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Abstract. The linear span of isomorphism classes of posets,P, has a Newtonian coalgebra structure. We
observe that theab-index is a Newtonian coalgebra map from the vector spaceP to the algebra of polynomials
in the noncommutative variablesa andb. This enables us to obtain explicit formulas showing how thecd-index
of the face lattice of a convex polytope changes when taking the pyramid and the prism of the polytope and the
corresponding operations on posets. As a corollary, we have new recursion formulas for thecd-index of the
Boolean algebra and the cubical lattice. Moreover, these operations also have interpretations for certain classes of
permutations, including simsun and signed simsun permutations. We prove an identity for the shelling components
of the simplex. Lastly, we show how to compute theab-index of the Cartesian product of two posets given the
ab-indexes of each poset.

Keywords: coalgebra,cd-index, convex polytope, Eulerian poset

1. Introduction

The cd-index is an efficient way to encode the flagf -vector (equivalently the flagh-
vector) of an Eulerian poset. It gives an explicit basis for the generalized Dehn-Sommerville
equations, also known as the Bayer-Billera relations [1]. An important example of an
Eulerian poset is the face lattice of a convex polytope.

In this paper we study how thecd-index of the face lattice of a convex polytope changes
after applying each of the following geometric operations to the convex polytope itself:
taking the pyramid, taking the prism, truncating at a vertex, and pasting two polytopes
together at a common facet. All four of these operations act on the face lattice of the
polytope. The change in thecd-index from the pasting operation follows from a result of
Stanley [20, Lemma 2.1]. Similarly, the change from truncating at a vertex follows from
the same result of Stanley and the pyramid and prism operations.

To understand how thecd-index changes under the prism and pyramid operations, we
considerP, the linear span of isomorphism classes of graded posets. This vector space is an
algebra under the star product∗ of posets, first described by Stanley [20]. More importantly,
P has a coalgebra structure. The pair formed by the star product∗ and the coproduct1 do
not form a bialgebra, but instead a Newtonian coalgebra, a concept introduced by Joni and
Rota [13]. The main observation we make is that thecd-index is a Newtonian coalgebra
map from the vector spaceE spanned by all isomorphism classes of Eulerian posets to the
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algebraF of polynomials in the noncommutative variablesc andd. We thus obtain that the
prism operation corresponds to a certain derivationD oncd-polynomials, and the pyramid
operation corresponds to a second derivationG. Hence, given thecd-index of a polytope,
we may easily compute thecd-index of the prism and the pyramid of the polytope with the
help of these two derivations. Using these two derivations, we obtain new explicit recursion
formulas for thecd-index of the Boolean algebraBn and the cubical latticeCn.

There is a relation between thecd-index of the Boolean algebraBn and certain classes of
permutations. For instance, thecd-index of Bn is a refined enumeration of Andr´e permuta-
tions [17]. Similarly, it is also a refined enumeration of simsun permutations, first defined
by Simion and Sundaram [22, 23]. Another known example of a poset-permutations pair
is the cubical lattice and signed Andr´e permutations [8, 17]. This motivates us to ask the
following question. Given an Eulerian posetP, is it possible to find a canonical class of
permutations which correspond to thecd-index of the posetP? We show that given a poset-
permutations pair(P, T), we can construct a class of permutations corresponding to the
pyramid ofP. A similar signed result holds for the prism ofP. The simsun permutations
may be built up by repeated use of this correspondence. Also, we define signed simsun
permutations, which correspond to the cubical latticeCn.

In [20] Stanley studies the shelling components of a simplex and theircd-indexes, given
by a sum of8̌n

i ’s. Using our techniques, we obtain a recursion formula for8̌n
i . As a corollary

to this recursion, we prove a version of Stanley’s conjecture [20, Conjecture 3.1] concerning
the correspondence between simsun permutations and the8̌n

i ’s.
In Section 9 we consider the problem of computing theab-index of the Cartesian product

of two posets knowing theab-indexes of each poset. This problem is solved by introducing
mixing operators. The theorem of this section is motivated by the case where each poset
has anR-labeling. As a corollary we obtain that for two convex polytopesU andV we can
compute theab-index of their Cartesian product in terms of theirab-indexes.

We thank Louis Billera and G´abor Hetyei for their helpful discussions, as well as the
referee for his valuable suggestions.

2. Newtonian coalgebras

Let k be a field of characteristic 0. LetV be a vector space over the field k. A product
on the vector spaceV is a linear mapµ : V ⊗V→V . The productµ is associative if
µ ◦ (µ⊗ 1) = µ ◦ (1⊗ µ). Similarly, a coproduct on the vector spaceV is a linear map
1 : V → V ⊗ V . The coproduct1 is coassociative if(1⊗ 1) ◦1 = (1⊗1) ◦1.

Definition 2.1 Let V be a vector space with an associative productµ and a coassociative
coproduct1. We call the triplet(V, µ,1) aNewtonian coalgebraif it satisfies the identity

1 ◦ µ = (1⊗ µ) ◦ (1⊗ 1)+ (µ⊗ 1) ◦ (1⊗1).

The Sweedler notation of a coproduct1 is to write1(x) =∑x x(1) ⊗ x(2); see [24, pp.
10–11]. Then the Newtonian condition may be written

1(x · y) =
∑

x

x(1) ⊗
(
x(2) · y

)+∑
y

(
x · y(1)

)⊗ y(2).
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Observe that this identity is a generalization of the product rule for a derivative. In fact, for
any elementv ∈ V , the linear mapx 7→ Dv(x)=

∑
x x(1) · v · x(2) is a derivative on the alge-

bra(V, µ). That is,Dv(x · y)= Dv(x) · y+ x · Dv(y), or Dv ◦µ=µ ◦ (Dv ⊗ 1+ 1⊗ Dv).
The definition of Newtonian coalgebra originated from Joni and Rota [13] under the

name infinitesimal coalgebra. Our definition is from [7]. The first in-depth study of a
Newtonian coalgebra was by Hirschhorn and Raphael [12], who studied the coalgebra on
k[x] where the coproduct is given by1(xn) =∑i+ j=n−1 xi ⊗ x j . In this section we will
introduce two important examples of Newtonian coalgebras, which we denote byA andP.
These two examples appear in [7].

LetA = k〈a, b〉 be the polynomial algebra in the noncommutative variablesa andb. Let
the product onA be the ordinary multiplication. Define the coproduct1 on a monomial
v1 · v2 · · · vn by

1(v1 · v2 · · · vn) =
n∑

i=1

v1 · · · vi−1⊗ vi+1 · · · vn.

It is easy to see that this is a Newtonian coalgebra. The Newtonian coalgebraA is naturally
graded, that is, we may writeA = ⊕

n≥0An, whereAn is spanned by monomials of
degreen. Then dim(An) = 2n and we haveAi ·A j ⊆ Ai+ j and1(An) ⊆

⊕
i+ j=n−1Ai ⊗

A j .

Lemma 2.2 Consider the coproduct1 as a linear map1 : An →
⊕

i+ j=n−1Ai ⊗A j .
The kernel of1 is one-dimensional and is spanned by the element(a− b)n.

Proof: Let x be an element inAn such that1(x) = 0. Assume thatx = ∑
w αw · w,

wherew ranges over all monomials inAn.
Let u ∈ Ai andv ∈ A j , wherei + j = n− 1. The only way to obtain the termu⊗ v in

a coproduct is by applying the coproduct to eitheru · a · v or u · b · v. Hence consider the
coefficient ofu ⊗ v in 1(x) = 0. Then we obtain the identityαu·a·v + αu·b·v = 0. Since
this identity holds for allu andv, we get

αw = (−1)number ofb’s in w ·αan,

which completes the proof. 2

The linear map1 : An →
⊕

i+ j=n−1Ai ⊗ A j is not surjective forn ≥ 2 because
dim(1(An)) = 2n − 1 and dim(

⊕
i+ j=n−1Ai ⊗A j ) = n · 2n−1 > 2n − 1.

We will now consider graded posetsP whose minimal element differs from its maximal
element. Hence the rank of such a poset is at least 1. (See [19] for terminology on posets.)
If two posets are isomorphic we say that they have the sametype. We denote the type of a
posetP by P̄. LetP be the vector space over the field k spanned by all types of posets.

We define a coproduct on the vector spaceP by

1(P̄) =
∑
x∈P

0̂<x<1̂

[0̂, x] ⊗ [x, 1̂],
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and extend this definition by linearity. Observe that this coproduct differs from the ordinary
coproduct that is defined on the reduced incidence Hopf algebra of posets; see [5, 13, 18].

Let P andQ be two graded posets. We define theirstar product, R= P ∗ Q, by letting
R be the set(P − {1̂}) ∪ (Q − {0̂}) and defining the order relation onR by x ≤R y if
(i) x, y ∈ P andx ≤P y, (ii) x, y ∈ Q andx ≤Q y, or (iii) x ∈ P and y ∈ Q. This
product was first mentioned in [20]. Observe that the rank of the posetP ∗ Q is given by
ρ(P)+ ρ(Q)− 1. The product∗ extends naturally to a product onP.

