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Abstract. d-Complete posets are defined to be posets which satisfy certain local structural conditions. These
posets play or conjecturally play several roles in algebraic combinatorics related to the notions of shapes, shifted
shapes, plane partitions, and hook length posets. They also play several roles in Lie theory and algebraic geometry
related toλ-minuscule elements and Bruhat distributive lattices for simply laced general Weyl or Coxeter groups,
and toλ-minuscule Schubert varieties. This paper presents a classification ofd-complete posets which is indexed
by Dynkin diagrams.
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1. Introduction

A poset is “d-complete” if it satisfies certain local structural conditions which are listed
in Section 3. In this paper we describe all possibled-complete posets. This includes an
explicit listing of all possible “irreducible components” ofd-complete posets. Each such
irreducible component is indexed by a connected Dynkin diagram which is embedded in the
order (Hasse) diagram of the component. The next three paragraphs are addressed to readers
familiar with Lie and Coxeter groups and should be skipped by other readers. Except for
those paragraphs and Section 15, this paper may be read by anyone who is familiar with
basic poset concepts. There are combinatorial motivations for studyingd-complete posets
which are independent of Lie theory, e.g., the hook length property.

Let W be a simply laced general Weyl group, i.e., the Weyl group associated to some
fixed simply laced Kac-Moody algebra. Letλ be a dominant integral weight. Dale Peterson
definesw ∈ W to beλ-minusculeif there exists some decompositionsik · · · si1 ofw such that
si j(si j−1· · · si1λ) = (si j−1· · · si1λ)−αi j for 1≤ j ≤ k, whereαi is the simple root associated
to si . In the companion paper [7] to this paper, we showed that ifw is a λ-minuscule
element for a simply laced general Weyl group, then the initial interval [e, w] in either
the weak or strong Bruhat order onW/Wλ is a distributive lattice. SetLw := [e, w].
These are the “λ-minuscule Bruhat lattices” mentioned in the title of this paper. Any
finite distributive latticeL is determined by its subposetP of “join irreducible” elements.
In [7] we characterized the posetsP which could arise as posets of join irreducibles of
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λ-minuscule Bruhat latticesLw. This characterization amounted to the satisfaction of
several certain local structural conditions; we defined a poset to be “d-complete” if it
satisfied all of those conditions. The present paper describes all possibled-complete posets.
(However, the definition ofd-complete used in this paper is the order dual of the definition
given in [7]; the statements made above are made with respect to the [7] definition.) Using
a couple of easy translation steps from [7], the description of alld-complete posets given in
the present paper can be converted into a description of all possibleλ-minuscule elements
for simply laced general Weyl groups.

Let W be an arbitrary Coxeter group. Stembridge has studied the elementsw ∈ W for
which the weak Bruhat interval [e, w] is a distributive lattice [14]. He showed that this
property is equivalent tow being “fully commutative”, namely, any reduced decomposition
for w can be converted into any other reduced decomposition forw using only relations
of the formsi sj = sj si . It can be seen that everyλ-minuscule elementw is fully com-
mutative. Section 15 contains further remarks on some Weyl group implications of this
paper; also consult the last section of [7] for comments on representation theoretic and
geometric implications. In particular, the list ofd-complete posets given in this paper index
a family of particularly simple Schubert subvarieties of Kac-Moody flag manifolds, and it is
hoped that each poset drawn in this paper will embody much useful geometric information
for the corresponding variety. Also, thed-complete posets describe the structures of the
“minuscule” portions of weight diagrams for integrable representations of simply laced
Kac-Moody algebras.

In [10], we re-constructed some special cases of a basis of Lakshmibai [5] for Demazure
modules in a poset-theoretic setting. We showed that a colored poset has such a basis for
a module associated to it if and only if it is a coloredd-complete poset. This was the
origin of the notion ofd-complete poset. Proposition 8.6 of [7] implies that the notions of
d-complete poset and of coloredd-complete poset are equivalent.

The introduction for a general audience begins here. Section 3 contains the definition
of “d-complete” poset. In Section 4 we show how to decompose an arbitrary connected
d-complete poset into a “slant sum” of “irreducible components”. In Sections 5 and 6
we derive several facts about irreducible components; the most important being that a
combinatorially defined subposet of an irreducible component, its “top tree”, must be “Y-
shaped”. In Sections 9–13 we define 15 exhaustive classes of irreducible components and
describe all of the members of each class. In 14 out of the 15 classes, the top tree of
an irreducible component must be a Dynkin diagram of “general type E”. This listing of
possibilities is summarized in Section 7. Combining the theorems of Sections 4, 5, and 7
gives the classification ofd-complete posets.

Shapes (Ferrers diagrams) and shifted shapes are diagrams upon which Young tableaux
and plane partitions are defined. The boxes of a (shifted) shape may be viewed as the
elements of a certain poset. Then shapes and shifted shapes constitute two particular
infinite families of posets. These two families of posets essentially form our Classes 1 and
2 of irreducible components. Two other infinite families of posets which are important for
this paper are defined in Sections 2 and 4: these consist of “double-tailed diamonds” and
“rooted trees”. The double tailed diamond posets play a central role in the definition of
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d-complete poset. Rooted tree posets are the “trivial”d-complete posets in a certain sense.
By introducing the notions ofd-complete and slant sum, and by describing the irreducible
components in Classes 3–15, this paper may be thought of as “filling out” the category
of posets “hinted at” by shapes, shifted shapes, double-tailed diamonds, and rooted trees.
“Slant irreducible components” may be thought of as being the result of “weaving together”
many double-tailed diamonds in a certain fashion. General connectedd-complete posets
are obtained by combining slant irreducible components with the slant sum operation.

A posetP is said to be “hook length” if its associatedP-partition generating function
factors in a certain nice fashion analogous to identities discovered by Euler and Stanley.
Until recently, the only known infinite families of hook length posets were shapes [12],
shifted shapes [4, 11], rooted trees [12], and double-tailed diamonds. With Dale Peterson,
we recently have shown that anyd-complete poset is a hook length poset, by combining facts
from algebraic geometry and representation theory with the viewpoint of [7]. A corollary to
this result is a generalization of the hook product formula for the number of standard Young
tableaux on an ordinary shape to a product formula for the number of order extensions of
any d-complete poset. This corollary can be viewed as a conversion of Dale Peterson’s
(long known) hook formula for the number of reduced decompositions of aλ-minuscule
element into a combinatorial form analogous to the original Frame-Robinson-Thrall form.

After reading the definition ofd-complete poset in Section 3 (with references to Section 2
as needed), browsers should also glance at the definition of slant sum in Section 4. Next they
should read the last third of Section 4 (following the Corollary), which contains the theorem
for decomposingd-complete posets into their irreducible components. This theorem is
illustrated by figure 3. Then they should skim the description of the classification of
irreducible components presented in Section 7, while consulting Table 1 and figures 5.1–
5.15. Except for Sections 1, 14, and 15, this paper is entirely self-contained.

It is possible [7] to recast theλ-minuscule definition above as a mild modification of the
naively expressible “numbers game” on the simple graph G. This game has been studied in
several papers, including [1–3, 6]. The paper [1] quickly shifts to such a naive environment.
If one preferred, one could regard the Dynkin diagram classification result of this paper as
being for certain aspects of a certain numbers game.

In [8] we found all Bruhat orders on parabolic quotientsWJ of finite Weyl groups which
are distributive lattices. We called the associated posets of join irreducibles “minuscule”,
since they were exactly the posets of join irreducibles for the distributive lattices arising
as weight diagrams for minuscule representations. In Section 14 we use our classification
result to show that ad-complete poset is order self-dual if and only if it is a minuscule poset.
(The minuscule posets are the only known Gaussian posets [13, p. 288].)

2. Poset definitions

Let P be a poset (finite partially ordered set). Ifx is covered byy, we writex → y. The
order diagramof P is the directed graph made with such edges. Two subsets of a poset
arenon-adjacentif they share no elements and if there are no edges joining an element in
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one to an element in the other. A poset isconnectedif its order diagram is connected. Any
poset can be expressed as a direct sum of non-adjacent connected subposets. Anideal of
P is a subsetI ⊆ P such thaty ∈ I and x ≤ y imply that x ∈ P. A filter of P is a
subsetF ⊆ P such thatx ∈ F andy ≥ x imply that y ∈ P. If x ∈ P, then theprincipal
ideal (x) := {y : y ≤ x}. If x, y ∈ P, we defineintervals [x, y] := {z : x ≤ z ≤ y}
and [x, y) := {z : x ≤ z < y}. A chain of length nin P is a sequence of elements
x0 → x1 → · · · → xn. The order dual poset P* of P is defined on the same set of
elements asP by: y ≤ x in P* if x ≤ y in P.

