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Abstract. d-Complete posets are defined to be posets which satisfy certain local structural conditions. These
posets play or conjecturally play several roles in algebraic combinatorics related to the notions of shapes, shifte
shapes, plane partitions, and hook length posets. They also play several roles in Lie theory and algebraic geomet
related tor-minuscule elements and Bruhat distributive lattices for simply laced general Weyl or Coxeter groups,
and toa-minuscule Schubert varieties. This paper presents a classificatiboarfiplete posets which is indexed

by Dynkin diagrams.
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1. Introduction

A poset is ‘-complete” if it satisfies certain local structural conditions which are listed
in Section 3. In this paper we describe all possithleomplete posets. This includes an
explicit listing of all possible “irreducible components” dfcomplete posets. Each such
irreducible componentis indexed by a connected Dynkin diagram which is embedded in the
order (Hasse) diagram of the component. The nextthree paragraphs are addressed to reac
familiar with Lie and Coxeter groups and should be skipped by other readers. Except for
those paragraphs and Section 15, this paper may be read by anyone who is familiar wit
basic poset concepts. There are combinatorial motivations for studytognplete posets
which are independent of Lie theory, e.g., the hook length property.

Let W be a simply laced general Weyl group, i.e., the Weyl group associated to some
fixed simply laced Kac-Moody algebra. Lebe a dominant integral weight. Dale Peterson
definesw € W to bex-minusculef there exists some decompositigp- - - 5, of w such that
S8, S = (8, -§,4) —aj, for1 < | <k, whereq; is the simple root associated
to 5. In the companion paper [7] to this paper, we showed that i§ a A-minuscule
element for a simply laced general Weyl group, then the initial interab] in either
the weak or strong Bruhat order &/W, is a distributive lattice. Set, = [e, w].
These are theX*minuscule Bruhat lattices” mentioned in the title of this paper. Any
finite distributive latticel is determined by its subposBtof “join irreducible” elements.

In [7] we characterized the poseBswhich could arise as posets of join irreducibles of
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A-minuscule Bruhat lattices,,. This characterization amounted to the satisfaction of
several certain local structural conditions; we defined a poset tadkmrhplete” if it
satisfied all of those conditions. The present paper describes all passibiaplete posets.
(However, the definition ofi-complete used in this paper is the order dual of the definition
given in [7]; the statements made above are made with respect to the [7] definition.) Usin
a couple of easy translation steps from [7], the description aFattmplete posets given in
the present paper can be converted into a description of all pogsihlauscule elements

for simply laced general Weyl groups.

Let W be an arbitrary Coxeter group. Stembridge has studied the elementg/ for
which the weak Bruhat intervak[w] is a distributive lattice [14]. He showed that this
property is equivalent te being “fully commutative”, namely, any reduced decomposition
for w can be converted into any other reduced decompositiom fasing only relations
of the formss; = s;s. It can be seen that evelyminuscule elemend is fully com-
mutative. Section 15 contains further remarks on some Weyl group implications of this
paper; also consult the last section of [7] for comments on representation theoretic ar
geometric implications. In particular, the list@fcomplete posets given in this paper index
afamily of particularly simple Schubert subvarieties of Kac-Moody flag manifolds, and it is
hoped that each poset drawn in this paper will embody much useful geometric informatio
for the corresponding variety. Also, tliecomplete posets describe the structures of the
“minuscule” portions of weight diagrams for integrable representations of simply lacec
Kac-Moody algebras.

In [10], we re-constructed some special cases of a basis of Lakshmibai [5] for Demazur
modules in a poset-theoretic setting. We showed that a colored poset has such a basis
a module associated to it if and only if it is a colordecomplete poset. This was the
origin of the notion ofd-complete poset. Proposition 8.6 of [7] implies that the notions of
d-complete poset and of coloreldcomplete poset are equivalent.

The introduction for a general audience begins here. Section 3 contains the definitio
of “d-complete” poset. In Section 4 we show how to decompose an arbitrary connecte
d-complete poset into a “slant sum” of “irreducible components”. In Sections 5 and 6
we derive several facts about irreducible components; the most important being that
combinatorially defined subposet of an irreducible component, its “top tree”, must be “Y-
shaped”. In Sections 9-13 we define 15 exhaustive classes of irreducible components a
describe all of the members of each class. In 14 out of the 15 classes, the top tree
an irreducible component must be a Dynkin diagram of “general type E”. This listing of
possibilities is summarized in Section 7. Combining the theorems of Sections 4, 5, and
gives the classification af-complete posets.