Proposition 2.3 (Ehrenborg and Hetyei, [7]) The triplet(P, ∗,1) is a Newtonian coal-
gebra.

This Newtonian coalgebra has a natural grading,P =⊕n≥0Pn, wherePn is the linear
span of types of graded posets of rankn+ 1. Then we havePi ∗P j ⊆ Pi+ j and1(Pn) ⊆⊕

i+ j=n−1Pi ⊗ P j .
There are two other products on posets that we consider. First, there is theCartesian

productof posets, which we denote byP×Q, defined as{(x, y) : x ∈ P andy∈ Q}, with the
order relation given by(x, y) ≤P×Q (z, w) if and only if x ≤P z andy ≤Q w. Secondly,
define thediamond productby P ¦ Q= (P−{0̂})× (Q−{0̂})∪ {0̂}. The diamond product
corresponds to the Cartesian product of convex polytopes, that is,L(V ×W) = L(V) ¦
L(W), whereV andW are two convex polytopes andL(V) denotes the face lattice ofV .
Both of these products on posets extend naturally to the linear spaceP, and we have that
Pi × P j ⊆ Pi+ j+1 andPi ¦ P j ⊆ Pi+ j .

3. The cd-index of Eulerian posets

To each graded posetP we will assign a noncommutative polynomial in the variablesa and
b called theab-index. LetP be a graded poset of rankn + 1. To every chainc = {0̂ <
x1 < · · · < xk < 1̂} of the posetP we associate aweightwP(c) = w(c) = z1 · · · zn, where

zi =
{

b if i ∈ {ρ(x1), . . . , ρ(xk)},
a− b otherwise.

Observe that the chain{0̂ < 1̂} receives the weight(a− b)n and a maximal chain has
weightbn. Note also that the degree of the weightw(c) is n. Define theab-indexof the
posetP to be the sum

9(P) =
∑

c

w(c),

wherec ranges over all chainsc = {0̂< x1 < · · · < xk < 1̂} in the posetP.
By linearity we may extend the map9 to a linear map9 : P → A.

Proposition 3.1 The linear map9 :P→A is a Newtonian coalgebra map. That is,
9 ◦ µ = µ ◦ (9 ⊗9) and1 ◦9 = (9 ⊗9) ◦1.
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Proof: The first identity is equivalent to9(P ∗ Q) = 9(P) · 9(Q), for two posetsP
andQ. This is due to Stanley; see [20, Lemma 1.1]. In terms of posets, the second identity
says that

1(9(P)) =
∑
x∈P

0̂<x<1̂

9([0̂, x])⊗9([x, 1̂]). (3.1)

Observe that the coproduct of the weight of a chainc = {0̂< x1 < · · · < xk < 1̂} is given
by

1(w(c)) =
k∑

i=1

w[0̂,xi ]
({0̂< x1 < · · · < xi })⊗ w[xi ,1̂]({xi < xi+1 < · · · < xk < 1̂}).

Equation (3.1) follows now by summing over all chainsc and regrouping the terms. 2

Recall that a posetP is Eulerian if the Möbius functionµ on any interval [x, y] in P is
given byµ(x, y) = (−1)ρ(x,y). LetE be the subspace ofP spanned by all types of Eulerian
posets. It is easy to see thatE is closed under the product∗ and the coproduct1. Hence
E forms a Newtonian subalgebra ofP. The subspaceE is also closed under the Cartesian
product and the diamond product.

Fine observed that theab-index of an Eulerian poset may be written uniquely as a
polynomial in the noncommutative variablesc = a+ b andd = ab+ ba; see [2]. When
the ab-index can be written as a polynomial inc andd, we call this polynomial thecd-
index. See Stanley [20] for an elementary proof of this fact.

For a poset ofP of rankn+1, the coefficient ofan in theab-index9(P) is always equal
to 1. Hence the coefficient ofcn in thecd-index of any Eulerian poset is always equal to 1.

Let F be the subalgebra ofA spanned by the elementsc and d. F is closed under
the coproduct1, since1(c)=1(a+ b)= 1⊗ 1+ 1⊗ 1= 2 · 1⊗ 1 and1(d)=1(ab
+ ba)= a⊗ 1+ 1⊗ b+ b⊗ 1+ 1⊗ a= c⊗ 1+ 1⊗ c. The Newtonian coalgebraF in-
herits the grading fromA. That is,F =⊕n≥0Fn, whereFn ⊆ An. Since dim(F0)= dim
(F1)= 1 and Fn= c ·Fn−1+ d ·Fn−2 one has dim(Fn)= fn+1, where fn is the nth
Fibonacci number. (Recallfn is defined recursively byf0= 0, f1= 1, and fn= fn−1

+ fn−2.)
The important observation to make here is that the linear map9 : P → A restricts to a

linear map from the Newtonian coalgebraE to the Newtonian coalgebraF . Note that there
exist posets which are not Eulerian, but whoseab-index may be expressed in terms ofc
andd. For example, the posetP in Figure 1 is not Eulerian, but9(P) = c2+ d ∈ F .

Thedualposet of a posetP is the posetP∗ where the order relation is defined byx ≤P∗ y
if and only if y ≤P x. This is an involution of posets which extends to an involutionω
on the linear spaceP. The mapω is also an involution onE . Define an involution on
A, also denotedω, by ω(v1 · v2 · · · vn) = vn · · · v2 · v1, and extend it linearly to all of
A. This is also an involution onF . It is easy see thatω commutes with the linear map
9, that is,ω ◦ 9 = 9 ◦ ω. Moreover, in our four Newtonian coalgebrasA, F , P,
and E , we have the two relationsω ◦µ=µ ◦ σ ◦ (ω⊗ω) and1 ◦ω= (ω⊗ω) ◦ σ ◦1,
whereσ(x⊗ y)= y⊗ x.
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Figure 1. A non-Eulerian posetP with 9(P) ∈ F .

Let V be a convex polytope. Then the face lattice ofV , L(V), is an Eulerian poset.
Hence we may compute thecd-index ofL(V), that is,9(L(V)). For the remainder of this
paper we will write9(V) instead of the more cumbersome9(L(V)). For a polytopeV ,
thepolar (or dual) polytope is denoted byV1; see [26]. We haveL(V1) = L(V)∗. Hence
directly we obtain9(L(V1)) = 9(L(V))∗, or in our shorthand,9(V1) = 9(V)∗.

As two examples ofcd-indexes of polytopes, thecd-index of a polygonV is given by

9(V) = c2+ ( f0− 2) · d, (3.2)

and thecd-index of a three-dimensional polytopeV is given by

9(V) = c3+ ( f0− 2) · dc+ ( f2− 2) · cd, (3.3)

where f0 denotes the number of vertices andf2 the number of two-dimensional faces of
the polytope.

Recall that(a− b)2= (c2− 2 · d). Hence whenn is even, the element (a− b)n belongs
toFn. Given an elementx in Fn, expand it in terms ofa andb. The coefficient ofan and
bn in x both equal the coefficient ofcn in x. Whenn is odd, the coefficients ofan andbn

in (a− b)n differ, and hence(a− b)n does not belong toFn. Thus we have the following
result.

Corollary 3.2 Consider the linear map1 :Fn→
⊕

i+ j=n−1Fi ⊗F j . When n is odd, the
linear map1 is injective. When n is even, the kernel of the linear map1 is one-dimensional
and is spanned by the element(c2− 2 · d)n/2.

Given an Eulerian posetP, how do we compute itscd-index? If we instead consider
the larger problem of determining thecd-index of all of the intervals of the posetP, the
coproduct suggests an algorithm for this computation.

Assume that we know1(9(P)) for an Eulerian posetP. Recall the coefficient ofcρ(P)−1

in9(P) is equal to 1. LetF ′n be the linear span of allcd-monomials of degreen which con-
tain at least oned, that is, we have excluded the monomialcn. So dim(F ′n)= dim(Fn)− 1.
By Corollary 3.2, the kernel of1 does not belong to the linear spaceF ′n, hence the restricted
map1 : F ′n→⊕i+ j=n−1Fi ⊗ F j is injective.
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1. setw← 0
2. for r = 0 to bn/2c − 1 do
3. for s= 0 ton− 2r − 1 do
4. setv← [cs⊗] δr (p)
5. if v is not divisible on the left byc
6. then terminate sincep is not in1(F ′n)
7. elseu← c−1 · v
8. setw← w + csd · u
9. setp← p−1(csd · u)

10. if δr (p) 6= 0
11. then terminate sincep is not in1(F ′n)
12. return(w)

Figure 2. An algorithm for computing1−1(p), wherep belongs to1(F ′n).