Let Q denote the set of integral points in the strict fourth quadrant of the plane. Its
elements(i, j ) will be coordinatized as in a matrix, soi ≥ 1 and j ≥ 1. We turnQ into a
poset by:(i1, j1) ≥ (i2, j2) if i1 ≤ i2 and j1 ≤ j2. A shapeλ = (λ1, λ2, . . .) is a finite
filter ofQ with λi elements of the form (i, j ). Note thatλ1 ≥ λ2 ≥ · · · ≥ λr > 0 for some
maximalr ≥ 0. Thewidth of λ is λ1 and thelengthof λ is r . LetO denote the “octant”
subposet ofQ formed by taking the weakly upper triangular portion ofQ : (i, j ) ∈ O if
j ≥ i . A shifted shapeµ = (µ1, µ2, . . .) is a finite filter ofQwith µi elements of the form
(i, j ). Note thatµ1 > µ2 > · · · > µr > 0 for some maximalr ≥ 0. Thewidth of µ isµ1

and thelengthof µ is r . When depicting such posets with graph paper, the “up” direction
is Northwest, not North as usual.

Let3(r, c) denote the set of shapesλ whose length does not exceedr and whose width
does not exceedc. Let 6(r, c) denote the set of shifted shapes whose length does not
exceedr and whose width does not exceedc. Let6(r, c)M denote the maximal element of
6(r, c), namely, the shifted shape with row lengthsc, c− 1, c− 2, . . . , c− r + 1. The set
6(r, c)′ is defined to consist of all filters of the order dual of6(r, c)M .

The order diagrams of the “double-tailed diamond” posetsdk(1) are shown in figure 1
for k = 3, 4, and 5. Fork ≥ 3, thedouble-tailed diamondposetdk(1) has 2k−2 elements,
of which two are incomparable elements in the middle rank andk − 2 apiece form chains
above and below the two incomparable elements. (The posetdk(1) is the poset of join
irreducibles of the Bruhat latticeDk(1) for theω1 representation of the simple Lie algebra
of type Dk. [8]) Thek− 2 elements above the two incomparable elements are calledneck
elements, and whenk ≥ 4 all but the lowest of these are calledstrict neckelements.

Figure 1.
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Let P be a poset. A subset{w, x, y, z} of P is adiamondif z coversx andy, and each
of x andy coverw. Thetop andbottomof this diamond arez andw, and thesidesarex
andy. An interval [w, z] is a d3-interval if it is a diamond{w, x, y, z} for somex and
y, or in other words, if [w, z] ∼= d3(1). More generally, fork ≥ 3, we say that an interval
[w , z] is a dk-interval if is isomorphic todk(1). A d−3 -interval [w; x, y] consists of three
elementsx, y, andw such thatx andy each coverw. Fork ≥ 4, we say that an interval
[w, y] is a d−k -interval if is isomorphic todk(1) − {t}, wheret is the maximal element of
dk(1).

3. d-Complete posets

Let P be a poset with elementsw, x, and y. Suppose that [w; x, y] is a d−3 -interval.
If there is noz ∈ P such that{w, x, y, z} is ad3-interval, then [w; x, y] is an incomplete
d−3 -interval. If there existsw′ 6= w such that [w′; x, y] is also ad−3 -interval, then we say
that [w; x, y] and [w′; x, y] overlap. A posetP is d3-completeif it contains no incomplete
d−3 -intervals, if the maximal element of eachd3-interval does not cover any elements outside
of that interval, and if it contains no overlappingd−3 -intervals. We have just required:

(D1) Anytime two elementsx and y cover a third elementw, there must exist a fourth
elementz which covers each ofx andy,

(D2) If {w, x, y, z} is a diamond inP, thenz covers onlyx andy in P, and
(D3) No two elementsx andy can cover each of two other elementsw andw′.

Let k ≥ 4. Suppose [w, y] is ad−k -interval in whichx is the unique element coveringw.
If there is noz ∈ P coveringy such that [w, z] is adk-interval, then [w, y] is anincomplete
d−k -interval. If there existsw′ 6= w which is covered byx such that [w′, y] is also a
d−k -interval, then we say that [w, y] and [w′, y] overlap. For anyk ≥ 4, a posetP is
dk-completeif:

(D4) There are no incompleted−k -intervals,
(D5) If [w, z] is adk-interval, thenz covers only one element inP, and
(D6) There are no overlappingd−k -intervals.

A posetP isd-completeif it is dk-complete for everyk ≥ 3. It is easy to see that any filter
of a d-complete poset is itselfd-complete. Note that D5 implies: Any strict neck element
of adk-interval (necessarilyk ≥ 4) in ad-complete poset covers exactly one element. Now
we list some properties which follow from D1 and D2.

Proposition Let P be a poset with elements w, x, x′, y, z which satisfiesD1. Then the
finiteness of P implies:
(F1) Suppose that x≤ x′, x→ y, and y x′. Then there exists a y′ ∈ P which covers x′.
(F2) If P is connected, then it has a unique maximal element z0.
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Figure 2.

(F3) If P is connected, every chain from an element w to z0 has the same length.
If in addition P satisfiesD2, then:
(F4) If P is connected, each element of P other than z0 is covered by1 or 2 elements.

Proof: For F1, letx =: x0, x1, . . . , xk := x′ be such thatxi coversxi−1 for 0 < i ≤ k.
Let y0 := y. For 1≤ i ≤ k apply D1 to [xi−1; xi , yi−1] to see that ayi exists which covers
xi andyi−1. It is never the case thatyi = x′, sinceyi ≥ y but x′ ® y. Let y′ := yk. For F2,
note thatP has at least one maximal element since it is finite. Suppose it has at least two
maximal elementsz0 andz1. SinceP is connected, there will be a “up/down path” from
z0 to z1 of shortest possible length. Lety be the earliest element such thaty z0 and let
x be the preceding element on the path:x ≤ z0. Applying F1 produces a contradiction of
the maximality ofz0, and soz0 must be unique. For F3, letw be maximal inP such that
w → a1 → · · · → ar = z0 andw → b1 → · · · → bs = z0 with r > s. Clearlys > 1,
and sob1 < z0. Use D1 to constructc2, c3, . . . alonga1 → · · · → ar = z0 such that
a1→ c2 andb1→ c2, thena2→ c3 andc2→ c3, etc. By the maximality ofz0, there must
exist somet ≤ r such thatct = at . Thusb1 → c2 → · · · → ct = at → · · · → ar = z0

andb1 → b2 → · · · → bs = z0 are chains of lengthsr − 1 > s− 1, contradicting the
maximality ofw. For F4, note that if an element is covered by three or more other elements,
then D1 and D2 forceP to be infinite, as illustrated in figure 2. 2

4. Slant sum decomposition

It is easy to see that a poset isd-complete if and only if each of the posets defined by the
connected components of its order diagram isd-complete. So for our classification, we will
consider only connectedd-complete posets. The notion of slant sum introduced here will
be used to break connectedd-complete posets into smaller pieces, as illustrated in figure 3.
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In this paper, arooted treeis a poset which has a unique maximal element, and is such
that each non-maximal element is covered by exactly one other element. It is easy to see
that rooted tree posets ared-complete.

Let P be a connected poset with a unique maximal elementz. A top tree element x∈ P
is an element which is covered by at most one other element and is such that everyy ≥ x is
covered by at most one other element. Thetop tree Tof P consists of all top tree elements.
It is easy to see thatT is a filter of P which is a rooted tree under the order inherited from
P. Obviously the top tree of a rooted treeT is all of T .

Let P be a connectedd-complete poset with top treeT . An elementy ∈ P is acyclic if
y ∈ T and it is not in the neck of anydk-interval for anyk ≥ 3. An element ofP is cyclic
if it is not acyclic. If y ∈ P is cyclic, then either it is in the neck of somedk-interval or
there exists somez≥ y which is covered by two elements. Ify ∈ T , then it is cyclic if and
only if it is in the neck of somedk-interval.

Let P1 be ad-complete poset containing an acyclic elementy. Let P2 be a connected
d-complete poset which is non-adjacent toP1. By F2, letx denote the unique maximal
element ofP2. Then theslant sumof P1 with P2 at y, denotedP1

y\x P2, is the poset formed
by creating a covering relationx → y. A d-complete posetP is slant irreducibleif it is
connected and it cannot be expressed as a slant sum of two non-emptyd-complete posets.
Suppose thatP is a connectedd-complete poset with top treeT . An edgex→ y of P is a
slant edgeif x, y ∈ T andy is acyclic.

All of the elements of a rooted treeP1 are acyclic. A one element posetP2 is d-complete.
If y ∈ P1, then the slant sumP1

y\x P2 will be a rooted tree. Any iterated slant sum formed
with one element posets will be a rooted tree, and every rooted tree can be obtained in this
fashion.

All of the edges of a rooted tree are slant edges. One element posets are slant irre-
ducible. Removing all of the edges of a rooted tree produces a disjoint union of slant
irreducible posets. What if we remove a slant edge from an arbitrary connectedd-complete
poset?

Proposition A Let P be a connected d-complete poset and let x→ y be a slant edge.
Let P2 := (x) and let P1 := P− (x). Then P is a slant sum P1

y\x P2 of two non-adjacent
connected d-complete posets P1 and P2. The top tree of T of P is the slant sum T1

y\x T2

of the top trees T1 and T2 of P1 and P2. The acyclic elements of P are acyclic in P1 or P2,
and slant edges other than x→ y are slant edges in P1 or P2.