Shapes (Ferrers diagrams) and shifted shapes are diagrams upon which Young table:
and plane partitions are defined. The boxes of a (shifted) shape may be viewed as t
elements of a certain poset. Then shapes and shifted shapes constitute two particu
infinite families of posets. These two families of posets essentially form our Classes 1 an
2 of irreducible components. Two other infinite families of posets which are important for
this paper are defined in Sections 2 and 4: these consist of “double-tailed diamonds” ar
“rooted trees”. The double tailed diamond posets play a central role in the definition o
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d-complete poset. Rooted tree posets are the “tridadbmplete posets in a certain sense.
By introducing the notions af-complete and slant sum, and by describing the irreducible
components in Classes 3-15, this paper may be thought of as “filling out” the category
of posets “hinted at” by shapes, shifted shapes, double-tailed diamonds, and rooted tree
“Slant irreducible components” may be thought of as being the result of “weaving together”
many double-tailed diamonds in a certain fashion. General conndeatechplete posets

are obtained by combining slant irreducible components with the slant sum operation.

A posetP is said to be “hook length” if its associatd®tpartition generating function
factors in a certain nice fashion analogous to identities discovered by Euler and Stanley
Until recently, the only known infinite families of hook length posets were shapes [12],
shifted shapes [4, 11], rooted trees [12], and double-tailed diamonds. With Dale Petersor
we recently have shown that adycomplete poset is a hook length poset, by combining facts
from algebraic geometry and representation theory with the viewpoint of [7]. A corollary to
this result is a generalization of the hook product formula for the number of standard Young
tableaux on an ordinary shape to a product formula for the number of order extensions o
any d-complete poset. This corollary can be viewed as a conversion of Dale Peterson’
(long known) hook formula for the number of reduced decompositionsiefranuscule
element into a combinatorial form analogous to the original Frame-Robinson-Thrall form.

After reading the definition ad-complete posetin Section 3 (with references to Section 2
as needed), browsers should also glance at the definition of slant sum in Section 4. Next the
should read the last third of Section 4 (following the Corollary), which contains the theorem
for decomposingl-complete posets into their irreducible components. This theorem is
illustrated by figure 3. Then they should skim the description of the classification of
irreducible components presented in Section 7, while consulting Table 1 and figures 5.1-
5.15. Except for Sections 1, 14, and 15, this paper is entirely self-contained.

Itis possible [7] to recast thie-minuscule definition above as a mild modification of the
naively expressible “numbers game” on the simple graph G. This game has been studied i
several papers, including [1-3, 6]. The paper [1] quickly shifts to such a naive environment.
If one preferred, one could regard the Dynkin diagram classification result of this paper as
being for certain aspects of a certain numbers game.

In [8] we found all Bruhat orders on parabolic quotieWts of finite Weyl groups which
are distributive lattices. We called the associated posets of join irreducibles “minuscule”,
since they were exactly the posets of join irreducibles for the distributive lattices arising
as weight diagrams for minuscule representations. In Section 14 we use our classificatio
result to show that d-complete poset is order self-dual if and only if it is a minuscule poset.
(The minuscule posets are the only known Gaussian posets [13, p. 288].)

2. Poset definitions
Let P be a poset (finite partially ordered set).xlfs covered byy, we writex — y. The

order diagramof P is the directed graph made with such edges. Two subsets of a poset
arenon-adjacentf they share no elements and if there are no edges joining an element in
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one to an element in the other. A posetdnectedf its order diagram is connected. Any
poset can be expressed as a direct sum of non-adjacent connected subposisl dfn
P isasubsel € P suchthaty € | andx < yimply thatx € P. A filter of P is a
subsetF € P such thatx € F andy > x imply thaty € P. If x € P, then theprincipal
ideal (x) :={y :y < x}. If X, y € P, we defineintervals[x,y]l :={z:x <z <Yy}
and X, y) := {z: X <z < y}. A chain of length nin P is a sequence of elements
Xo — X1 — --- — Xn. Theorder dual poset P of P is defined on the same set of
elements a® by: y < xin P*if x <yin P.

Let Q denote the set of integral points in the strict fourth quadrant of the plane. Its
elementdi, j) will be coordinatized as in a matrix, $0> 1 andj > 1. We turn@ into a
poset by:(i1, j1) > (i2, j2) if i1 <izandj; < j.. Ashaper = (A1, Ao, ...) is afinite
filter of Q with A; elements of the formi(j). Note that., > A, > --- > A, > 0 for some
maximalr > 0. Thewidth of A is A1 and thelengthof A isr. Let O denote the “octant”
subposet o2 formed by taking the weakly upper triangular portion®@f (i, j) € O if
j > i. Ashifted shape. = (1, uo, .. .) is afinite filter of @ with u; elements of the form
(@i, j)- Note thatu; > up > --- > ur > 0 for some maximal > 0. Thewidth of w is u;
and thelengthof u isr. When depicting such posets with graph paper, the “up” direction
is Northwest, not North as usual.

