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Abstract. Duality maps of finite abelian groups are classified. As a corollary, spin models on finite abelian
groups which arise from the solutions of the modular invariance equations are determined as tensor products of
indecomposable spin models. We also classify finite abelian groups whose Bose-Mesner algebra can be generated
by a spin model.
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1. Introduction

Although the duality property of Bose-Mesner algebras of commutative association schemes
was essentially given by Kawada [11], Jaeger [6] was probably the first to regard self-duality
as the existence of a so-called duality map. The group algebra of a finite abelian group
X can be thought of the Bose-Mesner algebra of its group association scheme. In this
case a duality map is essentially equivalent to an isomorphismψ : x 7→ ψx from X to its
character group̂X such thatψx(y) = ψy(x) for any x, y∈ X. In other words, a duality
map is an isomorphism fromX onto X̂ such that, if we arrange elements ofX̂ and X in
rows and columns of the character table according to the correspondenceψ , the chracter
table becomes a symmetric matrix. A duality map always exists in a finite abelian group.
Indeed, whenX is cyclic, then any isomorphism ofX and X̂ is a duality map. IfX is not
cyclic, thenX can be decomposed into a product of cyclic groups, and one can obtain a
duality map ofX as the natural product of those of cyclic factors (see [5], 2.10.7). The
purpose of this paper is to classify duality maps of finite abelian groups. If the groupX has
an odd order, it turns out that any duality map ofX is a product of duality maps of factors
of some cyclic decomposition ofX. If the groupX has even order, the situation is more
complicated, but the classification reduces to the case whereX is the product of two cyclic
2-groups of the same order.

Motivation of this work comes from spin models on finite abelian groups. If a spin model
generates a Bose-Mesner algebra in a certain sense, then it comes from a solution of the
modular invariance equation with respect to a duality map, as shown in [4]. Also in [4],
all solutions of the modular invariance equations for the Bose-Mesner algebras of finite
abelian groups were determined. However, the modular invariance equation depends on the
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duality map of the finite abelian group. Thus the nature of solutions and the structure of the
resulting spin models depend on the duality map. We shall show that, if the duality map
is a product of duality maps of the direct product decomposition, then the solutions of the
modular invariance equation are tensor products of the solutions of the modular invariance
equations in the direct product components, hence the resulting spin models are tensor
products of spin models on direct product components. Since the partition function of a
tensor product of spin models is the product of the partition functions of each spin model,
our work has fundamental importance on the determination of link invariants defined by
spin models on finite abelian group. We also classify spin models on finite abelian groups
which generate the Bose-Mesner algebras of the groups. It turns out that a spin model can
generate the Bose-Mesner algebra of a finite abelian group if the group is cyclic or the Klein
four groupZ/2Z×Z/2Z.

2. Duality maps of Bose-Mesner algebras

A Bose-Mesner algebraA is a commutative subalgebra of the full matrix algebraMn(C)
which is closed under the Hadamard (entrywise) product, is closed under the transposition
map, and contains the all one matrixJ. A duality map9 of A is a linear isomorphism of
A ontoA such that

9(AB) = 9(A) ◦9(B) A, B ∈ A,

92 = nτ

hold, where◦ denotes the Hadamard product andτ denotes the transposition map. In this
paper we shall only consider Bose-Mesner algebras of finite abelian groups defined as
follows. Let X be a finite abelian group of ordern. For each elementx ∈ X, define the
adjacency matrixAx by

(Ax)y,z =
{

1 if y− z= x

0 otherwise

These matrices span a subalgebraA of Mn(C) of dimensionn, isomorphic to the group
algebra ofX. ClearlyA becomes a Bose-Mesner algebra, and its primitive idempotents
are given by

Eχ = 1

n

∑
x∈X

χ(x)Ax

whereχ runs through the character groupX̂ of X. The first condition of duality map is
equivalent to9(Eχ ) = Ax for somex ∈ X. Thus9 determines a bijectionψ : X → X̂,
x 7→ ψx via the rule9(Eψx ) = Ax. The second condition of duality map is then equivalent
to

ψx(y) = ψy(x) for anyx, y∈ X. (1)

This condition implies thatψ is an isomorphism fromX onto X̂.
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These observations lead us to define duality maps of finite abelian groups as follows. A
dualtiy mapψ of a finite abelian groupX is an isomorphism fromX to X̂ satisfying (1).

