ i ≤ n, n+ 1 7→ s, andn+ 2 7→ 1,

which maintains the disconnection betweenn+ 2 ands. 2

Corollary 2
(a) Any n-colorable graph is a full subdirect product of the graphs Ki , Ai (1 ≤ i ≤ n),

and Bn, j,k (2≤ j + k ≤ n).
(b) Any n-colorable graph is a subdirect product(not necessarily full)of the graphs Ki (1≤

i ≤ n), An, and Bn.

Proof:

(a) Forn-chromatic graphs apply Theorem 3. Fori -chromatic graphs withi < n, Theorem
3 yields a full decomposition ontoAi , Bi, j,k which Lemma 3 allows to transform in a
full decomposition ontoAi , Ki , Ki+1.

(b) A full epimorphismf : G→ Ai (i ≤ n−1) induces an ordinary epimorphismf : G→
Ki+1 (i + 1 ≤ n), and a full epimorphismf : G→ Bn, j,k induces an epimorphism
f : G → Bn. Hence, the full subdirect decomposition provided by (a) becomes an
ordinary subdirect decomposition ontoKi (i ≤ n), An, andBn. 2

4. Pure subdirect decompositions

Sabidussi [15, Theorem 3.6] has shown that any finite graph is a “pure” full subdirect product
containing onlyKi ’s ( pure complete representationof [15]) or containing onlyAi ’s ( pure
almost complete representantion). The next Corollary 3 improves Sabidussi’s theorem by
specifying optimally the values ofi , and Corollary 4 gives a simple answer to his question
[15, p. 1208] about characterizing graphs with “pure complete” representations. Moreover,
the subdirect powers ofKn alone orAn alone,n ≥ 2, are characterized in Corollary 5 of
the next section.

Lemma 4 An n-chromatic crown is a full subdirect product of copies of An and An+1.

Proof: Given ann-chromatic crownG, the subgraphB induced by its base is necessarily
(n− 1)-chromatic. Fix an (n− 1 )-coloringh : B→ Kn−1 (it must be full), and leta andb
be the two vertices connected to all vertices inB. We must show that for any pair of distinct
nonincident verticesx, y, there are full epimorphisms ontoAn or An+1 maintaining them
distinct and disconnected.

Case 1 x, y are top vertices, then one of them (sayx) is distinct fromb. Extendh to
hxy : G → An by sendinga together withx to n, and the other top vertices ton + 1.
Thenhxy is a full epimorphism which separates and disconnectsx and y. There is at
least the epimorphismhab in this family.
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Case 2 x in the top,y in the base, thenhab described in Case 1 separates them. To get an
epimorphism disconnecting them, identifyx andy. This yields a crownG′, having an
(n−1)-chromatic orn-chromatic base. Proceed as in Case 1 to obtain a full epimorphism
onto An or An+1 which identifies and therefore disconnectsx andy.

Case 3 x, y in the base. Identifying them and proceeding as in Case 2 we obtain a full
epimorphism ontoAn or An+1 which maintains them disconnected. Ifh may be chosen so
thath(x) 6= h(y), the extensionhab maintains them distinct. Otherwise,h(x) = h(y) =
i and each ofx, y must be connected to some vertex inh−1( j ), for all j 6= i, 1 ≤ j ≤
n − 2 (if not, colors could be changed to haveh(x) 6= h(y)). Modify and extendh by
sendingx to n, all vertices inh−1(i ) − {x} to n + 1, and all the top vertices toi . This
yields a full epimorphism ontoAn which separatesx andy. 2

Corollary 3 Any n-chromatic graph G is a full subdirect product of copies of Kn and
Kn+1 or a full subdirect product of copies of An and An+1.

Proof: If G is not a crown, it is a subdirect product ofKn andKn+1 by Theorem 3 and
Lemma 3. IfG is a crown, apply Lemma 4. 2

Corollary 4 The following are equivalent for a finitely colorable graph:
(i) G is a full subdirect product of complete graphs.

(ii) G is a full subdirect product of copies of Kn or Kn+1 where n= χ(G).
(iii ) G is not a crown.