In order to present a method to compute the inverse of1, we need to introduce some
terminology and notation. We say that acd-polynomialv is divisible on the leftby c if
there exists acd-polynomialu such thatv = c · u. If u exists, we will writeu = c−1 · v.
For z in Fn, defineδr (z) to be all of the terms ofz that contain exactlyr number ofd’s. An
example isδ1(c3+ 6 · dc+ 4 · cd)= 6 · dc+ 4 · cd. Similarly, for p in ⊕i+ j=n−1Fi ⊗ F j

defineδr (p) to be all of the terms ofp that contain exactlyr number ofd’s. In both cases
the linear mapδr is a projection. Finally, we write [cs⊗] p for the sum of all monomialsv
such that the termcs ⊗ v occurs inp. For example, forp= 2 · cd⊗ c+ 3 · c2⊗ d− d⊗ d
we haveδ1(p)= 2 · cd⊗ c+ 3 · c2⊗ d and [c2⊗] p= 3 · d.

Proposition 3.3 The algorithm in Figure2 computes the inverse of the linear map1 :
F ′n→⊕i+ j=n−1Fi ⊗ F j . That is, given p in1(F ′n), the algorithm computes1−1(p).

The proof of this proposition is an induction argument on the pair(r, s). The induction
step from(r, s) to (r, s+ 1) is given by the lemma:

Lemma 3.4 At step(r, s) in the algorithm in Figure2, let z ∈ F ′n be the element such
that1(z) = p. Assume that the element z satisfies:
(i) δi (z) = 0 for all 0≤ i < r,
(ii) [ c j d · y]z= 0 for all 0≤ j < s and for allcd-monomials y such thatdegd(y) = r − 1.
Then the element z− csd ·u satisfies[csd · y](z− csd ·u) = 0 for all cd-monomials y such
thatdegd(y) = r − 1.

First observe that when the termx ⊗ y occurs in1(z), wherex andy are monomials,
then one of the following three cases holds: the termx · c · y occurs inz, the termx′ · d · y
occurs inz with x = x′ · c, or the termx · d · y′ occurs inz with y = c · y′.

Consider the termcs ⊗ v in p. This term has exactlyr d’s and it is in the image of
a monomial with eitherr or r + 1 d’s. The case withr d’s is not possible by our first
assumption onz. If v contains a monomial that begins with ad, sayd · x, then the term
cs⊗ d · x can only occur in1(cs−1ddx), contradicting our second assumption onz. Hence
we conclude thatv is divisible on the left byc. The termcs⊗ v= cs⊗ c · u does occur in
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1. for all intervals [x, y] of length 1
2. set9([x, y])← 1
3. for all intervals [x, y] of length 2
4. set9([x, y])← c
5. for k = 3 toρ(P) do
6. for all intervals [x, y] of lengthk
7. set9([x, y])← 1−1(

∑
x<z<y9([x, z])⊗9([z, y]))

Figure 3. An algorithm for computing thecd-index of all intervals of an Eulerian posetP.

1(csd · u). Now consider the expressionp−1(csd · u), which is equal to1(z− csd · u).
No monomial inz− csd · u is of the formcsd · y. This completes the proof of the lemma.

The suggested algorithm to compute thecd-index of a posetP and all of its intervals is
presented in Figure 3.

4. The pyramid and the prism of a polytope

There are two well-known operations defined on convex polytopes: the pyramid and the
prism. From a convex polytopeV , we may construct the pyramid ofV , Pyr(V), and the
prism ofV , Prism(V). Let Bn be the Boolean algebra of rankn, that is, the face lattice of
the simplex of dimensionn− 1. Also letCn be the cubical lattice of rankn+ 1, that is, the
face lattice of ann-dimensional cube.

Proposition 4.1 Let V be a convex polytope. Then the face lattice of the pyramid of V
and the face lattice of the prism of V are given by

L(Pyr(V)) = L(V)× B1 and L(Prism(V)) = L(V) ¦ B2.

These two identities follow from observations of Kalai [14, Section 2].

We define the two operations pyramid and prism on a posetP by Pyr(P) = P× B1 and
Prism(P) = P ¦ B2. Two natural questions occur now. Given thecd-index9(V), are we
able to compute9(Pyr(V)) and9(Prism(V)).

Proposition 4.2 Let P be a graded poset. Then

9(Pyr(P)) = 1

2

[
9(P) · c+ c ·9(P)+

∑
x∈P

0̂<x<1̂

9([0̂, x]) · d ·9([x, 1̂])

]
,

9(Prism(P)) = 9(P) · c+
∑
x∈P

0̂<x<1̂

9([0̂, x]) · d ·9([x, 1̂]).

Proof: The proof of the second identity will follow as a special case of Proposition 4.3.
The first identity follows by a careful chain argument. Consider a chainc in P×B1. We have



P1: TPR/NKD/RKB/DRY P2: NTA/VSK/PCY QC: JSN

Journal of Algebraic Combinatorics KL629-04-Ehrenborg August 21, 1998 14:4

COPRODUCTS AND THEcd-INDEX 281

c = {(0̂, 0̂) = (x0, y0) < (x1, y1) < · · · < (xk, yk) = (1̂, 1̂)}. Let i be the smallest index
such thatyi = 1̂. Letx = xi . Hence we havey0 = · · · = yi−1 = 0̂ andyi = · · · = yk = 1̂.
Moreover, we havexi−1 ≤ xi , and the two chainsc1 = {0̂ = x0 < x1 < · · · < xi−1 ≤ x}
in [0̂, x] andc2 = {x < xi+1 < · · · < xk = 1̂} in [x, 1̂].

Three cases occur:

1. 0̂ < x < 1̂. Then the element(x, 0̂) may or may not be in the chainc. Let c′ denote
the chainc − {(x, 0̂)}, that is, the chain without the element(x, 0̂). Similarly, let c′′

denote the chainc∪ {(x, 0̂)}, that is, the chain with the element(x, 0̂). Observe that the
element(x, 1̂) belongs to both the chainsc′ andc′′, so the weight of these chains at rank
ρ(x)+ 1 isb. Hence we have

w(c′) = w[0̂,x](c1) · (a− b) · b · w[x,1̂](c2),

w(c′′) = w[0̂,x](c1) · b · b · w[x,1̂](c2),

w(c′)+ w(c′′) = w[0̂,x](c1) · a · b · w[x,1̂](c2).

2. x = 1̂. Then the element(1̂, 0̂) may or may not be in the chainc. Let c′ be the chain
c− {(1̂, 0̂)} and letc′′ be the chainc∪ {(1̂, 0̂)}. Then

w(c′) = wP(c1) · (a− b),

w(c′′) = wP(c1) · b,
w(c′)+ w(c′′) = wP(c1) · a.

3. x = 0̂. Then the element(0̂, 1̂) lies in the chainc, and the weight of the chainc is

w(c) = b · wP(c2).

Summing over all chainsc in P × B1, we obtain

9(P × B1) = b ·9(P)+9(P) · a+
∑
x∈P

0̂<x<1̂

9([0̂, x]) · a · b ·9([x, 1̂]). (4.1)

Applying Eq. (4.1) to the posetP∗ gives

9(P∗ × B1) = b ·9(P∗)+9(P∗) · a+
∑
x∈P

0̂<x<1̂

9([x, 1̂]∗) · a · b ·9([0̂, x]∗).

Now applying the involutionω, we obtain

9(P × B1) = 9(P) · b+ a ·9(P)+
∑
x∈P

0̂<x<1̂

9([0̂, x]) · b · a ·9([x, 1̂]). (4.2)

Adding Eqs. (4.1) and (4.2) gives the desired result. 2
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SinceCn+1 = Prism(Cn), Proposition 4.2 gives a recursion formula for thecd-index
of the cubical latticeCn. This recursion was first developed by Purtill [17]. The second
part of Proposition 4.2 may be generalized in the following manner. LetAr be a graded
poset of rank 2 which hasr atoms (which are also coatoms). Note thatA2= B2. Let
c̄r = a+ (r − 1) · b andd̄r = ab+ (r − 1) · ba.

Proposition 4.3 Let P be a graded poset. Then

9(P ¦ Ar ) = 9(P) · c̄r +
∑
x∈P

0̂<x<1̂

9([0̂, x]) · d̄r ·9([x, 1̂]).

Proof: Denote ther atoms inAr by 1, . . . , r . Consider a chainc in P ¦ Ar . We have
c = {0̂< (x1, y1) < · · · < (xk, yk) = (1̂, 1̂)}. Let i be the smallest index such thatyi = 1̂.
Two cases occur, each having two subcases.

1. Assume thatyi−1 exists (that is,i > 1) such that 1≤ yi−1≤ r − 1. Let x = xi−1 > 0̂.
The element(x, 1̂)may or may not be in the chain. Letc′ be the chainc− {(x, 1̂)} and
let c′′ be the chainc∪ {(x, 1̂)}. Moreover, letc1 be the chain{0̂< x1 < · · · < xi−2 < x}
andc2 the chain{x < xi+1 < · · · < xk−1 < 1̂}. The first subcase is whenx < 1̂. Then
the sum of the weights of the chainsc′ andc′′ is given by

w(c′)+ w(c′′) = w[0̂,x](c1) · b · a ·w[x,1̂](c2).

The second subcase isx = 1̂. Then the weight of the chain is

w(c) = wP(c1) · b.