If ψ is a duality map of the finite abelian groupX, then we callP = (ψx(y))x,y∈X the
character table ofX associated withψ . Of course, the character table ofX is uniquely
determined up to permutation of rows and permutation of columns, but the character table of
X associated with a duality map is determined uniquely up tosimultaneouspermutation of
rows and columns. Note that the character table associated with a duality map is a symmetric
matrix, and indeed, a duality map is precisely a bijection betweenX̂ and X according to
which the arrangement of rows and columns of a character table ofX makes the character
table symmetric.

It is well known and easy to see that the character table of a direct product of groups
is the tensor product of character tables of each group. It is also obvious that the tensor
product of symmetric matrices is again symmetric. Thus a natural question arises: when is
the character table of a finite abelian group associated with a duality map the tensor product
of character tables of direct product components? The answer to this question will be given
in the next two sections.

3. Duality maps and direct products

A homocyclic group is a direct product of cyclic groups of the same order. Any finite abelian
group can be decomposed into a direct product of homocyclicp-groups. In this section
we reduce the classification of duality maps of finite abelian groups to the case where the
group is a homocyclicp-group.

Lemma 1 Letψ be a duality map of a finite abelian group X, and suppose that X is the
direct product of X1 and X2. The following conditions are equivalent.
(i) ψx1(x2) = 1 for any x1 ∈ X1, x2 ∈ X2.

(ii) There exist duality mapsψ(1), ψ(2) of X1, X2, respectively, such thatψx1+x2(y1+ y2) =
ψ(1)

x1
(y1)ψ

(2)
x2
(y2) for any x1, y1 ∈ X1, x2, y2 ∈ X2.

Proof: Suppose that (i) holds. Defineψ(1) : X1→ X̂1 by x1 7→ ψx1|X1. If ψx1|X1 = 1X1,
then by the assumption (i),ψx1|X2 = 1X2, so thatψx1 = 1X. Thusx1 = 0, i.e.,ψ(1) is
injective. Since|X1| = |X̂1|, the mappingψ(1) is an isomorphism. Similarly, we can
defineψ(2) : X2 → X̂2 and prove thatψ(2) is an isomorphism. Then forx1, y1 ∈ X1 and
x2, y2 ∈ X2,

ψx1+x2(y1+ y2) = ψx1(y1)ψx1(y2)ψx2(y1)ψx2(y2)

= ψx1(y1)ψx2(y2)

= ψ(1)
x1
(y1)ψ

(2)
x2
(y2).

Conversely, assume (ii). Then forx1 ∈ X1, x2 ∈ X2, we have

ψx1(x2) = ψ(1)
x1
(0)ψ(2)

0 (x2) = 1,

so that (i) holds. 2
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Definition Letψ be a duality map of a finite abelian groupX, and suppose thatX is the
direct product ofX1 and X2. If one of the equivalent conditions of Lemma 1 is satisfied,
we say thatψ splits overX1× X2, and thatψ is the product of duality mapsψ(1), ψ(2).

It follows immediately from the definition that ifX = X1 × X2 with |X1| and |X2|
relatively prime, then any duality map ofX splits overX1×X2. Note that any finite abelian
group is a direct product ofp-groups. Thus, the classification of duality maps of finite
abelian groups is reduced to that of duality maps of finite abelianp-groups.

Lemma 2 Let X be a finite abelian p-group of exponent pn, ψ a duality map of X. Then
there is a direct product decomposition X= X1 × X2 such that the following conditions
hold.

(i) X1 is a homocyclic group of exponent pn,

(ii) X2 has exponent at most pn−1,

(iii) ψ splits over X1× X2.

Proof: By the fundamental theorem of finite abelian groups, there is a direct product de-
compositionX= X1× X′1 such thatX1 is a homocyclic group of exponentpn, X′1 has ex-
ponent at mostpn−1. We claim that the mappingψ(1) from X1 to X̂1 defined byx1 7→ψx1|X1

is an isomorphism. It suffices to show thatψ(1) is injective. Suppose thatx1 is a nonzero
element ofX1 contained in the kernel ofψ(1). SinceX1 is generated by elements of order
pn, there exists an elementx0 ∈ X1 of order pn such thatx1 is contained in the subgroup
generated byx0. It follows thatψx0|X1 has order at mostpn−1. SinceX′1 has exponent at
most pn−1, ψx0|X′1 has order at mostpn−1. Thus,ψx0 has order at mostpn−1, which is a
contradiction sinceψ is an isomorphism.