Proof: By definition, y is acyclic. Sincey is the only element coveringx in P, there
cannot be anydk-conditions passing throughx and beyond. Suppose that some element
u 6= x in (x) is covered by some elementv in P − (x). Sincex is covered only byy, an
argument similar to that used to prove F1 could be used to show thaty would be the top
element of a diamond. So aside fromx → y, the subsetsP1 andP2 are non-adjacent and
any dk-intervals contained in(x) ⊂ P are completed within (x). HenceP2 := (x) is d-
complete. SinceP2 is an ideal ofP, the subsetP1 is a filter. HenceP1 isd-complete. Clearly
y will remain acyclic inP1. Obviouslyx is the maximal element of (x). Removing one
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edge of a connected poset creates at most two components. SoP= P1
y\x P2 as claimed.

The other statements are easy. 2

Going in the other direction, we have:

Proposition B Let P1 be a connected d-complete poset with acyclic element y and let P2 be
a connected d-complete poset with maximal element x. Then the slant sum P:= P1

y\x P2

is a connected d-complete poset. If T1 and T2 are the top trees of P1 and P2, then T1 y\x T2

is the top tree of P. The acyclic elements of P1 and P2 are acyclic in P, the slant edges of
P1 and P2 are slant edges in P, and the edge x→ y is a slant edge in P.

Proof: The added edge is the only edge joining an element ofP1 to an element ofP2.
Sincey is not below any element which is covered by two elements andx is not covered by
any other element, adding a downward edge aty cannot cause a violation of D1, D4, D3,
or D6. Sincey is not in the neck of anydk-interval in P1, adding this edge cannot cause
a violation of D2 or D5. SoP1

y\x P2 is d-complete. It is given thaty is acyclic inP1; in
order fory to not be acyclic inP, the elementx would have to be the maximal element of
somed−k -interval in P2 for somek ≥ 4. This is impossible sinceP2 is d-complete. The
other statements are easy. 2

These two results can be combined to immediately yield:

Proposition C Let P be a connected d-complete poset. Then P is slant irreducible if and
only if it contains no slant edges. Also, P is slant irreducible if and only if every acyclic
element is a minimal element of its top tree.

We now use this proposition to describe the structure of any connectedd-complete poset
P. First locate all of its slant edges. These may be erased in any order to produce a
collection P1, P2, . . . of uniquely determined smaller non-adjacent connectedd-complete
posets. No new slant edges are created, and so each ofP1, P2, . . . are slant irreducible. We
say thatP1, P2, . . . are theslant irreducible componentsof P.

Conversely, suppose thatP1, P2, . . . are slant irreducibled-complete posets in which we
have identified all acyclic elements. In general, many different possible larger connected
d-complete posets can be formed from these posets by forming various slant sums. Acyclic
elements remain acylic and may be used more than once, but maximal elements cease to
be maximal after being used as the bottom of a slant edge. This procedure generalizes the
process of producing any rooted tree by forming an iterated slant sum of one element posets.
There exist slant irreducibled-complete posets with no acyclic elements; given only such
posets we would not be able to form larger connectedd-complete posets.

The remaining sections of this paper will be devoted to listing all possible slant irreducible
d-complete posets. We will regard the one element poset as the trivial slant irreducibled-
complete poset. Byirreducible componentwe will mean a slant irreducibled-complete
poset which has two or more elements. An irreducible component has a unique maximal



DYNKIN DIAGRAM CLASSIFICATION 69

Figure 3.

element and is not a rooted tree. Hence its order diagram contains at least one cycle when
viewed as a graph.

Theorem Let P be a connected d-complete poset. It may be uniquely(up to the order of
operations) decomposed into a slant sum of one element posets and irreducible components.
The top tree of P is an analogous slant sum of the top trees of the irreducible components.

In order to avoid producing a huge number of one element components during the de-
composition, one might want to avoid erasing slant edges which occur within trees. It is
possible to describe a smaller set of “cut” edges whose removal will produce a slant sum of
maximal subtrees and (non-trivial) irreducible components: Suppose thatP is a connected
d-complete poset with top tree elementsx andy. A slant edgex→ y is adown cut edgeif y
is the side element of some diamond inP; it is anup cut edgeif x is cyclic. A slant edge may
be both a down cut edge and an up cut edge. In figure 3, both kinds of cut edges are denoted
with double slash marks. Erasing all of these edges produces our preferred “grapevine”
view of an arbitrary connectedd-complete poset: Such a poset consists of many irreducible
components (viewed as bunches of grapes: any irreducible component contains at least
one cycle; view the minimal cycles as grapes) which are connected together with maximal
tree portions (portions of the vine outside of the bunches). The only botanically incorrect
aspect of this model is that our vine can recontinue from a “corner” of a bunch of grapes.
The larger dots and the heavier edges indicate the top trees of the irreducible components
of thisd-complete poset.

5. The top tree of an irreducible component

From now on, letP denote some fixed irreducible component, namely, a slant irreducible
d-complete poset with at least two elements. In this section we learn that the top treeT of
P must be “Y-shaped”.
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Figure 4.

Lemma Let T be the top tree of an irreducible component P. Suppose z, y ∈ T are such
that z is the top of a diamond with side element y. Then y is a diamond top in P if and only
if it is not a minimal element of T.

Proof: If y is not minimal inT , it is cyclic in P by Proposition 4.C. Since the bottom of
the diamond whose top isz cannot be inT , we know thaty covers at least two elements.
So it cannot be cyclic by being a strict neck element of adk-interval for somek ≥ 4. Hence
y must be a diamond top. Suppose thaty is a diamond top inP. If each of the elements
covered byy is covered by some element different fromy, there would be two distinct
elements coveringy. But y ∈ T . So one element covered byy is covered by onlyy, and
that element must be inT , contradicting the minimality ofy in T . 2

We now need to define a particular kind of rooted tree. Letf ≥ 0 andh ≥ g ≥ 0
be integers. The rooted treeY( f ; g, h) consists of one “branch” element above which
a chain of f elements has been adjoined and below which two non-adjacent chains with
g andh elements, respectively, have been adjoined toward the left and toward the right,
respectively.

From now on, all order diagrams will be rotated 45◦ counterclockwise before being
drawn, so that the “up” direction is “Northwest”. With this convention, the order diagram
for Y( f ; g, h) appears as thef + g+ h+ 1 topmost and leftmost elements in figure 4.

Theorem Let P be an irreducible component. Then its top tree T is of the form Y( f ; g, h)
for some f≥ 0 and h≥ g ≥ 1.

Proof: Consider a non-minimal elementz of T . By Proposition 4.C, it is cyclic. Since
z ∈ T , it must be in the neck of somedk-interval for somek ≥ 4. But elements in the
strict neck of adk-interval for k ≥ 4 cover exactly one other element ofP. Thereforez
can cover two or more other elements ofT only if it is the top of some diamond inP. The
only way z can cover two or more other elements ofT and be a diamond top inP is for
the side elementsx andy of the diamond to be the other elements ofT covered byz. Of
coursez cannot cover any other elements ofP, or of T . So branches inT can only be
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two-fold branches such that there exists a fourth element ofP which is covered by each of
the branching elements.

SinceP is not a tree, the setP−T is non-empty. Letw be a maximal element ofP−T .
Note thatw must be covered by two elements ofT , call themx andy. Then there exists an
elementz of T which covers bothx andy. SoT has at least one branching.

Now we show that there can only be one such branching. Letz be a minimal such branch
node, which coversx and y. Let v be minimal inT such thatv > z and such thatv is
another such branch node. Lett andu be covered byv, and lets 6∈ T be covered byt andu.
One oft andu must be abovez in T ; suppose that it isu. By the lemma,u is a diamond
top. One of the side elements of this diamond must be inT ; call it r . Letq be the bottom of
this diamond. Application of the lemma can be iterated until an element analogous tor is
actuallyz. For simplicity of notation, depict this withr = z. Then not only wouldz cover
x andy as a diamond top, it would also coverq. This is impossible by D2. Therefore, we
must haveq coinciding with eitherx or y. But q 6∈ T and bothx, y ∈ T . Therefore, there
is exactly one branch inT , and it is a two-fold branch. DrawP so that the longer lower
branch ofT is to the right. 2

6. The top filter of an irreducible component

We continue to consider the fixed irreducible componentP. Let f, g, andh be such that the
top treeT of P is Y( f ; g, h). Lete0 be the branch node inT . Lete1 ande2 be the elements
of T covered bye0, with e1 being on the left branch (the one of lengthg). Lete3 6∈ T be the
unique element ofP covered bye1 ande2 whose existence was noted in the proof of the
theorem. Successively label the elements ofT abovee0 byn1, . . . ,n f . Label the remaining
elements on the two lower branches bya2, . . . ,ag andd2, . . . ,dh. All of these elements
named so far are shown in figure 4, as are some other elements whose existence will soon
be proved. Given this notation, we can state some additional facts which are apparent from
the proof of Theorem 5:

Proposition A Let P be an irreducible component with top tree T= Y( f ; g, h). For
2 ≤ i ≤ f, the element ni covers only ni−1. For 1 ≤ i ≤ f − 1, the element ni is covered
only by ni+1. The element e0 is covered only by n1 and is a diamond top of a diamond with
side elements e1 and e2.