Observe in both subcases that there arer − 1 choices foryi−1.
2. Assume that eitheri = 1 (soyi−1 does not exist) oryi−1 = r . Let x = xi > 0̂. Letc′ be

the chainc− {(x, r )} and letc′′ be the chainc∪ {(x, r )}. Moreover, letc1 be the chain
{0̂ < x1 < · · · < xi−1 < x} andc2 the chain{x < xi+1 < · · · < xk−1 < 1̂}. In the first
subcase whenx < 1̂, we obtain that the sum of the weights of the chainsc′ andc′′ is
given by

w(c′)+ w(c′′) = w[0̂,x](c1) · a · b ·w[x,1̂](c2).

For the second subcase whenx = 1̂, we similarly get that the sum of the weights of the
chainsc′ andc′′ is

w(c′)+ w(c′′) = wP(c1) · a.

Now summing over all chainsc in P ¦ Ar , we obtain

9(P ¦ Ar ) = 9(P) · (a+ (r − 1) · b)
+

∑
x∈P

0̂<x<1̂

9([0̂, x]) · (ab+ (r − 1) · ba) ·9([x, 1̂]).
2
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Define a linear operatorD : A→ A by

D(w) =
∑
w

w(1) · d · w(2).

Recall thatD is a derivation. We could have definedD directly as a derivation onA such
thatD(a)= D(b)= ab+ ba= d. Note thatD is also a derivation onF sinceD(c)= 2 · d
andD(d) = cd+ dc.

Combining Proposition 4.2 with the fact that9 is a Newtonian coalgebra map, we obtain:

Theorem 4.4 Let P be a graded poset. Then

9(Pyr(P)) = 1

2
[9(P) · c+ c ·9(P)+ D(9(P))],

9(Prism(P)) = 9(P) · c+ D(9(P)).

Similarly, let V be a convex polytope. Then

9(Pyr(V)) = 1

2
[9(V) · c+ c ·9(V)+ D(9(V))],

9(Prism(V)) = 9(V) · c+ D(9(V)).

In Theorem 5.2 we will improve the formula for the pyramid.
Theorem 4.4 gives a new recursion formula for thecd-index of the cubical latticeCn.

Directly we have

9(Cn+1) = 9(Cn) · c+ D(9(Cn)).

This is a different recursion formula than Purtill obtained in [17].
Similar to Theorem 4.4, define a derivationDr onA by Dr (a) = Dr (b) = d̄r . Then by

Proposition 4.3 we obtain that

Corollary 4.5 Let P be a graded poset. Then

9(P ¦ Ar ) = 9(P) · c̄r + Dr (9(P)).

Proposition 4.3 and Corollary 4.5 generalize the recursion for ther-cd-index given in [8].

Example 4.6 Let the convex polytopeV be a 3-cube with a vertex cut off. The polytope
V has 10 vertices and 7 facets. By Eq. (3.3), thecd-index ofV is9(V) = c3 + (10− 2)
dc+ (7− 2)cd= c3+ 8dc+ 5cd. We have

1(c3+ 8dc+ 5cd) = 7 · c2⊗ 1+ 15· c⊗ c+ 10· 1⊗ c2+ 16· d⊗ 1+ 10· 1⊗ d,

D(c3+ 8dc+ 5cd) = 7 · c2d+ 15· cdc+ 10· dc2+ 26· d2.
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Hence thecd-index of the prism ofV is equal to

9(Prism(V)) = c4+ 7 · c2d+ 20 · cdc+ 18 · dc2+ 26 · d2.

There is another operation on polytopes, namely thebipyramid, Bipyr(V). It is well-
known that Bipyr(V) = Prism(V1)1. Since the involutionw 7→ w∗ commutes with the
derivationD, that is,D(w∗) = D(w)∗, we obtain:

Corollary 4.7 For a polytope V

9(Bipyr(V)) = c ·9(V)+ D(9(V)).

5. The derivation G

On the algebraA define two derivationsG andG′ by letting

G(a) = ba, G′(a) = ab,

G(b) = ab, G′(b) = ba,

and extendingG andG′ to allab-polynomials by linearity and the product rule of derivations.
SinceD(a) = G(a)+ G′(a) andD(b) = G(b)+ G′(b), we obtain thatD(w) = G(w)+
G′(w) for all ab-polynomialsw. That is,D = G+ G′.

Observe thatG(c)= G(a+ b)= ba+ ab= d andG(d) = G(a) ·b+a ·G(b)+G(b) ·
a+ b ·G(a) = bab+ aab+ aba+ bba= cd. A similar computation givesG′(c) = d and
G′(d) = dc. HenceG andG′ restrict to be derivations onF .

Lemma 5.1 For all ab-monomialsw, the identityw · c+ G(w) = c · w + G′(w) holds.

Proof: The proof is by induction on the length ofw. The base case is the three cases
w = 1, w = a, andw = b. Whenw = 1, both sides are equal toc. Whenw = a, we
have thata · c+ G(a) = a · (a+ b) + ba = (a+ b) · a+ ab = c · a+ G′(a). A similar
computation holds whenw = b.

For the induction step, considerw wherew has length at least 2. We can writew = u ·v,
whereu 6= w andv 6= w. By the induction hypothesis, we obtain

u · c+ G(u) = c · u+ G′(u) and v · c+ G(v) = c · v + G′(v).

Multiplying the first equality on the right withv, the second equality on the left withu and
then adding the two equations gives

u · c · v+G(u) · v+ u · v · c+ u ·G(v)= c · u · v+G′(u) · v+ u · c · v+ u ·G′(v).

By cancelling the termu· c ·v and rewriting the equation using the product rule, we obtain

u · v · c+ G(u · v) = c · u · v + G′(u · v),

which is the desired equality. 2
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Theorem 5.2 Let P be a graded poset. Then

9(Pyr(P)) = 9(P) · c+ G(9(P)).

Similarly, let V be a convex polytope. Then

9(Pyr(V)) = 9(V) · c+ G(9(V)).

Proof: Since9(P) ∈ A, we knowG(9(P)) andG′(9(P)) are well-defined. Thus by
Theorem 4.4 we have

2 ·9(P × B1) = 9(P) · c+ c ·9(P)+ D(9(P))

= (9(P) · c+ G(9(P)))+ (c ·9(P)+ G′(9(P))).

But by Lemma 5.1 the two terms are equal. Thus we have9(P × B1) = 9(P) · c+
G(9(P)) = c ·9(P)+ G′(9(P)). 2

This theorem gives us a new recursion formula for thecd-index of the Boolean algebra
Bn different from the one Purtill obtained in [17]. It is

9(Bn+1) = 9(Bn) · c+ G(9(Bn)).

Webster [25] has found similar recursion formulas for the Boolean algebra and the cubical
lattice.

Example 5.3 Let V be the polytope in Example 4.6, withcd-indexc3 + 8dc+ 5cd. We
have

G(c3+ 8dc+ 5cd) = 6 · c2d+ 9 · cdc+ dc2+ 13 · d2.

Hence thecd-index of the pyramid ofV is given by

9(Pyr(V)) = c4+ 6 · c2d+ 14 · cdc+ 9 · dc2+ 13 · d2.

6. Other operations on polytopes

Let W be ann-dimensional convex polytope with vertexv. Let u be a vector such that
W ∩ {x ∈ Rn : u · x ≥ c} = {v}. The vertex figureV of W at the vertexv is defined as
the polytopeV = W ∩ {x ∈ Rn : u · x = c− ε}, for small enoughε > 0. We define the
truncated polytopêW as the polytopeW ∩ {x ∈ Rn : u · x ≤ c− ε}. The combinatorial
structure ofV andŴ only depends onW andv, and not onu, c, or ε.
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Proposition 6.1 Let W be a convex polytope and letv be a vertex of W. Assume that the
vertex figure atv is the polytope V . Let̂W be the polytope W with the vertexv cut off. Then
the difference in thecd-index ofŴ and W is given by

9(Ŵ)−9(W) = D(w)− G(w) = G′(w),

wherew = 9(V).

Sketch of proof: Stanley showed in [20, Lemma 2.1] that when we make local changes
in a polytope the difference in thecd-indexes only depends on what happens locally. Thus
it is enough to consider the case whenW = Pyr(V) with vertexv. The vertex figure at
v is V , andŴ is the prism ofV , Prism(V). Hence the difference in thecd-indexes is
(w · c+ D(w))− (w · c+ G(w)), and the result follows. 2

Example 6.2 Let W be a four-dimensional convex polytope such that at the vertexv it has
the vertex figureV , whereV is the three-dimensional polytope mentioned in Examples 4.6
and 5.3. Hence

9(Ŵ)−9(W) = D(c3+ 8dc+ 5cd)− G(c3+ 8dc+ 5cd)

= c2d+ 6 · cdc+ 9 · dc2+ 13 · d2.

Another operation on polytopes is pasting two polytopes along a common facet. We may
still speak about the face lattice and thecd-index of the union, even though the union may
not be a convex polytope.