Now define

X2 = {x ∈ X | ψx(x1) = 1 for anyx1 ∈ X1}.

From the above claim we see

X1 ∩ X2 = {y1 ∈ X1 | ψy1(x1) = 1 for anyx1 ∈ X1} = Kerψ(1) = 0.

It remains to show thatX is generated byX1 and X2. If x ∈ X, thenψx|X1 ∈ x̂1, so the
claim implies that there exists an elementx1∈ X1 such thatψx|X1 =ψx1|X1. In other words,
ψx−x1|X1 = 1X1, hencex − x1∈ X2. 2

Applying Lemma 2 repeatedly, we see that any duality map of a finite abelianp-group
X splits over some decomposition ofX into homocyclicp-groups. Summarizing the results
obtained in this section, we have the following proposition.

Proposition 3 Let X be a finite abelian group, ψ a duality map of X. Thenψ splits over
some decomposition of X into homocyclic p-groups.
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4. Symmetric bilinear forms on homocyclicp-groups

By Proposition 3, the classification of duality maps of finite abelian group is reduced to
that of duality maps of homocyclicp-groups. In this section we classify duality maps of
homocyclicp-groups. LetX be a homocyclicp-group(Z/pnZ)m, wheren,m are positive
integers andp is a prime. We regardX as a freeR-module of rankm whereR= Z/pnZ.
Then we see that duality maps ofX are in one-to-one correspondence with nondegenerate
symmetricR-bilinear forms onX. Indeed, if we fix a primitivepn-th root of unityζ , a
duality mapψ uniquely determines a nondegenerate symmetricR-bilinear formB on X by
the rule

ζ B(x,y) = ψx(y), x, y ∈ X. (2)

If X is a direct product of subgroupsX1 andX2, thenX is a direct sum ofR-submodules
X1 and X2. Then a duality mapψ of X splits overX1 × X2 if and only if X1 and X2

are orthogonal with respect to the symmetric bilinear formB. Using the classification of
nondegenerate symmetric bilinear form over the ring ofp-adic integersZp, we obtain the
following.

Proposition 4 Let X be a homocyclic p-group of exponent pn, ψ a duality map of X.
(i) If p 6= 2, thenψ splits over some decomposition of X into a direct product of cyclic

groups.
(ii) If p = 2, thenψ splits over some decomposition X1 × · · · × Xk of X, where each Xi

is either cyclic or the direct product of two cyclic groups, and in the latter case, for
some decomposition Xi =〈a1〉× 〈a2〉, the restriction of the duality map to Xi is given
by either
(a) ψa1(a1) = ψa2 (a2) = 1, ψa1 (a2) = ζ,
(b) ψa1(a1) = ψa2 (a2) = ζ 2, ψa1 (a2) = ζ,
whereζ is a primitive2n-th root of unity.

Proof: Suppose thatX has rankm. Let B be the nondegenerate symmetric bilinear form
on X defined by (2). LetX̃ be a freeZp-module of rankm and identifyX with X̃/pn X̃.
Let B̃ be a nondegenerate symmetric bilinear form onX̃ such thatB = B̃ (mod pn) . If
p 6= 2, then there exists an orthogonal basis ofX̃ with respect toB̃ by [13], Theorem 5.2.4.
Reducing modulopn, we find an orthogonal basis ofX with respect toB. Thusψ splits
over some decomposition ofX into cyclic groups. Ifp = 2, then by [13], Theorem 5.2.5,
we have either an orthogonal basis ofX̃, or an orthogonal decompositioñX1 ⊥ · · · ⊥ X̃k

of X̃ such that each̃Xi has rank 2 and̃B|X̃i
= ( 0 1

1 0) or ( 2 1
1 2) with respect to a suitable

basis ofX̃i . Reducing modulo 2n, we have either an orthogonal basis ofX with respect
to B, or an orthogonal decompositionX1× · · · × Xk of X with respect toB such that the
restriction of the duality mapψ to Xi is of the desired form. 2

Remark Theorem 5.2.5 of [13] actually claims that the number of factorsXi with duality
map of the form (b) is at most one.
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Combining Proposition 3 and Proposition 4 we have the following theorem.