Acyclic elements of irreducible components can only possibly occur at two specific
locations:

Proposition B Let P be an irreducible component with top tree T= Y( f ; g, h). The
branch elements a2, . . . ,ag−1 and d2, . . . ,dh−1 are diamond tops. The minimal elements
ag and dh of T cannot be diamond tops, and these are the only two elements of P which
could be acyclic elements. Each of these elements is acyclic if and only if it is not in the
strict neck of some dk-interval for some k≥ 4.

Proof: Continuing the proof of Theorem 5, repeated applications of Lemma 5 can be
used to show that all but the last element of each lower branch are diamond tops. And
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Lemma 5 implies that these last elements are not diamond tops, since they are minimal in
T . These minimal elements ofT are the only possible acyclic elements ofP. Since they
cannot be diamond tops, each fails to be cyclic precisely when it lies in the strict neck of
somedk-interval for somek ≥ 4. 2

Before proceeding, we need to state a local structural fact ford-complete posets.

Lemma Let P be a d-complete poset, with z, x, y∈ P. Suppose that z covers x and y, each
of which is a diamond bottom. Then z can cover at most one other element q. This element q
can be covered by no other elements, and any element covered by q can be covered only
by q.

Proof: Let r ands denote the diamond tops coveringz which correspond to the diamond
bottomsx andy. Let u denote the diamond top coveringr ands. If z covered bothq1 and
q2, then [q1, u] and [q2, u] would violate D6 withk = 4. Supposeq is covered byz. If q
is also covered by an element other thanz so that D3 is not violated, then a third diamond
top t would coverz, violating F4. Letw be covered byq. If w is covered by an element
v other thanq, there must be a diamond top corresponding to the diamond bottomw. It
cannot bez by D2 sincez coversx and y. (This would be the case ifv = x or v = y.)
Hence, an element other thanz coversq, violating an earlier conclusion. 2

We return to the consideration of the fixed irreducible componentP with top treeT =
Y( f ; g, h). Let b2, . . . ,bg and c2, . . . , ch denote the bottoms of the diamonds whose
existence arose during the proof of Proposition B. Iff ≥ 0 andh ≥ g ≥ 1, define the poset
U ( f ; g, h) by the order diagram of figure 4. We now show that the irreducible component
P must contain a filter of this form; we call it thetop filterof P.

Proposition C If the irreducible component P has top tree T= Y( f ; g, h), then it
contains a filter of the form U( f ; g, h), which itself contains T. The only elements of
U ( f ; g, h) which can cover elements outside of U( f ; g, h) are b2, . . . ,bg, c2, . . . , ch,

t1, . . . , t f .

Proof: The diamond tope0 cannot be a strict neck element for anydk-interval. Therefore,
in order for the edgee0→ n1 to not be a slant edge, the elementn1 must be the top of some
d4-interval with diamond bottome3. Hencee3 covers some elementt1. Apply the lemma
with z= e3. Sot1 is covered only bye3, ande3 covers no elements aside fromb2, c2, and
t1. Repeating the slant edge reasoning forni with i ≥ 2 leads to the existence oft2, . . . , t f

as shown. Upward diamond propagation implies thatti can be covered only byti−1. By F4,
none ofb2, . . . ,bg or e3 or c2, . . . , ch can be covered by other elements. The diamond tops
a2, . . . ,ag−1 andd2, . . . ,dh−1 cannot cover elements other than the two elements shown.
If ag covers anotherx aside frombg, thenx could be covered only byag, or else upward
propagation of diamonds would changeT . But thenx ∈ T , contradicting our assumedT .

2
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7. The list of possible irreducible components

Recall that an irreducible component is a slant irreducibled-complete poset which contains
two or more elements. In Sections 9–13, we will define 15 disjoint classes of irreducible
componentsC1, . . . , C15 which will be seen to exhaust the set of all irreducible components.
Here we present the resulting list, which is indexed by Table 1.

For each triple of valuesf ≥ 0, g ≥ 1, andh ≥ g allowed by theNth line of Table 1,
define themaximal poset MN = MN( f ; g, h) to be the poset defined by the order diagram
of figure 5.N. (One is to takef , g, and h large solid dots, respectively, to the left, below,
and right of the junction large solid dot.) Also define theminimal poset LN = L N( f ; g, h)
to be the filter ofMN consisting of all large solid dots, circled dots, solid dots, solid squares,
and boxed squares. (In other words, all elements ofMN other than hollow dots and hollow
triangles.) We will prove that theNth class of posetsCN consists of all posets which are
filters of MN( f ; g, h) containingL N( f ; g, h), as f, g, andh run over all values allowed
by the table. These posets will all be distinct, and so each irreducible component will occur
exactly once in our listing.

Table 1.

Class Colloquially f g h Name λ ∈ µ ∈ Acylics

1 Shapes =0 ≥1 ≥g an[0; g, h; λ] 3(g− 1, h− 1) — L, R

2 Shifted shapes =1 = 1 ≥1 dn[1; 1, h;µ] — 6(h, h)1 L2, R

3 Birds ≥1 ≥2 ≥g yn[ f ; g, h]3 — — L, R

4 Insets ≥2 =1 ≥1 en[ f ; 1, h; 4; λ]4 3( f, h− 1) — L,R

5 Tailed insets ≥2 =1 ≥2 en[ f ; 1, h; 5; λ,µ] 3( f − 1, 1) 3(1, h− 2) R

6 Banners ≥2 =1 ≥3 en[ f ; 1, h; 6; λ] 3(2, h− 3) — R

7 Nooks ≥2 =1 ≥3 en[ f ; 1, h; 7; λ] 3( f − 2, 2) — R

8 Swivels ≥2 =1 =2 en[ f ; 1, 2; 8; λ] 3( f − 1, 4)5 — R2

9 Tailed swivels ≥3 =1 =2 en[ f ; 1, 2; 9; λ,µ] 3( f − 3, 3) 3(2, 1) R2

10 Tagged swivels≥4 =1 =2 en[ f ; 1, 2; 10; λ] 3( f − 4, 4) — —

11 Swivel shifteds ≥4 =1 =2 en[ f ; 1, 2; 11;µ] — 6( f − 3, f + 1)′6 R

12 Pumps ≥3 =1 =2 en[ f ; 1, 2; 12; λ] 3( f − 3, 2) — —

13 Tailed pumps ≥3 =1 =2 en[ f ; 1, 2; 13; λ] 3( f − 3, 1) — —

14 Near bats ≥3 =1 =2 en[ f ; 1, 2; 14] — — —

15 Bat =3 =1 =2 e7[3; 1, 2; 15] — — —

1In Class 2, the shifted shapeµ must contain the element depicted with the boxed square.
2In Classes 2, 8, and 9, these elements are acyclic only when the elements depicted with the hollow triangles

do not exist.
3In Class 3, the nameen[1; g, h] is used if f = 1.
4In Class 4, the namedn[ f ; 1, 1] is used ifh = 1.
5In Class 8, the shapeλ must contain the two elements depicted with solid squares.
6In Class 11, the shapeµ must contain the four elements depicted with solid squares.
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Figure 5.1.

Figure 5.2.

Figure 5.3.
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Figure 5.4.

Figure 5.5.

Figure 5.6.
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Figure 5.7.

Figure 5.8.

Figure 5.9.



DYNKIN DIAGRAM CLASSIFICATION 77

Figure 5.10.

Figure 5.11.

Figure 5.12.
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Figure 5.13.

Figure 5.14.

Figure 5.15.
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Define thetop tree poset TN = TN( f ; g, h) to be the filter ofMN( f ; g, h) consisting of
all large solid dots. Also define thetop filter poset UN = UN( f ; g, h) to be the filter of
MN( f ; g, h) consisting of all large solid dots, circled dots, and boxed squares. For each
N, it is obvious thatTN( f ; g, h) is the top tree ofMN( f ; g, h) and thatTN( f ; g, h) =
Y( f ; g, h). It is also obvious thatUN( f ; g, h) is the top filter ofMN( f ; g, h), i.e., that
UN( f ; g, h) = U ( f ; g, h), as defined in Section 6. The elements ofL N beyondUN consist
of the solid dots and the solid squares. Theoptional poset ON = ON( f ; g, h) is the ideal
of MN consisting of all hollow dots and hollow triangles, i.e., the complement ofL N in
MN . The optional posetsλ andµ listed in Table 1 are usually filters ofON . ForC2, C8,

andC11, the posetsµ andλ are required to contain from one to four elements ofL N as well
for notational convenience. Such elements are depicted with boxed or solid squares.