Lemma 6.3 (Stanley) Let V and W be two polytopes which intersect in a facet F, that
is, V ∩W = F. Then thecd-index of the union V∪W is given by

9(V ∪W) = 9(V)+9(W)−9(F) · c.

Proof: Let P be the face lattice of the facetF . We rewrite the identity as9(V ∪W) +
9(P ∗ B2) = 9(V)+9(W). Label the facetF in the face lattice ofV by FV and similarly
label F in the face lattice ofW by FW. Moreover, label the two coatoms inP ∗ B2 by
FV andFW. The lemma follows by noting that each chain that occurs in these four posets
contributes either one term or two terms to both sides of the identity. 2

As a corollary we obtain:

Corollary 6.4 Let V be a polytope and let F be a facet of V . Let V∪Pyr(F) denote the
polytope which is formed by making a pyramid over the facet F. Then

9(V ∪ Pyr(F)) = 9(V)+ G(9(F)).

TheMinkowski sumof two subsetsX andY of Rn is defined as

X + Y = {x+ y ∈ Rn : x ∈ X, y ∈ Y}.
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Notably, the Minkowski sum of two convex polytopes is another convex polytope. For a
vectorx we denote the set{λ · x : 0 ≤ λ ≤ 1} by [0, x]. We say that the nonzero vectorx
lies in general positionwith respect to the convex polytopeV if for eachu ∈ Rn the line
{λ · x+ u ∈ Rn : λ ∈ R} intersects the boundary of the polytopeV in at most two points.

Proposition 6.5 Let V be an n-dimensional convex polytope andx a nonzero vector that
lies in general position with respect to the polytope V . Let H be a hyperplane orthogonal
to the vectorx and letProj(V) be the orthogonal projection of V onto the hyperplane H.
Observe thatProj(V) is an(n− 1)-dimensional convex polytope. Then thecd-index of the
Minkowski sum of V and[0, x] is given by

9(V + [0, x]) = 9(V)+ D(9(Proj(V))).

In order to prove this proposition, we need to consider a larger class of geometric objects
than convex polytopes, namely regular cell complexes. See [19, Section 3.8] for more
information about regular cell complexes. Note that the face lattice of a regular cell complex
is an Eulerian poset.

Proof of Proposition 6.5: For each facetFi of the polytopeV choose a normal vector
ui . Since the vectorx lies in general position, we have thatx · ui 6= 0 for all indexesi . Let
S+ be the union of all facetsFi such thatx · ui > 0, and letS− be the union of all facets
Fi such thatx · ui < 0. BothS+ andS− are homeomorphic to an(n− 1)-dimensional ball
and their boundaries agree, that is,∂(S+) = ∂(S−).

Let σ ⊆ V be a closed(n − 1)-dimensional cell such that∂(σ ) = ∂(S+) and for each
u ∈ Rn the line{λ · x+ u ∈ Rn : λ ∈ R} intersectsσ in at most one point. Observe thatσ
forms a regular cell complex and its face lattice is isomorphic to the face lattice of Proj(V).
Moreover,σ + [0, x] is also a regular cell complex whose face lattice is isomorphic to the
face lattice of Prism(Proj(V)).

We may now divide the polytopeV into two piecesV+ andV− such thatV = V+ ∪V−,
σ = V+ ∩ V−, ∂(V+) = S+ ∪ σ , and∂(V−) = S− ∪ σ .

We can now decompose the Minkowski sumV + [0, x] into three pieces. Namely,

V + [0, x] = V− ∪ (σ + [0, x])∪ (V+ + x).

Moreover, we have thatV− ∩ (σ + [0, x])= σ and(σ + [0, x])∩ (V+ + x) = σ+ x. We
can now compute the desiredcd-index by rearranging these pieces. We obtain

9(V + [0, x]) = 9(V−)+9(σ + [0, x])+9(V+ + x)−9(σ) · c−9(σ + x) · c
= 9(V−)+9(V+)−9(σ) · c+9(Prism(Proj(V)))−9(Proj(V)) · c
= 9(V)+ D(9(Proj(V))). 2

7. On simsun permutations

Let Sbe a set such thatS∪ {0} is a linearly ordered set.
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Definition 7.1 An augmented permutationπ of length n on S is a list π = (0 =
s0, s1, . . . , sn), wheres1, . . . , sn aren distinct elements from the setS.

The descent set of the augmented permutationπ is the setD(π) = {i : si−1 > si }.
Observe the descent set ofπ is a subset of [n] = {1, . . . ,n}. We say thatπ has no double
descents if there is no indexi such thatsi > si+1 > si+2. Thevariationof a permutationπ
is given byU (π) = uD(π), whereuS is theab-monomialu1 · · ·un such thatui = a if i 6∈ S
andui = b if i ∈ S.

Let Rn(S) be the set of augmented permutations on the setS of lengthn so that any
such permutation begins with an ascent and has no double descents. We letR0(S) be the
singleton set containing the permutation(0). For an augmented permutationπ in Rn(S),
we define thereduced variationof π , which we denote byV(π), by replacing eachab in
U (π)with d and then replacing each remaininga by ac. For a subsetT of Rn(S)we define
V(T) =∑π∈T V(π).

We now ask the following question. Given an Eulerian posetP of rank n+ 1, is it
possible to find in a canonical manner a linearly ordered setSand a subsetT of Rn(S) such
that9(P) = V(T)? Examples of such posets and permutation sets are the Boolean algebra
and André permutations, and the cubical lattice and signed Andr´e permutations. See [8,
17]. For more refined identities using such a poset-permutation set correspondence, see [6,
11, 20].

We will now define three operations on permutations. These will give us a partial answer
to our question.

For a permutationπ = (0, s1, . . . , sn) and an elementx, we define theconcatenation
π · x = (0, s1, . . . , sn, x). We extend this notion for a classT of permutations byT · x =
{π · x : π ∈ T}. Let M be an element larger than all the elements in the linear orderS∪{0}.
For T a subset ofRn(S) we have thatT · M ⊆ Rn+1(S∪ {M}). Moreover, we have that
V(T · M) = V(T) · c.

We will now define the insert operation. LetM be as just defined and letm be an element
smaller than all the elements inS∪ {0}. For T ⊆ Rn(S) and x ∈ {m,M}, we define
Insert(T, x) to be the set of all augmented permutations(0, s1, . . . , si , x, si+1, . . . , sn) such
that

1. (0, s1, . . . , sn) ∈ T ,
2. (0, s1, . . . , si , x, si+1, . . . , sn) ∈ Rn+1(S∪ {x}),
3. if x is the maximal elementM theni 6= n, and
4. if x is the minimal elementm theni 6= 0.

That is, we insertx into the permutation(0, s1, . . . , sn) ∈ T such that no double descents
occur and we do not allow the maximal element at the end nor the minimal element at
the beginning of the permutation. Observe that we have Insert(T,M) ∪ Insert(T,m) ⊆
Rn+1(S∪ {M,m}).

Lemma 7.2 For T ⊆ Rn(S) the two identities V(Insert(T,M))=G(V(T)) and
V(Insert(T,m)) = G′(V(T)) hold.
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Theorem 7.3 Let P be an Eulerian poset of rank n+ 1. Let S∪ {0} be a linearly ordered
set, and let T be a subset of Rn(S) such that9(P) = V(T). Introduce a new maximal
element M and a minimal element m to the set S∪ {0}. Then the following identities hold:

9(Pyr(P)) = V( Insert(T,M) ∪ T · M),
9(Prism(P)) = V(Insert(T,M) ∪ Insert(T,m) ∪ T · M).

Simion and Sundaram defined a class of permutations called simsun permutations; see
[22, p. 267] and [23]. We will now see how simsun permutations are closely related with
the operations Insert(T, n) andT · n on permutations.

A simsun permutationπ of lengthn is an augmented permutationπ = (0, s1, . . . , sn)

on the set{1, . . . ,n} of lengthn such that for all 0≤ k ≤ n if we remove thek entries
n, n− 1, . . . ,n− k + 1 from the permutationπ , the resulting permutation does not have
any double descents. LetSn denote the set of all simsun permutations of lengthn. We have
thatSn ⊆ Rn({1, . . . ,n}).

Similarly, we may define asigned simsun permutationπ of lengthn as an augmented
permutation of lengthn on the set{−n, . . . ,−1, 1, . . . ,n} such that exactly one of the ele-
ments+i and−i occurs in the permutation and for all 0≤ k ≤ n if we remove thek entries
±n,±(n−1), . . . ,±(n−k+1) from the permutationπ , the resulting permutation belongs
to Rn−k({−(n−k), . . . ,−1, 1, . . . ,n−k}). This implies that the resulting permutation has
no double descents. LetS±n denote the set of all signed simsun permutations of lengthn.

Recall thatSn−1 · n denotes the set of all permutationsπ in Sn so thatπ(n) = n. We
make the similar convention forS±n−1 · n.

Corollary 7.4 The sets of all simsun permutations and all signed simsun permutations
satisfy the following recursions:

Sn = Insert(Sn−1, n) ∪ Sn−1 · n,

S±n = Insert(S±n−1, n) ∪ Insert(S±n−1,−n) ∪ S±n−1 · n.