Theorem 5 Let X be a finite abelian group, ψ a duality map of X. Thenψ splits over
some decomposition X1× · · · × Xk of X, where each Xi is either a cyclic p-group for
some prime p, or the direct product of two cyclic2-groups of the same order, and in the
latter case, for some decomposition Xi = 〈a1〉× 〈a2〉, the restriction ofψ to Xi is given
by either
(i) ψa1(a1) = ψa2(a2) = 1, ψa1(a2) = ζ,
(ii) ψa1(a1) = ψa2(a2) = ζ 2, ψa1(a2) = ζ,
whereζ is a primitive2n-th root of unity, 2n is the exponent of Xi .

5. Spin models on finite abelian groups

In this section we consider spin models obtained from solutions of the modular invariance
equations of finite abelian groups. First, we give the definition of spin models, then discuss
the modular invariance equation with respect to a duality map of a Bose-Mesner algebra.

Definition A spin model is a quadruple(X,W+,W−; D), whereX is a finite nonempty
set of sizen, D is one of the square roots ofn, andW+,W− are matrices of sizen indexed
by X satisfying the following properties:

(1) t W+ ◦W− = J, whereJ is a matrix whose entries are all 1,
(2) W+W− = nI,
(3)

∑
x∈X W+(α, x)W+(x, β)W−(x, γ )= DW+(α, β)W−(β, γ )W−(α, γ ) for all α, β,

γ ∈ X.

It is known that spin models give invariants of links. For more information concerning
spin models see [2, 7, 9, 12]. In this paper, however, we shall only deal with spin models
which are defined on a finite abelian group, i.e., we assume thatX is a finite abelian group
and W+ (and consequentlyW−) is contained in the Bose-Mesner algebra ofX. We say
that a spin model(X,W+,W−; D) generates a Bose-Mesner algebraA if W−, t W− andJ
generateA. The following result can be found in [4].

Theorem 6 Suppose that(X,W+,W−; D) is a spin model which generates the Bose-
Mesner algebra of a finite abelian group X. Let W− =

∑
x∈X tx Ax. Then there exists a

duality mapψ such that

(P1)3 = t0D3I (3)

holds, where P is the character table associated withψ, 1 = diag(tx; x ∈ X).
Conversely, if the complex numbers tx (x ∈ X) satisfy the Eq.(3), then(X,W+,W−; D)

becomes a spin model, where W− =
∑

x∈X tx Ax and W+ = |X|W−1
− .

The Eq. (3) is called the modular invariance equation with respect to the character
tableP. Given a character tableP associated with a duality map of a finite abelian group,
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solutions of the modular invariance equation are completely determined in [4]. Indeed, if
P = (ψx(y))x,y∈X, then the modular invariance equation (3) is equivalent to

ψx(y)txty = t0tx+y, x, y ∈ X,

t0 = D−1
∑
x∈X

t−1
x ,

(4)

from which an explicit form of solutions can be derived ([4], Theorem IV.4). Using the
classification of duality maps obtained in the previous section, we can give more precise
information about spin models appearing in Theorem 6. If a spin model is obtained from
a solution of the modular invariance equation with respect to the character table associated
with a duality mapψ as in the second part of Theorem 6, let us say for brevity that it is
associated with the duality mapψ of the finite abelian groupX.

Lemma 7 Let X be an abelian group, P the character table of X associated with a duality
mapψ of X. Assume that X= X1× X2 for some subgroups X1 and X2, and thatψ is the
product of duality mapsψ(1), ψ(2) of X1, X2, respectively. Let P1, P2 be the character table
of X1, X2 associated withψ(1), ψ(2), respectively. If1 = diag(tx; x ∈ X) is a solution of
the modular invariance equation(3), D2

i = |Xi |(i = 1, 2), and D1D2 = D, then there
exist solutions1i = diag(t (i )x ; x ∈ Xi ) of the modular invariance equations with respect to
Pi , i = 1, 2, such that tx1+x2 = t (1)x1

t (2)x2
holds for any x1 ∈ X1 and x2 ∈ X2.