In 14 out of the 15 classes, the top treeY( f ; g, h) of the irreducible components is such
that min[f, g, h] ≤ 1. When viewed as a Dynkin diagram for a simply laced Kac-Moody
algebra, most or all such trees are of typeA, D, or E, depending upon how “typeE” is
defined. The rank of the algebra isn := f + g+ h+ 1. So we will writeXn( f ; g, h) instead
of Y( f ; g, h) when min[f, g, h] ≤ 1, whereX ∈ {A, D, E}. In particular, takeX = A
when f = 0 and takeX = D when two of{ f, g, h} are both equal to 1. Historically it has
perhaps been required that{ f, g, h} ⊇ {1, 2} and min[{ f, g, h}−{1, 2}] ≥ 2 in order to take
X = E. But we will more generally require only 1∈ { f, g, h} and min[{ f, g, h}−{1}] ≥ 2
in order to regardY( f ; g, h) as aDynkin diagram of general type E. For the fifteenth class
C3, the only restrictions aref ≥ 1 andh ≥ g ≥ 2. There we use the letterY rather than
A, D, or E when f ≥ 2. So each of the top trees appearing in figure 5 can be denoted
Xn( f ; g, h), whereX ∈ {A, D, E,Y} andn ≥ 3.

Building upon this Dynkin diagram notation, we now introduce a name for each possible
irreducible componentP. If P has top treeXn[ f ; g, h], then it is assigned a name roughly
of the form xn[ f ; g, h; N; λ,µ]. (The lower case “x” instead of the upper case “X”
continues the convention of [8, 9] of using the lower case letter for the poset of join
irreduciblesP and the upper case letter for the distributive latticeJ(P). This latticeJ(P)
is a Bruhat order, and in future papers we will denote the Bruhat order corresponding to
the irreducible componentxn[ f ; g, h; N; λ,µ] =: P by Xn[ f ; g, h; N; λ,µ] = J(P).)
If it is not determined byx, f, g, andh, then the numberN of the class of whichP is a
member is displayed. Finally, the parametersλ andµ denote filters ofON (plus possibly a
few elements ofL N) which determine the particular irreducible componentP.

Table 1 specifies which of the two minimal elements ofTN are acyclic: Here the presence
of “ L” means that the elementag of figure 4 is acyclic, and “R” indicates that the elementdh

of that figure is acyclic. ForC2 (respectively,C8 andC9), the elementag (respectively,dh)
is not acyclic when the element ofON depicted with the hollow triangle is present.

Combining the knowledge of the irreducible components and their acyclic elements with
the procedure given at the end of Section 4 enables one to generate all connectedd-complete
posets with a given top tree.

Theorem If P is an irreducible component, then it is described in exactly one of the
lemmas below, for some1≤ N ≤ 15.

The proof of the theorem is provided by the narrative of Sections 9–13: As we proceed,
we explain how the wordings of the definitions of the classes together with various local
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structural conditions imply that no irreducible components are being missed. The conditions
on f, g, andh which appear in Table 1 are incorporated into the definitions of the classes
CN as we proceed.

Lemma 7 N, 1≤N≤ 15. Let f, g, and h be fixed parameter values allowed by the Nth
row of Table1. Then the poset MN( f ; g, h) is an irreducible component. There exist no
extensions of MN( f ; g, h) to a larger irreducible component. A poset P is in the class of
irreducible componentsCN and has top tree Y( f ; g, h) if and only if P contains LN( f ; g, h)
and is a filter of MN( f ; g, h). All such filters of MN( f ; g, h) are distinct. Specification
of posetsλ and/orµ from the possibilities listed in Table1 corresponds to choosing one
member ofCN. The acyclic elements for each P∈ Cn are listed in Table1.

The least routine aspects of each of these 15 lemmas will be confirmed in Sections
9–13 following the definition of the corresponding class of irreducible components. Our
extension arguments will imply that eachMN is a slant irreducibled-complete poset. For
each class we will leave several routine verifications to the reader. The non-existence of slant
irreducible extensions ofMN will follow from Lemma 8.A. If P is a filter ofMN( f ; g, h),
then it isd-complete. If it containsL N( f ; g, h) as well, then it can be seen that it is slant
irreducible and has top treeY( f ; g, h). Verifying that any filterP of MN which contains
L N satisfies the other particular defining conditions ofCN for eachN will be left to the
reader.

The key step is the converse: Suppose thatP is in the classCN of irreducible components
and has top treeY( f ; g, h). We will argue thatP must then be a filter ofMN . (It will be
obvious that ifP ∈ CN , thenP ⊇ L N .) The precise specification of members ofCN with
λ and/orµ will be performed as we proceed. A consequence of this specification will be
the fact that the members of each class for fixed values off, g, andh are distinct. The
conventiong ≤ h guarantees that members of the same class for different parameter values
will never coincide. The reader may confirm the list of acyclic elements for each case using
Proposition 6.B.

8. Extendingd-complete posets

Let P0 be a fixed irreducible component. It will begin with a top treeY( f ; g, h) and a top
filter U ( f ; g, h) for some values off ≥ 0, g ≥ 1, andh ≥ g. If we fix these values
for f, g, andh and exhaustively list all possible irreducible componentsP which begin
with U ( f ; g, h), our fixedP0 will eventually appear in the list of possibleP’s which we
generate. In this section we establish the mechanics which will be used for this process in
Sections 9–13.

Let F be ad-complete poset. Ad-complete posetP is anextensionof F if F is a filter
of P. An elementx 6∈ F is a 1-extensionwith respect toF if F ∪ {x} is d-complete. A
dangle extension xof F is a 1-extension ofF such thatw is covered by one element inF .
A wedge extensionof F is a 1-extension ofF such thatw is covered by two elements inF .
Since elements ofd-complete posets are never covered by three or more elements, every
1-extension ofF is either a dangle extension or a wedge extension. The following lemma
follows immediately from the definition ofd-complete poset.
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Lemma A Let F be a d-complete poset with top tree T.
1. Suppose that x6∈ F is covered by only y∈ F, and y 6∈ T . Then x is a dangle extension

for F if and only if it is the bottom element of some dk-interval [x, z] for some z∈ F
and some k≥ 4 such that z covers no element in F other than one element of[x, z], the
element y is not in the neck of a dk-interval, and any element in F covered by y must be
covered by at least one other element besides y.

2. Suppose thatw 6∈ F is covered by x, y ∈ F. Then w is a wedge extension for F if and
only if there exists some z∈ F which covers only x and y, there is no element in F which
is covered by both x and y, and neither x nor y is in the neck of a dk-interval for any
k ≥ 3.

We will start withF0 = U ( f ; g, h) and repeatedly do the following procedure: For each
i ≥ 1 list all possible ways of extending eachFi−1 found at the previous stage by one
element meeting the requirements of the lemma. In order to focus on one set of values for
f, g, andh at a time, we will not consider 1-extensions ofFi−1 which extend its top tree.
(These would be dangles beneathag or dh.) So eachFi produced will be an irreducible
component with top filterU ( f ; g, h).

Let P0 be a fixed irreducible component with top filterU ( f ; g, h). SetF0 := U ( f ; g, h)
and Ft := P0, wheret := |P0 − U ( f ; g, h)|. Let F0 ⊂ F1 ⊂ · · · ⊂ Ft be any sequence
of filters starting withU ( f ; g, h) and increasing toP0 one element at a time. Since all
of these posets are connected, by F4 we see that eachxi := Fi − Fi−1 for 1 ≤ i ≤ t
is either a dangle or a wedge extension with respect toFi−1. So repeated adjunctions
of dangle and wedge extensions beginning withU ( f ; g, h) are guaranteed to eventually
produceP0.

Suppose that a dangle (respectively, wedge) extension is adjoined at some stage. Then
in that extension and in all later extensions, that element will be covered by exactly one
(respectively, two) elements.

One quickly tires of considering all possible orders in which 1-extensions may be ad-
joined. Letx andy be two 1-extensions with respect to ad-complete posetF . Although it
will be relatively rare, it is possible fory to fail to be a 1-extension with respect toF ∪ {x}.
And thenx will fail to be a 1-extension with respect toF ∪ {y}. It can be seen that this
situation will arise only when there is some elementz ∈ F which covers a 1-extension
x 6∈ F and z is such that [y, z] is a dk-interval in F ∪ {y} for somey 6∈ F and some
k ≥ 3. If this cautionary note is ignored, then any violation of ad-complete requirement
created by adjoining both elements will remain a violation if further elements are adjoined.
Hence, any such error would eventually be detected by noting that one of our “maximal
irreducible components”MN defined in Section 7 is notd-complete. So we can be casual
concerning the order in which 1-extensions are adjoined. In addition, Ifx 6∈ F is not a
1-extension ofF , then it will never be a 1-extension with respect to any extensions ofF .
So once we rule out a conceivable 1-extension, we do not need to keep checking on it as a
possibility.

Let F be ad-complete poset. The following local situation depicted in figure 6 will
often arise in Sections 9–13 when we are seeking all possible extensions ofF : Suppose
that for somes ≥ 1 and somet ≥ 1 we have elementsas → · · · → a1 → z and
bt → · · · → b1 → z such thatai covers onlyai+1 for 1 ≤ i < s and such thatbj covers
only bj+1 for 1 ≤ j < t . Also suppose thatz covers onlya1 andb1 and thatas andbt are
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Figure 6.

minimal in F . Finally, assume that noai , 1 ≤ i ≤ s, and nobj , 1 ≤ j ≤ t , is a neck
element in anydk-interval, for anyk ≥ 3.