Thus thecd-indexes of the Boolean algebra and the cubical lattice are given by

9(Bn+1) = V(Sn),

9(Cn) = V(S±n ).

8. The shelling components of the simplex

Stanley [20] studies the shelling components of the simplex in order to obtain a formula for
thecd-index of a simplicial Eulerian poset. Namely, ifP is a simplicial Eulerian poset of rank
n+1 with h-vector(h0, . . . , hn) then thecd-index ofP is given by9(P) =∑n−1

i=0 hi · 8̌n
i .

By using the techniques we have developed, we now study thecd-polynomials8̌n
i .
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Recall thatBn is the Boolean algebra, that is, all the subsets of{1, . . . ,n} ordered by
inclusion. Letci be the coatom{1, . . . ,n} − {n+ 1− i }. Similarly, for i 6= j let ci, j be the
element{1, . . . ,n} − {n+ 1− i, n+ 1− j }, that is,ci, j is the intersection of the two sets
ci andcj . Define the posetB′n,i for 1≤ i ≤ n− 1 by

B′n,i =
i⋃

j=1

[∅, cj ] ∪ {{1, . . . ,n}}.

That is, B′n,i consists of the maximal element{1, . . . ,n} and all the elements below the
coatomsc1, . . . , ci . Since the elementscj,k, where 1≤ j ≤ i andi + 1≤ k ≤ n, are only
covered by one element inB′n,i , we know thatB′n,i is not an Eulerian poset. However, we
can obtain an Eulerian poset by adding an elementγ in the following manner. LetBn,i

be the posetB′n,i ∪ {γ }, where the coatomγ covers all elementscj,k with 1 ≤ j ≤ i and
i +1≤ k ≤ n. The posetBn,i is Eulerian. Observe thatBn,1 = Bn−1 ∗ B2 andBn,n−1 = Bn.
Stanley defineš8n

i by the relation

9(Bn,i ) = 8̌n−1
0 + · · · + 8̌n−1

i−1 .

That is,8̌n
0 = 9(Bn+1,1) = 9(Bn) · c, and for 1≤ i ≤ n − 1, 8̌n

i = 9(Bn+1,i+1) −
9(Bn+1,i ).

We now state the main result of this section.

Theorem 8.1 The following recursion holds foř8n
i : G(8̌n

i ) = 8̌n+1
i+1 .

Proof: We claim that the following identity is true:

9(Bn,i × B1)+9(Bn ∗ B2) = 9(Bn+1,i+1)+9(Bn,i ∗ B2). (8.1)

We may viewB′n,i × B1 as a subposet ofBn+1 by viewing B1 as the poset on{∅, {n+ 1}}.
HenceBn,i × B1 is the posetB′n,i × B1 with two extra elements of ranksn−1 andn. Label
both of these elements byγ . Moreover, label the two coatoms in the two posetsBn ∗ B2

andBn,i ∗ B2 by {1, . . . ,n} andγ . It is now straightforward to prove Eq. (8.1) since there
is a rank-preserving bijection between the chains on the right-hand side and the left-hand
side. Except for the chains labeled by(∅, {1}, {1, 2}, . . . , {1, 2, . . . ,n+ 1}), the bijection
is given by reading off the labels of a chain. For the case when a chain is labeled with
(∅, {1}, {1, 2}, . . . , {1, 2, . . . ,n + 1}), observe that each of the four posets has one such
chain. This is the only chain that contributes two terms to each side of Eq. (8.1).

Recall that9(Bn,i ) =
∑i−1

j=0 8̌
n−1
j . Thus by Theorem 5.2 we have9(Bn,i × B1) =

(
∑i−1

j=0 8̌
n−1
j ) · c+G(

∑i−1
j=0 8̌

n−1
j ). Also9(Bn∗B2) = 9(Bn) ·9(B2) = 9(Bn) · c= 8̌n

0.

Similarly,9(Bn+1,i+1) =
∑i

j=0 8̌
n
j = 8̌n

0 +
∑i

j=1 8̌
n
j and9(Bn,i ∗ B2) = 9(Bn,i ) · c =
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(
∑i−1

j=0 8̌
n−1
j ) · c. Hence when we expand the identity (8.1), we have

(
i−1∑
j=0

8̌n−1
j

)
· c+ G

(
i−1∑
j=0

8̌n−1
j

)
+ 8̌n

0 = 8̌n
0 +

i∑
j=1

8̌n
j +

(
i−1∑
j=0

8̌n−1
j

)
· c.

By cancelling terms we haveG(8̌n−1
0 +· · ·+ 8̌n−1

i−1 ) = 8̌n
1+· · ·+ 8̌n

i , which is equivalent
to the conclusion of the theorem. 2

Stanley conjectured [20, Conjecture 3.1] that the reduced variation of certain classes
of permutations is equal tǒ8n

i . This conjecture was proved by Hetyei in [11]. We now
present a slightly modified result of this kind. It follows easily by Theorem 8.1 and the
techniques of Section 7. LetSn,k be the set of simsun permutations of lengthn ending with
the elementk.

Corollary 8.2 The reduced variation of the setSn,k is given by V(Sn,k) = 8̌n
n−k.

This result follows from induction onn and noting thatSn,k = Insert(Sn−1,k, n) andSn,n =
Sn−1 · n.

9. The mixing operators

Given two posetsP and Q, assume that we know9(P) and9(Q). Are we then able
to compute9(P × Q) from 9(P) and9(Q)? The answer is yes, and it may be seen
by using the quasi-symmetric function of a posetP; see [5]. It is shown in [5] that
knowing9(P) is equivalent to knowing the quasi-symmetric functionF(P). Also the
identity F(P × Q) = F(P) · F(Q) holds. In fact, it is proved thatF is a Hopf algebra
homomorphism. Hence we may compute9(P × Q) from9(P) and9(Q).

In terms of theab-index, this quasi-symmetric function method is not explicit. We will
now devise an explicit method. We begin to define the mixing operator. LetI be the set

I = {(r , s, n) : r, s ∈ {1, 2}, n ≥ 2, n ≡ r + s+ 1 mod 2}.

This set will be the index set of the mixing operator. For a coassociative coproduct1 :
V → V ⊗ V , we define the map1k : V → V⊗k by11 is the identity map 1 and1k+1 =
(1k⊗ 1) ◦1. Observe that12 = 1. The Sweedler notation [24, pp. 10–11] for the linear
map1k is

1k(x) =
∑

x

x(1) ⊗ · · · ⊗ x(k).

We call each factorx(i ) an x-piece. We will use this notation on the two coalgebrasA
andP.
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Definition 9.1 Let u andv be inA and(r, s, n) ∈ I . Themixing operator Mr,s(u, v,n),
is defined by the following recursion:

M1,2(u, v,2) = u · a · v,
M2,1(u, v,2) = v · b · u,

M1,s(u, v,n+ 1) =
∑

u

u(1) · a · M2,s
(
u(2), v,n

)
,

M2,s(u, v,n+ 1) =
∑
v

v(1) · b · M1,s
(
u, v(2), n

)
.

As an example, by the coassociativity of the coproduct we have

M1,1(u, v,5) =
∑

u

∑
v

u(1) · a · v(1) · b · u(2) · a · v(2) · b · u(3).

Observe thatn is the number of pieces in each summand ofMr ,s(u, v,n). Whenr = 1
each summand begins with au-piece, while whenr = 2 the summands begin with av-piece.
Similarly, s= 1 says that each summand ends with au-piece.

In general to computeM1,1(u, v,n) we apply1k to u, wherek = n+1
2 . Observe thatn

is odd in this case. Similarly apply1k−1 to v. We obtain

1k(u) =
∑

u

u(1) ⊗ · · · ⊗ u(k) and 1k−1(v) =
∑
v

v(1) ⊗ · · · ⊗ v(k−1).

We then combine theu- and v-pieces alternatingly such that there is ana between an
adjacentu-piece andv-piece (reading left to right), otherwise there is ab between. Lastly,
we sum over all possible ways to splitu andv by the coproduct. There are similar rules for
M1,2(u, v,n), M2,1(u, v,n), andM2,2(u, v,n).

Theorem 9.2 Let P and Q be two posets. Then

9(P × Q) =
∑

(r,s,n)∈I

Mr,s(9(P),9(Q), n).

Equations (4.1) and (4.2) in the proof of Proposition 4.2 are special cases of this theorem.
If w ∈ Fk then1k+2(w) = 0. HenceMr,s(u, v,n) = 0 if n+3−r−s

2 ≥ deg(u) + 2 or
n−3+r+s

2 ≥ deg(v) + 2. Hence the sum in Theorem 9.2 has a finite number of nonzero
terms, so it is well-defined.

In order to motivate Theorem 9.2, we will first prove it in the case when the posets
P and Q haveR-labelings. We will assume that the reader is familiar withR-labelings.
Otherwise, see [8] or [19, Section 3.13].