Proof: Sinceψ splits overX1× X2 we haveψx1(x2)= 1, hence we havetx1+x2 = tx1tx2t
−1
0

for anyx1 ∈ X1, andx2 ∈ X2. Let t (i )0 be one of the square roots oft0D−1
i

∑
x∈Xi

t−1
x . Then(

t (1)0 t (2)0

)2= (t0)2D−1
1 D−1

2

∑
x1∈X1

t−1
x1

∑
x2∈X2

t−1
x2
= t0D−1

∑
x∈X

t−1
x = (t0)2.

This means that we can chooset (i )0 so thatt (1)0 t (2)0 = t0 holds. Now define1i = diag(t (i )x )x∈Xi

by t (i )x = txt−1
0 t (i )0 for x ∈ Xi , i = 1, 2. Then we obtaintx1+x2 = tx1tx2t0

−1= tx1t
−1
0 t (1)0 tx2t

−1
0

t (2)0 = t (1)x1
t (2)x2

for xi ∈ Xi , i = 1, 2. Moreover, for anyx, y ∈ Xi we haveψx(y)t (i )x t (i )y =
ψx(y)txtyt−2

0 (t (i )0 )
2= tx+yt−1

0 (t (i )0 )
2= t (i )x+yt (i )0 . Also∑

x∈Xi

(
t (i )x

)−1 =
∑
x∈Xi

t−1
x t0

(
t (i )0

)−1 = t−1
0 Di

(
t (i )0

)2
t0
(
t (i )0

)−1 = Di t
(i )
0 .

Thus,1i is a solution of the modular invariance equation with respect to the character table
Pi of Xi , for i = 1, 2. 2

If 1 = diag(tx; x ∈ X) satisfies the hypotheses of Lemma 7 andW− =
∑

x∈X tx Ax,
then we have

W− =
∑

x1∈X1

∑
x2∈X2

t (1)x1
t (2)x2

Ax1+x2 =
( ∑

x1∈X1

t (1)x1
Ax1

)
⊗
( ∑

x2∈X2

t (2)x2
Ax2

)
.
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ThusW− is a tensor product of matrices of spin models onX1 andX2. This observation,
together with Theorems 5 and 6 implies the following theorem.

Theorem 8 Let (X,W+,W−; D) be a spin model on a finite abelian group X. Then it is
associated with a duality map of X if and only if it is a tensor product of some spin models
(Xi ,W

(i )
+ ,W

(i )
− ; Di ), i = 1, . . . , k satisfying the following conditions:

(i) (Xi ,W
(i )
+ ,W

(i )
− ; Di ) is associated with a duality mapψ(i ) of Xi , where Xi is either a

cyclic p-group for some prime p, or a direct product of two cyclic2-groups of the same
order, and in the latter case, ψ(i ) is given in Theorem5.

(ii) X ∼= X1× · · · × Xk, and D=∏k
i=1Di .

A spin model is said to be decomposable if it is a tensor product of two nontrivial spin
models. It is a consequence of Theorem 8 that, if a spin model on a finite abelian group
X associated with a duality map is indecomposable, then the groupX is either a cyclic
p-group for some primep, or a direct product of two cyclic 2-groups of the same order with
the duality map given in Theorem 5. In order to prove the converse of this statement, we
need some preparation. Given a spin modelW = (X,W+,W−; D) the algebra of matrices
havingYα,β (α, β ∈ X) as eigenvectors will be denoted byN(W), where

(Yα,β)γ = W+(γ, α)
W+(γ, β)

, γ ∈ X.

More precisely, the algebraN(W) is defined to be

N(W) = {M ∈M|X|(C) | ∀α, β ∈ X, ∃λαβ ∈ C : MYαβ = λαβYαβ}.

It is shown by Jaeger-Matsumoto-Nomura [8] thatN(W) is a Bose-Mesner algebra. More-
over, ifW is a spin model on a finite abelian groupX, thenW is associated with a duality
map ofX if and only if N(W) coincides with the Bose-Mesner algebra ofX. If a spin model
W is a tensor product of spin modelsW1,W2, thenN(W) ∼= N(W1)⊗ N(W2) holds (see
[8]).