Let FM be the poset formed by successively adjoiningst wedges in a grid pattern in the
region between the chainsas → · · · → a1 andbt → · · · → b1 below F . It is clear that
FM will be d-complete, as will any filterP of FM which containsF . (Such posetsP are
obtained by successively adjoining some shapeλ ∈ 3(s, t) of wedges belowF .)

What about other 1-extensions toF or a successor poset which are belowz? First,
some terminology. A dangle extension ofF beneath anai , abj , or z will be called afirst
generation dangle. Any wedge extension ofF or of a laterF ′ which is beneath anai

and/or abj and which has both parents belowz will be called afirst generation wedge.
Later wedges both of whose parents are beneathz will be calledhigher generation wedges.
Wedges which have one parent which is belowzand one parent which is not belowzwill be
calledouter wedges. Any dangle extension of a laterF ′ which is beneath a first generation
wedge will be called asecond generation dangle. In any posetP, an elementx is anonly
child if it is covered by some element ofP which covers onlyx.

Here is the procedure we will follow when listing all possible extensions ofF belowz.
First note all first generation dangles. If one of these is used, then exit this procedure and con-
sider that situation separately. Similarly, note all outer wedges and consider implementing
them at another time. By D1 and D3 it can be seen that the only possible first or higher gen-
eration wedges must be the obvious grid filling wedges noted above. After choosing some
first generation wedges, look for possible second generation dangles using the following
result:

Lemma B Let u be a first generation wedge extension. It can have one second generation
dangle q beneath it if and only if the diamond topv corresponding to the diamond bottom
u is an only child with respect to an element other than an ai or a bj . There are no dangle
extensions beneath higher generation wedges.
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Proof: Let y be such thaty covers onlyv. Then [q, y] will be a d4-interval, and adjoining
one dangleq beneathu creates nod-complete violations. If no suchy exists, then [q, v] will
be an incompleted−4 -interval. Letu be a higher generation wedge extension and letv be
the corresponding diamond top. Thenv is an earlier wedge extension which we adjoined,
and none of these which became diamond tops by some later obvious wedge extensions are
only children. So as above, the elementu can have no dangles beneath it. 2

Outer wedge possibilities will rarely arise. By D1, the two parents must already be
covered by a mutual element. This situation will arise only when the parent belowz is one
of theai or bj and the grandparent is not belowz.

Whenever the situation of figure 6 arises in Sections 9–13, we will assume that the
reader will assist us in performing the procedure described above: Note all first generation
dangles and outer wedges for future consideration. Add some first generation wedges.
Using Lemma B, note all second generation dangles for future consideration. Add some
higher generation wedges to complete an adjoined shapeλ ∈ 3(s, t) of wedges between
the two chains. Lemma B excuses us from checking for later dangles. Altogether, this
routine will be referred to as the “Grid Filling Procedure”, or “GFP”.

From Sections 5 and 6, recall that any irreducible componentP has a top treeY( f ; g, h)
for some f ≥ 0 andh ≥ g ≥ 0 and contains the top filterU ( f ; g, h). The classesC1,
C2, andC3 are defined to consist of all irreducible components having certain values for
f, g, andh. To describe these classes we need to generate all extensions ofU ( f ; g, h).
If N ≥ 4, the classCN is defined to consist of all irreducible components which contain a
specified posetV∗ as a filter, which have the same top tree asV∗, and which satisfy certain
other conditions. Then we need to generate all extensions ofV∗ which satisfy the specified
conditions. By Proposition 6.C, at the beginning of the extension process we only need to
consider extensions beneath the elementsb2, . . . ,bg, c2, . . . , ch, andt1, . . . , t f .

9. Classes 1–3: Shapes, shifted shapes, and birds

In this section we define the three simplest classes of irreducible components and confirm
the corresponding Lemma 7.N’s. If the top tree of an irreducible componentP isT , let f, g,
andh be such thatT = Y( f ; g, h). Recall thatf ≥ 0, g ≥ 1, andh ≥ g in general. To be
thorough, in the definition of each class we will restate all known constraints onf, g,andh.

Either f = 0 or f > 0. Let C1 consist of all irreducible components for whichf = 0,
g≥ 1, h≥ g.

To prove Lemma 7.1, note that the top filterU (0; g, h) for any P ∈ C1 is as shown
in figure 7. By Proposition 6.C, all extensions will be beneathe3. Following GFP, it
can be seen that the only possible extensionsP of U (0; g, h) are the filters ofM1 which
containL1 = U (0; g, h). Each such filter is determined by its intersection withO1; such
intersections are elementsλ of3(g−1, h−1). (Note that each posetan[0; g, h; λ] ∈ C1 is
a shape whose first two columns are of lengthg+ 1 and whose first two rows are of length
h+ 1.)



84 PROCTOR

Figure 7.

Figure 8.

Now assume thatf = 1. Eitherg= 1 or g≥ 2. LetC2 consist of all irreducible compo-
nents for whichf = 1, g = 1, h ≥ 1.

To prove Lemma 7.2, note that the top filterU (1; 1, h) for any P ∈ C2 is as shown in
figure 8. By Proposition 6.C, all extensions will be beneathe3. Following GFP, the only
near term wedge extensions are first generation wedge extensions; adjoin up toh − 1 of
these, starting from the left. Note thate3 is an only child ofe1. If at least one first generation
wedge was chosen, then there is a second generation dangle beneath the first one. If we
do not use this dangle, we are done. If we use it, then the situation is now equivalent to
the one with which we started, provided thath ≥ 3. Repeat this reasoning. Eventually,
there will not be another element such that a wedge can be adjoined beneath it and the most
recent dangle. Hence, we see that the only possible extensionsP of U (1; 1, h) are the
filters of M2 which containL2. Each such filter is determined by its intersection withO2;
such intersections are elementsµ of6(h, h), once the elementt1 has been adjoined. (Note
that each posetdn[1; 1, h;µ] ∈ C2 is a shifted shape with at least three rows and whose first
two rows have lengthsh+ 2 andh+ 1.)
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Next suppose thatg ≥ 2. We still havef ≥ 1 andh ≥ g. The next class will handle the
remaining f = 1 cases and the simplest cases forf > 1. LetC3 consist of all irreducible
components for whichf ≥ 1, g ≥ 2, h ≥ g.

To prove Lemma 7.3, note that the top filterU ( f ; g, h) for any P ∈ C3 is depicted in
figure 4. None ofbg, . . . ,b2, ch, . . . , c2 have dangles beneath them. Sincef ≥ 1, the
elementt1 exists. None oft f , . . . , t1 have dangles or wedge extensions beneath them. A
wedge extension beneath any two ofb2, c2, andt1 is ruled out by D2, and so no wedge
extensions exist. So there are no extensions ofU ( f ; g, h), and everyP in C3 is of the form
M3 = L3. (Lemma 7.3 can be paraphrased as: If all three parametersf, g, andh are
“non-minimal”, then any irreducible componentP must be “minimal”, i.e., it consists only
of L3 = U ( f ; g, h).)

10. Classes 4–6: Inset-type classes

We now define and describe the simplest three classes of irreducible componentsP amongst
the remaining cases off ≥ 2 andg = 1. For fixed f ≥ 2 andh ≥ 1, letV4 := U ( f ; 1, h).
The only 1-extension with respect toV4 is the wedgep beneatht1 andc2, as shown in
figure 9. Oncep is adjoined, we next consider several possible ways to adjoin a few more
elements one or two steps belowp, see figures 10 and 11. The most notable aspect of such
extensions is whether there exists some elementq which is covered only byp.

Lemma Let f ≥ 2, g = 1, and h≥ 2. Let V := V4 ∪ {p}. There exist at most three
1-extensions of V: a wedge r beneath t2 and p, a dangle q beneath p, and, if h ≥ 3, a wedge
s beneath p and c3. It is possible to extend V by any of the23 combinations of these three.
Next consider extensions of V5 := V4 ∪ {p,q}. There is never a dangle beneath q. If s is

Figure 9.
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Figure 10.

Figure 11.

adjoined beneath p and c3, there is one wedgev beneath q(with s). If r is adjoined beneath
t2 and p, there is one wedge u beneath q(with r). If both r and s are adjoined, then q can
cover no other elements.

Proof: For the last statement, note that dangles beneathq have already been ruled out,
and then apply Lemma 6. 2

Further consider the two cases of adjoining bothq andsor bothq andr after adjoiningp.
In the former (latter) case, one may then choose to adjoinv (respectively,u) or not. The
subcase in whichv is adjoined is depicted in figure 10 and is the starting point forC6. The
subcase in whichu is adjoined is depicted in figure 11 and leads toC7–C15. Considering
these two subcases for each of these two of the original 23 cases yields six cases and four
subcases for the local structure immediately belowp.