An edge-labelingλ of a finite posetP is a map which assigns to each edge in the Hasse
diagram ofP an element from a total linear order. Ify coversx in P then we denote the label
on this edge byλ(x, y). If c = {0̂ = x0 ≺ x1 ≺ · · · ≺ xρ(P) = 1̂} is a chain then we write
the labeling of the chainc to be the listλ(c) = (λ(x0, x1), λ(x1, x2), . . . , λ(xρ(P)−1, xρ(P))).
An R-labelingλ is an edge-labeling such that in every interval there is a unique maximal
chain where the labels are weakly increasing.
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For a maximal chainc = {0̂ = x0 ≺ x1 ≺ · · · ≺ xρ(P) = 1̂} we define thedescent
monomialof the chainc to be u(c) = u1 · · ·uρ(P)−1, whereui = a if λ(xi−1, xi ) ≤
λ(xi , xi+1), andui = b otherwise. The following lemma follows directly from a result of
Björner and Stanley [4, Theorem 2.7].

Lemma 9.3 Let P be a graded poset of rank n+ 1. If λ is an R-labeling of P then the
ab-index of P is equal to

9(P) =
∑

c

u(c),

where the sum is over all maximal chains c.

Assume that the posetsP and Q haveR-labelings. Then the posetP× Q has anR-
labeling given as follows. Each edge in the posetP× Q either comes from an edge inP
or an edge inQ. Hence label the edge between(x, z) and(y, z) by the labelλP(x, y) and
label the edge between(x, z) and(x, w) by the labelλQ(z, w). Moreover, let all the labels
of the posetP be smaller than the labels of the posetQ.

A maximal chainc in the posetP× Q corresponds to two maximal chains, one inP
and one inQ. Hence the labels of the chainc are the labels of the corresponding chains
in P andQ. If a label is from the posetP, we call it aP-label. Similarly, a label fromQ
is called aQ-label. If c begins with aP-label then we classify this asr = 1, otherwise
asr = 2. Similarly, if c ends with aP-label then we classify this ass = 1, otherwise as
s = 2. Moreover, when reading the labels of the chainc in order, group theP-labels and
the Q-labels into runs. Letn be the number of such runs. We say that the maximal chainc
has the type(r, s, n). Observe that(r, s, n) ∈ I .

Let us consider the case when(r, s, n) = (1, 1, 5). This means that the labeling of the
chainc looks like

λ(c) = (λ1, . . . , λi , ν1, . . . , νk, λi+1, . . . , λ j , νk+1, . . . , νρ(Q), λ j+1, . . . , λρ(P)),

where(λ1, . . . , λρ(P)) is the labeling of a maximal chaincP in P and(ν1, . . . , νρ(Q)) is
the labeling of a maximal chaincQ in Q. Observe also that 1≤ i < j ≤ ρ(P) − 1 and
1≤ k ≤ ρ(Q)− 1.

Assume thatu(cP) = u = u1 · · ·uρ(P)−1 andu(cQ) = v = v1 · · · vρ(Q)−1. Then the
weight of the maximal chainc is given by

u(c) = u1 · · ·ui−1 · a · v1 · · · vk−1 · b · ui+1 · · ·u j−1 · a · vk+1 · · · vρ(Q)−1

· b · u j+1 · · ·uρ(P)−1.

Observe that the variablesui , u j , andvk are not in the expression foru(c). This is because
when we computeu(c), we do not need to compare the labelλi with λi+1, the labelλ j with
λ j+1, and the labelνk with νk+1. Moreover, thea’s and theb’s occur in the expression for
u(c) since at those places we compare a label from the posetP with a label fromQ. There
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will be ana if the P-label occurs before theQ-label in the list since theP-labels are smaller
than theQ-labels. Similarly, there will be ab if the Q-label occurs before theP-label.

Recall that we have

13(u) =
∑

1≤i< j≤ρ(P)−1

u1 · · ·ui−1⊗ ui+1 · · ·u j−1⊗ u j+1 · · ·uρ(P)−1,

1(v) =
∑

1≤k≤ρ(Q)−1

v1 · · · vk−1⊗ vk+1 · · · vρ(Q)−1.

Hence if we sumu(c) over all maximal chainsc such thatc restricted toP is cP, c restricted
to Q is cQ, andc has the type(r, s, n) = (1, 1, 5), we obtain∑

c

u(c) =
∑

1≤i< j≤ρ(P)−1

∑
1≤k≤ρ(Q)−1

u1 · · ·ui−1 · a · v1 · · · vk−1 · b · ui+1 · · ·u j−1

· a · vk+1 · · · vρ(Q)−1 · b · u j+1 · · ·uρ(P)−1

=
∑

u

∑
v

u(1) · a · v(1) · b · u(2) · a · v(2) · b · u(3)
= M1,1(u, v,5).

Since the mixing operator is linear inu andv, and using Lemma 9.3, we obtain:∑
c

u(c) = M1,1(9(P),9(Q), 5),

where the sum ranges over all maximal chainsc which have the type(r, s, n) = (1, 1, 5).
Proceeding along these lines one can generalize this argument to prove Theorem 9.2 in the
case when the two posets haveR-labelings.

10. Proof of Theorem 9.2

We will now prove Theorem 9.2 in the general case, that is, we will not assumeP andQ
haveR-labelings. We begin by defining a mapK from the set of chains of the posetP×Q
to the set of quadruples(dP, dQ, r, s) such thatdP is a chain inP, dQ is a chain inQ, and
r, s ∈ {1, 2}. We will do this so thatl (dQ) − l (dP) = r + s− 3, wherel (·) denotes the
length of the chain. This condition implies that lengths of the chainsdP anddQ differ by at
most one.

We now describe the mapK . Let c = {(0̂, 0̂) = (x0, y0) < (x1, y1) < · · · < (xk, yk) =
(1̂, 1̂)}be a chain in the posetP×Q. Observe that the chains{0̂= x0 ≤ x1 ≤ · · · ≤ xk = 1̂}
and{0̂= y0 ≤ y1 ≤ · · · ≤ yk = 1̂} are weakly increasing.

We will now find two other chains in the posetsP andQ. Let z0 = 0̂P andw0 = 0̂Q.
Recursively define

zi = min{xj : yj > wi−1},
wi = max{yj : xj = zi }.

This recursion ends whenwk = 1̂Q since then we cannot findzk+1. Observe that̂0= z0 ≤
z1 < z2 < · · · < zk−1 < zk ≤ 1̂ and0̂= w0 < w1 < w2 < · · · < wk = 1̂.
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Let dQ be the chain{0̂ = w0 < w1 < w2 < · · · < wk = 1̂}. Let dP be the chain
{0̂= z0 ≤ z1 < z2 < · · · < zk−1 < zk ≤ 1̂}. Observe that we considerdP as a set, not as a
multiset. Ifz0 = z1 let r = 2, otherwiser = 1. If zk = 1̂ lets= 2, otherwises= 1. Now
let K (c) = (dP, dQ, r, s).

For a setS of chains of the posetP× Q, defineW(S) = WP×Q(S) to be the sum∑
c∈SwP×Q(c), wherewP×Q is the weight function defined in Section 3.

Lemma 10.1 Let dP be the chain{0̂ = p0 < p1 < · · · < pk = 1̂} and let dQ be the
chain {0̂ = q0 < q1 < · · · < qk′ = 1̂}, where k′ = k + r + s− 3. For the four cases
(r, s) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)} we have:

W(K−1(dP, dQ, 1, 1)) = 9([ p0, p1]) · a ·9([q0,q1])

· b · · ·a ·9([qk−2,qk−1]) · b ·9([ pk−1, pk]),

W(K−1(dP, dQ, 1, 2)) = 9([ p0, p1]) · a ·9([q0,q1])

· b · · ·b ·9([ pk−1, pk]) · a ·9([qk−1,qk]),

W(K−1(dP, dQ, 2, 1)) = 9([q0,q1]) · b ·9([ p0, p1])

· a · · ·a ·9([qk−1,qk]) · b ·9([ pk−1, pk]),

W(K−1(dP, dQ, 2, 2)) = 9([q0,q1]) · b ·9([ p0, p1])

· a · · ·b ·9([ pk−1, pk]) · a ·9([qk,qk+1]).

Here the inserteda’s andb’s alternate.

Proof: We will prove the case when(r, s) = (1, 2). The other three cases are proved by
a similar argument.

Let c be a chain such thatK (c) = (dP, dQ, 1, 2). Observe that the pair(pi ,qi ) belongs
to the chainc for all i = 0, . . . , k. Similarly, the pair(pi ,qi−1)may or may not belong toc
for i = 1, . . . , k. Any other element of the chainc belongs to either an interval of the form
[(pi−1,qi−1), (pi ,qi−1)] or of the form [(pi ,qi−1), (pi ,qi )].

More formally, the chainc contains the pairs(pi ,qi ). That is,

{(p0,q0), (p1,q1), . . . , (pk,qk)} ⊆ c.

Also, the chainc is a subset of the union of these intervals. That is,

c ⊆
k⋃

i=1

[(pi−1,qi−1), (pi ,qi−1)] ∪ [(pi ,qi−1), (pi ,qi )].