Proof:
(iii) ⇒ (ii) ⇒ (i) If G is not a crown, apply Theorem 3 and Lemma 3. (i)⇒ (iii) A crown
G cannot be a full subdirect product ofKi ’s because no full epimorphismh : G → Ki

separates the top verticesa andb. Any edge (u, v) in G has a vertex in the base which must
be incident with botha andb , assume it isu, so thath(u) 6= h(a), h(b). Then(h(u), h(v))
cannot connecth(a) with h(b) in Ki . As any edge ofKi is of this form if h is full, then
h(a) = h(b). 2

5. Freely jointly and disjointly n-colorable graphs

A graphG is jointly (respectively,disjointly) n -colorable if for any pair of verticesa, b in G
with a 6= b,aE/b there is ann-coloringc of G with c(a) = c(b) (respectively,c(a) 6= c(b)).
G is freely n-colorable if both conditions are satisfied.

The classesJn,Dn, andFn, of jointly, disjointly, and freelyn-colorable graphs, respec-
tively, are universal Horn classes. An axiomatization ofJn is given by the sentences

∀x1 . . .∀xk

[
x1Ex2 ∨

∨
(1,2)∈R∈Rn

k

( ∧
(i, j )∈R

¬xi Exj

)]
, k = 1, 2, . . .
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which state the existence of the desired colorings for all subgraphs of sizek = 1, 2 . . .
Similarly,Dn, is axiomatized by the sentences

∀x1 . . .∀xk

[
x1 = x2 ∨

∨
(1,2)6∈R∈Rn

k

( ∧
(i, j )∈R

¬xi Exj

)]
, k = 1, 2, . . .

andFn is axiomatized by the union of both sets of sentences. As in Section 2, these
sentences may be reduced to universal Horn sentences. None of these quasivarieties may
be finitely axiomatizable, cf. [7].

Theorem 4 Fn = ISP(Kn),Jn = ISP(An).

Proof: If G is freely n-colorable and not complete, no pair{a, b} of G with a 6= b or
aE/b can be critical since there are proper epimorphic coloringsh : G → Km ∈ Fn with
h(a) 6= h(b) or h(a) = h(b) (which impliesh(a)E/h(b)). Hence, only complete graphs
may be s.i. inFn. Therefore,Kn generatesFn by the subdirect decomposition theorem.

SinceAn ∈ Jn andJn is a quasivariety then ISP(An) ⊆ Jn. Reciprocally, ifG ∈ Jn is
n-chromatic distinct fromKn then for pairs ofG only Case 2 of the proof of Theorem 3
arises, and soG becomes a (full) subdirect power ofAn. If G is Kn or i -chromatic fori < n
then it is freelyn -colorable, hence, embeddable in a power ofKn, and so embeddable in
one ofAn. 2

Corollary 5
(a) An n-chromatic graph is a full subdirect power of Kn if and only if it is freely n-colorable.
(b) An n-chromatic graph is a full subdirect power of An if and only if it is jointly n-

colorable, and distinct from Kn.

Proof:

(a) By Theorem 4,G is freelyn-colorable if and only if it has an embedding intoK I
n . Each

projection of this representation must be full ifG is n-chromatic.
(b) Shown in the second part of the proof of Theorem 4. 2

We have proper inclusions:Fn ⊂ Jn andCn,Dn ⊂ Cn sinceAn ∈ Jn−Dn andBn ∈ Cn

− (Jn ∪Dn). The inclusionFn ⊆ Dn is more problematic. It is proper forn ≥ 4 because
Bn,2,2 ∈ Dn − Jn, where

Bn,2,2 = Kn + {i n + 1, j n + 2 : 1≤ i, j ≤ n, i 6= 1, 2, j 6= 3, 4},

since colors 1 and 2 are available for the vertexn+ 1 and colors 3, 4 for the vertexn+ 2,
and only those. But we do not know if the inclusionF3 ⊆ D3 is proper. On the other hand,
it may be seen thatF2 = D2, utilizing Theorem 4, because ISP(K2)={disjoint unions of
isolated vertices and edges} =D2.
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Bn,2,2 is subdirectly irreducible inDn (n ≥ 4) with critical pair{b+ 1, n+ 2}; however,
we have not been able to determine generators for the classDn, n ≥ 3.

Questions DoesF3 = D3? DoesBn,2,2 generateDn for n ≥ 4?
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