The four cases in which no dangle is adjoined beneathp will form the fourth class: Let
C4 consist of all irreducible components for whichf ≥ 2, g = 1, h ≥ 1, and which are
extensions ofV4 in which there do not exist elementspandq such thatq is covered only byp.
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Note that the existence of any ofd2, c2, or p is not being assumed, and so the only
condition onh is h ≥ 1. If h ≥ 2 but p does not exist, then the irreducible component is
in C4. This is also the case whenh = 1 andc2 andd2 do not exist. Then it can be seen
that the only irreducible component isU ( f ; 1, 1) ∼= df+3(1). So the posetsdk(1) are in
C4 whenk ≥ 5. (The posetsd3(1) andd4(1) are the smallest members of Classes 1 and 2,
respectively.)

To prove Lemma 7.4 whenh ≥ 2, consult figure 9: nowd2 andc2 must exist. The
consideration of the only second generation dangle,q beneathp, has been deferred to later
classes. Following GFP, it can be seen that the only possible extensionsP of U ( f ; 1, h)
here are the filters ofM4 which containL4. Each such filter is determined by its intersection
with O4; such intersections are elementsλ of 3(g− 1, h− 1).

In the remaining cases, bothp and a dangleq beneathp exist. So necessarilyh ≥ 2.
Now eitherq does not cover any other elements, or it does. The two subcases and the two
cases in whichq covers no other elements will form the fifth class: LetC5 consist of all
irreducible components for whichf ≥ 2, g = 1, h ≥ 2 and which are extensions ofV5 in
whichq is minimal.

To prove Lemma 7.5, adjoinq beneathp in figure 9 at a 45◦ angle. There can be no other
dangles beneathp, and there are no elements beneathq. We are left with two simple grid
filling situations, which yield filters ofM5 containingL5.

In the remaining cases,q covers at least one other element. The lemma described the
only two scenarios in whichq covers another element; for the next class we take the first
subcase mentioned there. For fixedf, g, andh, define the posetV6 := V4 ∪ {p,q, s, v}.
It is depicted in figure 10. Sinces is assumed to exist, we will necessarily haveh ≥ 3. Let
C6 consist of all irreducible components for whichf ≥ 2, g = 1, h ≥ 3, and which are
extensions ofV6.

To prove Lemma 7.6, first note that there are no dangle extensions beneathV6. Initially,
the only wedge extension is beneaths andc4. Follow GFP to produce all filters ofM6

containingL6.

11. Class 7: Nooks

All of the remaining cases forf ≥ 2 andg= 1 begin with the second subcase described
in Lemma 10. So from now on we will only consider extensions of the posetV7 := V4

∪ {p,q, r, u} depicted in figure 11. Our next juncture ish≥ 3 or h= 2. Let C7 consist
of all irreducible components for whichf ≥ 2, g= 1, h≥ 3, and which are extensions
of V7.

To prove Lemma 7.7, note that the existence ofc3 rules out putting a dangle beneathu.
In fact, there are no dangles anywhere beneathV7, and initially the only wedge extension
is beneatht3 andr . Follow GFP to produce all filters ofM7 containingL7.

12. Classes 8–11: Swivel-type classes

We are left with extensions ofV7 which haveh = 2. To conserve letters, renamee4 :=
d2, e5 := c2, e6 := p, ande7 := q. Note that there is a dangle extension beneathu; call
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Figure 12.

it s. And if s is adjoined, then there is a dangle extension beneath it; call itv, see figure 12.
Let C8 consist of all irreducible components for whichf ≥ 2, g = 1, h = 2, and which
are extensions ofV7 which use no dangle extensions except possibly fors andv.

To prove Lemma 7.8, note that there are initially no wedges other than the one beneatht3
andr , and follow GFP. For notational convenience, include the elementsr andu with the
optional elements fromM8− L8 when definingλ.

We are left with extensions ofV7 with h = 2 and in which at least one dangle extension
aside froms andv is used. First suppose thats does not exist. Then it can be seen that no
extensions ofV7 have dangle extensions. So from now on, the elements must be present.
There are no dangles forV7 ∪ {s} aside fromv. The only extension is a wedge beneatht3
andr ; call it b2 (see figure 13). We must adjoin it. Letb3 denote the wedge beneathb2

Figure 13.
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andu. If we do not adjoinb3, it can be seen that no dangles will ever arise. So we must
adjoinb3 as well. Similar reasoning forces us to adjoin a wedgeb4 beneathb3 ands. Now
there exists a dangle beneathb4; call it p. It can be seen that if we never adjoinp, then there
will be no future dangles aside fromv, whether we adjoinv or not. (If p is not adjoined,
all possibilities have already appeared inC8.)

All of the remaining cases must have the danglep adjoined in addition tob2, b3, andb4.
So from now on we consider only extensions of the posetV9 := V7 ∪ {s, b2, b3, b4, p},
which is depicted in figure 13. The existence ofs implies thath = 2; the existence ofb2

implies that f ≥ 3. Eitherp does not cover any other elements, or it does. LetC9 consist
of all irreducible components for whichf ≥ 3, g = 1, h = 2, and which are extensions
of V9 in which p is minimal.

To prove Lemma 7.9, note that the only dangle extension isv. The only possible extension
activity arises as grid filling between theti andbj chains, and, ifv is adjoined, as grid filling
betweenb4 andv. Here the shapeµ is defined to containv if it is adjoined.

We are left with extensions ofV9 in which p covers at least one other element. Letq
denote an element covered byp. To avoid creating an incompleted−5 -interval, the element
q must be covered by some other element, sayw. Thenw and p must be covered by one
element, sayx. But sincep is a dangle, we must havex = b4. Repeating this reasoning
rules out having a second element covered byp. To avoid violating D6, the elementwmust
be covered by something besidesb4, sayy. Thenb4 andy would both have to be covered
by one element, sayz. Sinceb4 is already covered by two elements, by F4 we must have
z= b3 or z= s.

Let P be a connectedd-complete poset with unique maximal elementz0. Let x ∈ P be
such that the length of any chain (by F3) inP from z0 to x is n. Then thedepthδ(x) of x
in P is defined to be−n.

First suppose thatz= b3, as shown in figure 14. Ify is not covered by another element
besidesb3 which is less thanr , then [y, r ] would be an incompleted−4 -interval. So some

Figure 14.
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Figure 15.

m 6= b3 must covery. Note thatδ(m) = δ(p) + 2 = δ(b3) = δ(s). Clearlym 6= s. The
only extension ofV9 or a successor of depthδ(b3) is the elementc2 shown in figure 15.
So m = c2. Renamec3 := y andc4 := w. Summarizing, the assumption thatz = b3

forces the existence of the new elementsc4, c3, andc2 in V11 := V9 ∪ {c2, c3, c4,q}.
(These elements do not coincide with any preexisting elements, and there can be no edges
emanating upward from these elements besides the edges shown.) Now either the dangle
v exists, or it does not. Assume that it does, and setV10 := V11 ∪ {v}. This poset is
shown in figure 15. In order forc2 to exist, we must havef ≥ 4. Let C10 consist of all
irreducible components for whichf ≥ 4, g = 1, h = 2, and which are extensions of
V10.

To prove Lemma 7.10, note that there are no extensions ofV10 or its successors not
between the two chains withf − 4 and 4 elements, respectively. Apply the GFP.

Continue to assume thatz= b3, but now suppose thatv does not exist. Erasev in figure 15
to depictV11. LetC11 consist of of all irreducible components for whichf ≥ 4, g = 1, h= 2,
and which are extensions ofV11 in whichs covers no dangle.

To prove Lemma 7.11, note that there can be a dangle, call itc6, beneathc5 := q. This
is the only possible extension ofV11 outside of the obvious grid region (and aside from a
dangle beneaths, which is treated inC10). If c6 is not adjoined, then only obvious grid
filling wedges can be adjoined. Ifc6 is adjoined, then a slightly wider grid region becomes
available. Adjoining first generation wedgesd1, . . . ,d6 beneathc2, . . . , c6 then creates the
possibility of a dangle, call itd7, beneathd6. It can be seen that this process can continue
as long as there are remainingti ’s, and that there are no other possibilities. For notational
convenience, require that the elementsc2, c3, c4, c5 be included with the optional elements
of M11 to produce a filter of6( f − 3, f + 1)∗M .
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Figure 16.

13. Classes 12–15: Pump- and bat-type classes

We are left with the cases in whichz= s. After renaminga4 := s, figure 16 shows the poset
determined by thez= s assumption. (Also, the renamingsa2 := r anda3 := u have been
implemented.) Hereb5 := w anda5 := y are the new elements which arose leading up to
thez= s option. (These elements could not have coincided with any preexisting elements,
and there cannot be any additional edges emanating up from either of them.) It can be seen
that this poset is a legitimate extension ofV9. So we are left to consider extensions of the
posetV12 := V9 ∪ {a5, b5,q} depicted in figure 16. All remaining irreducible components
must be extensions ofV12. Necessarilyf ≥ 3.