It is easy to see that any chainc′ of P× Q that fulfills these two conditions satisfies
K (c′) = (dP, dQ, 1, 2).

Hence when computing the weight of the chainc, the interval [(pi−1,qi−1), (pi ,qi−1)]
contributes9([ pi−1, pi ]), the pair(pi ,qi−1) contributesa, the interval [(pi ,qi−1), (pi ,qi )]
contributes9([qi−1,qi ]), and finally the pair(pi ,qi ) contributesb. This completes the
proof of the lemma in the case when(r, s) = (1, 2). 2
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Proof of Theorem 9.2: For (r, s, n) in the index setI , defineP(r, s, n) to be the set of
chains in the posetP× Q such that

P(r, s, n) = {c : K (c) = (dP, dQ, r, s), wherel (dP)+ l (dQ) = n}.

We would like to computeW(P(1, 2, 2 · k)). To do this, we must consider all possible ways
to have a chain inP of lengthk and a chain inQ of lengthk. We may compute all such
possibilities by considering the two expressions1k(P) and1k(Q). By Lemma 10.1, we
have that

W(P(1, 2, 2 · k)) =
∑

P

∑
Q

9
(
P(1)

) · a ·9(Q(1)
) · b · · ·b ·9(P(k)) · a ·9(Q(k)

)
=
∑

u

∑
v

u(1) · a · v(1) · b · · ·b · u(k) · a · v(k)
= M1,2(u, v,2 · k),

whereu = 9(P) andv = 9(Q). The second equality holds since9 is a coalgebra map.
The last equality is the expression for the mixing operator.

One may generalize this argument to obtain thatW(P(r, s, n)) = Mr,s(u, v,n) for
(r, s, n) belonging to the index setI . The theorem follows by summing over all triplets in
the index setI . 2

Define an algebra mapκ from A to itself by κ(a) = a − b andκ (b) = 0. Since the
monomialaρ(P)−1 has coefficient 1 in the expansion of9(P), we have thatκ(9(P)) =
(a− b)ρ(P)−1.

Recall that in the definition of9(P) we sum over all chains in the posetP. If we
condition on the smallest nonzero element in the chain, we obtain the following expression:

9(P) = (a− b)ρ(P)−1+
∑

0̂<x<1̂

(a− b)ρ(x)−1 · b ·9([x, 1̂])

= κ(9(P))+
∑

0̂<x<1̂

κ(9([0̂, x])) · b ·9([x, 1̂])

= κ(9(P))+
∑

P

κ
(
9
(
P(1)

)) · b ·9(P(2)).
We use this identity to find a formula for9(P ¦ Q) in terms of9(P) and9(Q). Note

that a nonzero element inP ¦Q is of the form(x, y), where0̂P < x≤ 1̂P and0̂Q< y≤ 1̂Q.
Moreover, the rank of the element(x, y) is ρ(x)+ ρ(y)− 1. Hence,κ(9([0̂, (x, y)])) =
(a− b)ρ((x,y))−1 = (a− b)ρ(x)+ρ(y)−2 = κ(9([0̂, x])) · κ(9([0̂, y])).

We now obtain

9(P ¦ Q) = κ(9(P ¦ Q))+
∑

0̂<(x,y)<(1̂,1̂)

κ(9([0̂, (x, y)])) · b ·9([(x, y), (1̂, 1̂)])

= κ(9(P)) · κ(9(Q))+
∑

0̂<(x,y)<(1̂,1̂)

κ(9([0̂, x])) · κ(9([0̂, y]))

· b ·9([x, 1̂]× [y, 1̂])
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= κ(9(P)) · κ(9(Q))+
∑

0̂<x<1̂

κ(9([0̂, x])) · κ(9(Q)) · b ·9([x, 1̂])

+
∑

0̂<y<1̂

κ(9(P)) · κ(9([0̂, y])) · b ·9([y, 1̂])

+
∑

0̂<x<1̂
0̂<y<1̂

κ(9([0̂, x])) · κ(9([0̂, y])) · b ·9([x, 1̂]× [y, 1̂]).

Here the second term comes from the case wheny = 1̂, the third from the casex = 1̂, and
the last from the remaining case. This equation can be expressed in Sweedler notation as

9(P ¦ Q) = κ(9(P)) · κ(9(Q))+
∑

P

κ
(
9
(
P(1)

)) · κ(9(Q)) · b ·9(P(2))
+
∑

Q

κ(9(P)) · κ(9(Q(1)
)) · b ·9(Q(2)

)
+
∑

P

∑
Q

κ
(
9
(
P(1)

)) · κ(9(Q(1)
)) · b ·9(P(2) × Q(2)

)
.

Letting u = 9(P) andv = 9(Q), and using the fact that theab-index is a coalgebra
homomorphism, we have

9(P ¦ Q) = κ(u) · κ(v)+
∑

u

κ
(
u(1)

) · κ(v) · b · u(2) +∑
v

κ(u) · κ(v(1)) · b · v(2)
+
∑

u

∑
v

κ
(
u(1)

) · κ(v(1)) · b ·M(
u(2), v(2)

)
.

HereM(u, v) denotes the expression in Theorem 9.2. Hence, we conclude that we can
compute9(P ¦Q) in terms of9(P) and9(Q). SinceL(U ×V) = L(U )¦L(V) for two
convex polytopesU andV , we obtain the following proposition.

Proposition 10.2 Let U and V be two convex polytopes. Then theab-index of their
Cartesian product U× V is given by

9(U ×V) = κ(u) · κ(v)+
∑

u

κ
(
u(1)

) · κ(v) · b · u(2) +∑
v

κ(u) · κ(v(1)) · b · v(2)
+
∑

u

∑
v

κ
(
u(1)

) · κ(v(1)) · b ·M(
u(2), v(2)

)
,

where u= 9(U ) andv = 9(V).

11. Concluding remarks

There are a number of questions that appear at this point in the research. We put forward a
few of them.
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In Section 8 we found new properties that hold for thecd-index of the shelling components
of the simplex. In [6] thecd-index of shelling components of the cube have been studied.
Are there any identities between thecd-indexes of the shelling components of the cube
involving coproducts?

Stanley conjectured that among all Gorenstein∗ lattices of rankn, the Boolean algebra
Bn minimizes all the coefficients of thecd-index [21, Conjecture 2.7]. We present the
following generalization:

Conjecture 11.1 Let F be a polytope of dimension d−1. Then among all d-dimensional
polytopes having F as a facet, the pyramid of F minimizes all the coefficients of thecd-index.

Let L be a linear functional on the Newtonian coalgebraV . Then the linear mapDL

defined onV by

DL(x) =
∑

x

x(1) · L
(
x(2)

) · x(3)
is a coderivation onV . That is,DL satisfies the relation1◦ DL = (DL ⊗1+1⊗ DL)◦1.
In the Newtonian coalgebrasP, E , A, andF are there any coderivations which have a
combinatorial interpretation?

In Section 9 when computing9(P ¦ Q) in terms of9(P) and9(Q), many terms with
negative signs occur. Could one find a more bijective formula for9(P ¦ Q), such as the
formula for9(P × Q) in Theorem 9.2? More importantly, consider the case whenP and
Q are Eulerian, and we have9(P) and9(Q) ascd-indexes. Do there exist formulas for
9(P×Q) and9(P¦Q)where the computation is completely inside the algebraF , that is,
where all terms arecd-monomials. For instance, Hetyei has asked if there are any explicit
formulas for thecd-index of products of simplices.

There is one more operation on graded posets which preserves the Eulerian property.
Let P and Q be two posets of the same rankn + 1. DefineP ◦ Q to be the poset(P −
{0̂, 1̂}) + (Q − {0̂, 1̂}) ∪ {0̂, 1̂}. That is, P ◦ Q is formed by pairwise identifying the
extremal elements ofP and Q. We have9(P ◦ Q)=9(P)+9(Q)− (a− b)n. When
P and Q are Eulerian of the same odd rank 2k + 1, we have thatP ◦ Q is Eulerian and
9(P ◦ Q)=9(P)+9(Q)− (c2− 2 · d)k.

In order to obtain a better understanding of thecd-index of an Eulerian posetP, one
would need to compute more examples. It would be interesting to implement the algorithm
in Section 3 in either Maple or Mathematica.

Let V andW be two convex polytopes inRn. The Minkowski sumV+W is also a convex
polytope. Assume that we know thecd-index of the two polytopesV andW. This does not
give us enough information to compute thecd-index of the Minkowski sumV +W. What
additional information do we need ofV andW in order to compute9(V+W)? Recall that
in Proposition 6.5 this was solved when one of the polytopes is a line segment in general
direction. Recently, the authors together with Louis Billera have found an answer in the
case when one of the polytopes is a line segment not in general direction.
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Note

In a forthcoming paper, Ehrenborg and Fox have found recursions for9(P×Q) and9(P¦Q) completely inside

the algebraF . Recently Billera and Ehrenborg have proven Conjecture 11.1.
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