Theorem 9 LetW = (X,W+,W−; D) be a spin model on a finite abelian group X as-
sociated with a duality map. Suppose X is either a cyclic p-group for some prime p, or
a direct product of two cyclic2-groups of the same order with the duality map given in
Theorem5. ThenW is indecomposable.

Proof: Suppose contrary and assume thatW is a tensor product of nontrivial spin models
W1,W2. Then by the above remark,|X| = dim N(W) = dim N(W1) dim N(W2). Since
dim N(Wi ) cannot exceed the size ofWi (whose product is|X|), it follows that dimN(Wi )

coincides with the size ofWi . Such a Bose-Mesner algebra is necessarily the Bose-Mesner
algebra of a finite abelian group. Thus,N(W) is a tensor product of two Bose-Mesner
algebrasN(W1), N(W2) of finite abelian groups. This implies thatX is a direct product
of two nonidentity abelian groups, henceX is not a cyclicp-group. NowX is a product of
two cyclic 2-groups of the same order, sayX1, X2, andWi = (Xi ,W

(i )
+ ,W

(i )
− ; Di ). Again
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by the above remark,Wi is associated with a duality map ofXi . If X1 has order 2m, then
it follows from [4], Theorem IV.4, that for any solution(tx)x∈X1 of the modular invariance
equation inX1, ta1/t0 is a primitive 2m+1-th roof of unity, wherea1 is a generator ofX1.
This implies that the matrixW(1)

− (0, 0)−1W(1)
− contains a primitive 2m+1-th roof of unity,

and so doesW−(0, 0)−1W−. On the other hand, the entries ofW−(0, 0)−1W− are obtained
from a solution of the modular invariance equation associated with a dualtiy map given in
Theorem 5. It follows from [4], Theorem IV.4, that, in either case (i) or (ii) of Theorem 5,
all entries ofW−(0, 0)−1W− are 2m-th roof of unity. This is a contradiction. 2

6. Spin models generating the Bose-Mesner algebra of a finite abelian group

It is interesting to know when a spin model associated with a duality map of a finite abelian
group generates the corresponding Bose-Mesner algebra. A complete classification is given
in [1] for the cyclic case, using the following criterion ([1], Proposition 11).

Proposition 10 LetW = (X,W+,W−; D) be a spin model on a finite abelian group X,
W− =

∑
x∈X tx Ax. Then the spin modelW does not generate the Bose-Mesner algebra

of X if and only if there exist distinct nonzero elements x, y of X such that tx = ty and
t−x = t−y.

If a spin modelW generates the Bose-Mesner algebra of a finite abelian groupX and
it is a tensor product of spin models(Xi ,W

(i )
+ ,W

(i )
− ; Di ) on subgroupsXi , then clearly

the spin models(Xi ,W
(i )
+ ,W

(i )
− ; Di ) generate the Bose-Mesner algebras ofXi for all i .

The converse is not true in general. Indeed, a spin model cannot generate the Bose-Mesner
algebra of a noncyclic group exceptZ/2Z× Z/2Z, as we shall see.

Proposition 11 Let X=〈a1〉× 〈a2〉 be the direct product of two cyclic groups of the same
order 2n. Then any spin model associated with a duality map defined in Theorem5, (i) or
(ii) , does not generate the Bose-Mesner algebra of X.

Proof: Let1 = diag(tx)x∈X be a solution of the modular invariance equation(P1)3 =
t0D3I , whereD2= |X| =22n. If n= 1, then the two cases (i) and (ii) of Theorem 5 become
equivalent. Moreover, in these cases, by [4], Theorem IV.4, we havetx/t0 = ±1 for any
x ∈ X. This implies that there exist distinct nonzero elementsx, y of X such thattx = ty.
Sincex = −x andy = −y, Proposition 10 implies that the spin model obtained from1
does not generate the Bose-Mesner algebra ofX. Next supposen > 1. By [4], Theorem
IV.4,