It can be seen that the only possible 1-extensions ofV12 and its successors are wedge
extensions between the chainst3 ← · · · ← t f andt3 ← b2 ← b3 and (possibly iterated)
dangle extensions beneathq. Notice that some of these extensions may conflict with each
other. By now, the proofs of the Lemmas 7.N have become routine, and there are no
wrinkles in the proofs for the last four classes. So no comments will be made for the proofs
of Lemmas 7.12–7.15.

Eitherq does not cover any other elements, or it does. LetC12 consist of all irreducible
components for whichf ≥ 3, g = 1, h = 2, and which are extensions ofV12 in which q
is minimal.

Now suppose thatq covers some other element, sayr . It can be seen thatr must be a
dangle. Eitherr does not cover any other elements, or it does. SetV13 := V12 ∪ {r }. Let
C13 consist of all irreducible components for whichf ≥ 3, g = 1, h = 2, and which are
extensions ofV13 in which r is minimal.

Now suppose thatr covers some other element, says. It can be seen thats must be a
dangle. Eithers does not cover any other elements, or it does. SetV14 := V13 ∪ {s}. Let
C14 consist of all irreducible components for whichf ≥ 3, g = 1, h = 2, and which are
extensions ofV14 in whichs is minimal.
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Now suppose thats covers some other element, sayu. It can be seen thatu must be a
dangle and thatt4 cannot exist. Hencef = 3. SetV15 := V14∪ {u}. Let C15 consist of all
irreducible components for whichf ≥ 3, g = 1, h = 2, and which are extensions ofV15.

Actually, the irreducible componentV15 cannot be extended, and so it is the only member
of C15. We have argued between the definitions of the classes that those definitions have ex-
hausted all possibilities for irreducible components. Hence, the proof of Theorem 7 is com-
plete, if it is accepted that the figures 5.N describe all of the possibilities within each class.

14. The self-duald-complete posets are the minuscule posets

A posetP is self-dualif it is isomorphic to its order dualP∗. In this section we use the
classification theorem to identify the self-duald-complete posets. We can immediately
reduce to the connected case. The global tree structure of a self-dual slant sum must be
that of a chain. A connectedd-complete poset has a unique maximal element. Notice
that an acyclic element of an irreducible component cannot be a minimal element of that
component. So if an irreducible component appears as the “upper” poset in a slant sum,
the order dual of that slant sum will have more than one maximal element. Hence only
the trivial slant irreducibled-complete poset, the one element poset, could appear as the
upper poset in a self-dual slant sum. To be self-dual, the bottommost poset must also be the
one element poset. So chains are the only self-dual slant reducible connectedd-complete
posets. Obviously, the one elementd-complete poset is self-dual.

We are left to consider irreducible components which are self-dual by themselves. Such
a poset must have a unique minimal element. Searching all filters of the 15 maximal
irreducible components first for the property of having a unique minimal element and then
for the property of being self-dual yields one poset for each set of (f ; g, h)-values in classes
C1, C2, andC15. Also, one poset is produced for eachf ≥ 2 whenh = 1 in C4, and one
poset arises inC8 when f = 2.

In [8] it was observed that the weight diagrams of irreducible minuscule representations
of simple Lie algebras are always distributive lattices. There anirreducible minuscule
posetwas defined to be a poset which arises as the poset of join irreducibles for such a
distributive lattice. If an irreducible minuscule representation of the simple Lie algebra
of type Xn had highest weightω j , then the corresponding minuscule poset was denoted
xn( j ). Some distinct minuscule representations give rise to identical minuscule posets. All
irreducible minuscule posets were depicted in figure 2 of [9].

Comparison of the conclusions of the first two paragraphs of this section with figure 2 of
[9] produces the following theorem:

Theorem 1 Let P be a connected d-complete poset which is self-dual. Then P is one of the
irreducible minuscule posets an( j ), n≥ 1 and1≤ j ≤ [n/2], dn(n), n≥ 4, dn(1), n≥ 5,
e6(6), and e7(7). Every irreducible minuscule poset appears once in this list.

Whenn = 1, the posetan(1) is the one element poset. Whenj = 1 or j = n, the poset
an( j ) is the n-element chain. The remaining cases are irreducible components. When
2 ≤ j ≤ [n/2], the posetan( j ) is denotedan[ j − 1, n − j ; ( j − 2) × (n − j − 1)] in
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this paper, where( j − 2) × (n − j − 1) denotes the shape withj − 2 rows of length
n− j − 1. Whenn ≥ 4, the posetdn(n) is denoteddn[1; 1, n− 3; J(2× (n− 4))] here,
whereJ(2× (n− 4)) denotes the shifted shape with row lengthsn− 3, n− 4, . . . ,2, 1.
Whenn ≥ 5, the posetdn(1) is denoteddn[n − 3; 1, 1] here. The posetse6(6) ande7(7)
are denoted bye6[2; 1, 2; 8; (4)] and e7[3; 1, 2; 15] in this paper, where (4) is the shape
consisting of one row of length 4. Order diagrams for these five families of posets appeared
in figure 2 of [9]. In that paper, it was shown that the irreducible minuscule posets are the
only connected posets whose elements can be labelled with numbers such that a certain
system of linear equations determined by the structure of the poset (which implied the
existence of a nice sl2(C) representation) is satisfied.

15. Weyl group comments

The results of [7] can be combined with the results of this paper to obtain a listing of all of
theλ-minuscule elements in any simply laced general Weyl groupW. Let G be the simple
graph with node setN which specifiesW. Fix a dominant integral weightλ. The definition
of the “λ-minuscule” property for elementsw ∈ W was given in Section 1.

Using [7], every concept developed in this paper ford-complete posets can be trans-
lated into an analogous concept forλ-minuscule Weyl group elements. This includes
‘connected poset’, ‘slant sum’, and ‘irreducible component’. So this paper can be viewed
as a classification of a certain kind of Weyl group element. Here is an overview: Any
reduced decomposition of aλ-minuscule element ofW corresponds to an increasing se-
quenceF1 ⊆ F2 ⊆ · · · ⊆ Fk of coloredd-complete posets such thatFj − Fj−1 consists
of one element of colori j ∈ N. Ignoring the colors, we obtain ad-complete posetFk

corresponding tow. The “support” of anyλ-minusculew in N consists of a union of tree
subgraphs ofG. Suppose thatG is connected. To generate all connectedλ-minuscule
elements ofW which use each generatorsi at least once, one would successively consider
all “rooted spanning trees” ofG. When translated to the (order dualized) context of [7], the
list of possibled-complete posets for each such tree provided by the present paper would,
when colored, become the list of theλ-minuscule elementsw whose bottom trees are the
fixed rooted spanning tree. All of the reduced decompositions for each suchw could then
be formed by finding all of the order extensions of the corresponding coloredd-complete
poset.

In this way it can be seen that there is no infinite sequencei1, i2, . . . from N such that
sik · · · si2si1 isλ-minuscule for everyk ≥ 1. (But therearesuch sequences, e.g., from figure 8
of [14] (also see Section 2 of [7]), if we had not requiredλ to be “dominant” in the definition
of λ-minuscule.) Theorem 7 implies that everyλ-minuscule slant irreducible componentw
arises as an initial subword of one of the (finite) maximal irreducible componentswN, 1≤
N ≤ 15, which can be based upon a fixed top tree.

All of the preceding can be recast in the context of a restricted version [7] of the numbers
game of Mozes [6] rather than in the context ofλ-minuscule elements. This restricted
game is played on the possible labellings of the nodes of a simple graph with integers. The
possible moves at any stage correspond to nodes which have−1 labels. In this context, the
present paper classifies the possible evolutions of all such games which begin with all labels
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non-positive. We do not know of any overlap between our “non-existence ofλ-minuscule
elements of arbitrary length for a fixedG” result just stated and the various terminating
numbers games results of [1–3, 6].

Suppose that we start with a given uncoloredd-complete posetP with top treeT . Let N
consist of the nodes ofT , and letG be any simple graph which containsT as a subgraph.
Each element ofP can be uniquely “colored” with one of the colors fromN, as described
in Proposition 8.6 of [7]. Then the sequence of colors produced by reading off the colors
of some or all of the elements ofP from the top down will specify aλ-minuscule element
w = sik · · · si2si1 in the simply laced general Weyl group whose Dynkin diagram isG.

Let us continue the discussion of [14] from Section 1. To see that aλ-minuscule element
w is fully commutative, use Theorem A of [7] and Theorem 2.2 of [14]. Thed-complete
posetFk we associated tow ∈ W four paragraphs above is the “heap” of a fully commutative
elementw, by Lemma 2.1 of [14]. Our environment is more specialized than that of [14]:
Stembridge does not restrict to the simply laced case, and even there he knows of many
elementsw which are notλ-minuscule but are such that [e, w] is a distributive lattice
in the Bruhat order. So he has many heapsP for Coxeter group elementsw such that
J(P) ∼= [e, w] is a distributive lattice, in addition to thed-complete posetsP. Is there some
way of characterizing theλ-minuscule elements amongst all fully commutative elements
using only Coxeter theoretic notions?
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