tx = t0ζ
s1x1+s2x2+x1x2,

for the duality map defined by Theorem 5(i), and

tx = t0ζ
x2

1+x2
2+s1x1+s2x2+x1x2,
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for the duality map defined by Theorem 5(ii), wheres1 ands2 are in {0, 1, . . . ,2n − 1}
andx= x1a1 + x2a2 ∈ X. If s1 − s2 is even, then takex=a1 + (1− 2n−1)a2 and y =
(1− 2n−1)a1 + a2. Then for both casesx 6= 0, y 6= 0, x 6= y, tx = ty and t−x = t−y.
Hence by Proposition 10, the corresponding spin model does not generate the Bose-Mesner
algebra ofX. If s1 − s2 is odd, then one ofs1, s2 is odd and the other is even. Without
loss of generality we may assume thats1 is odd ands2 is even. Takex=a1+a2 and
y = (1− 2n−1)a1 + a2. Then for both casesx 6= 0, y 6= 0, x 6= y, tx = ty andt−x = t−y.
Hence, similarly the corresponding spin models do not generate the Bose-Mesner algebra
of X. 2

Lemma 12 LetW = (X,W+,W−; D) be a spin model on a finite abelian group X.
(i) If X ∼= Z/2Z × Z/4Z, thenW does not generate the Bose-Mesner algebra of X.
(ii) If X ∼= Z/2Z × Z/2Z andW generates the Bose-Mesner algebra of X, then there

exists a nonzero element x∈ X such that t0 = tx.

Proof:

(i) If W generates the Bose-Mesner algebra ofX = Z/2Z × Z/4Z then it is obtained
from a solution1 = diag(tx; x ∈ X) of the modular invariance equation with respect
to a character tableP which is of the formP1 ⊗ P2, whereP1 is a character table of
Z/2Z, P2 is a character table ofZ/4Z. By going through all solutions of the modular
invariance equation given in [4], Theorem IV.4, we can show that there always exist
two distinct nonzero elementsx, y ∈ X such thattx = ty and t−x = t−y hold. This
contradicts Proposition 10.

(ii) By Theorem 6, the spin modelW is obtained from a solution1= diag(tx; x ∈ X)
of the modular invariance equation with respect to the character tableP associated
with a duality mapψ . By Theorem 5 and Proposition 11, the duality mapψ must
split. By going through all solutions of the modular invariance equation given in [4],
Theorem IV.4, we can show that there always exist two distinct nonzero elements
x, y ∈ X such thattx = ty andt−x = t−y hold, if t0 6= tx for any 0 6= x ∈ X. 2

Theorem 13 LetW = (X,W+,W−; D) be a spin model on a finite abelian group X. If
W generates the Bose-Mesner algebra of X, then X is cyclic or X∼= Z/2Z× Z/2Z.

Proof: Let W− =
∑

x∈X tx Ax. From (4) we see that the mappingχ(x)= txt−1
−x is a char-

acter ofX. If Kerχ contains an elementz of order greater than 2, then we havetz = t−z

andz 6= −z, contradicting Proposition 10. Thus Kerχ is an elementary abelian 2-group.
Let us write X = X1 × X2, whereX1 is a group of odd order,X2 is a 2-group. Since
X/Kerχ is isomorphic to a subgroup of the group of roots of unity,X/Kerχ is cyclic.
Since Kerχ ⊂ X2, we see thatX1 is cyclic. On the other hand, it follows from (4) that
(tx/t0)4 = 1 for any involutionx. If there are more than four involutions inX, then we
can find two distinct involutionsx, y such thattx/t0 = ty/t0, contradicting Proposition 10.
Thus the number of involutions is at most four. This implies thatX2 is a direct product
of at most two cyclic 2-groups. IfX2 is cyclic, then so isX, we are done. SupposeX2 is
not cyclic. SinceX2/Kerχ is cyclic and Kerχ is an elementary abelian 2-group, we see
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that X2
∼= Z/2Z × Z/2mZ for some positive integerm. If m ≥ 3, then we would have a

generating spin model inZ/2mZ, which is impossible by [1], Proposition 12. Ifm = 2,
then we would have a generating spin model onZ/2Z × Z/4Z, which is impossible by
Lemma 12(i). Ifm= 1, then we have a generating spin model onX2

∼= Z/2Z×Z/2Z, so
that by Lemma 12(ii) there exists an elementx2 ∈ X2 such thatt0 = tx2. If X1 6= 0, then
pick any nonzero elementx of X1, and puty = x + x2. Then by (4) we havetx = ty and
t−x = t−y, but this contradicts Proposition 10. ThereforeX = X2

∼= Z/2Z× Z/2Z. 2
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