Let A(r, ¢) denote the set of shapgsvhose length does not exceednd whose width
does not exceed. Let X(r, c) denote the set of shifted shapes whose length does not
exceed and whose width does not exceed_et X (r, c) denote the maximal element of
3 (r, ¢), namely, the shifted shape with row lengthe —1,c—2,...,c—r + 1. The set
¥ (r, ¢) is defined to consist of all filters of the order dual®fr, c)um.

The order diagrams of the “double-tailed diamond” posktd) are shown in figure 1
fork = 3, 4, and 5. Fok > 3, thedouble-tailed diamongosetdy (1) has X — 2 elements,
of which two are incomparable elements in the middle rankland® apiece form chains
above and below the two incomparable elements. (The mh$g} is the poset of join
irreducibles of the Bruhat latticBy (1) for thew; representation of the simple Lie algebra
of type Dx. [8]) Thek — 2 elements above the two incomparable elements are caigd
elements, and wheln> 4 all but the lowest of these are callgtlict neckelements.

<>

Figure 1
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Let P be a poset. A subsét, X, y, z} of P is adiamondif z coversx andy, and each
of x andy coverw. Thetop andbottomof this diamond are andw, and thesidesarex
andy. Aninterval [w, Z] is ads-intervalif it is a diamond{w, x, y, z} for somex and
y, or in other words, if {v, Z] = d3(1). More generally, fok > 3, we say that an interval
[w, 7] is ad-intervalif is isomorphic todk(1). A dj -interval [w; X, y] consists of three
elements, y, andw such thatx andy each covew. Fork > 4, we say that an interval
[w, y] is ad, -intervalif is isomorphic tody(1) — {t}, wheret is the maximal element of
dk(1).

3. d-Complete posets

Let P be a poset with elemenis, x, andy. Suppose thatf; x, Y] is ad; -interval.

If there is noz € P such thafw, X, y, z} is ads-interval, then {v; X, y] is anincomplete

d; -interval. If there existsy’ # w such that{’; x, y]is also ad; -interval, then we say
that [w; x, y] and [w’; X, y] overlap A posetP is dz-completdf it contains no incomplete
d; -intervals, if the maximal element of eadkinterval does not cover any elements outside
of that interval, and if it contains no overlappidg-intervals. We have just required:

(D1) Anytime two elementx andy cover a third element, there must exist a fourth
elementz which covers each of andy,

(D2) If {w, X, Y, z} is a diamond inP, thenz covers onlyx andy in P, and

(D3) No two elements andy can cover each of two other elementandw’.

Letk > 4. Supposet, y] is ad, -interval in whichx is the unique element covering
If there is noz € P coveringy such that{v, z] is adg-interval, then {v, y] is anincomplete
d, -interval. If there existav’ # w which is covered by such that {’, y] is also a
d, -interval, then we say thatf, y] and [w’, y] overlap For anyk > 4, a posetP is
dx-completdf:

(D4) There are no incompletk -intervals,
(D5) If[w, Z] is ad-interval, therz covers only one element iR, and
(D6) There are no overlappirdy -intervals.

A posetP isd-completéfitis dg-complete for everk > 3. Itis easy to see that any filter
of ad-complete poset is itsetf-complete. Note that D5 implies: Any strict neck element
of adg-interval (necessarillg > 4) in ad-complete poset covers exactly one element. Now
we list some properties which follow from D1 and D2.

Proposition Let P be a poset with elements wy X', y, z which satisfie®1. Then the
finiteness of P implies
(F1) Suppose that x X', x — y, and y£ x’. Then there exists & ¥ P which covers %

(F2) If P is connectegthen it has a unique maximal elemept z
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Figure 2

(F3) If P is connectedevery chain from an element w tg lzas the same length.
If in addition P satisfie®2, then
(F4) If P is connectedeach element of P other thag 5 covered byl or 2 elements.

Proof: For F1, letx =: Xp, X1, ..., Xk := X’ be such thak; coversx;_; for0 <i <k.
Letyo:=y. Forl<i <kapply D1tok_1; X, Yi—1]to see thata; exists which covers

X andy;_j. Itis never the case thgt = X/, sincey; > y butx’ 32 y. Lety' := yk. For F2,

note thatP has at least one maximal element since it is finite. Suppose it has at least tw
maximal elementgy andz;. SinceP is connected, there will be a “up/down path” from

7, to z; of shortest possible length. Lgtbe the earliest element such that z; and let

x be the preceding element on the pathx z,. Applying F1 produces a contradiction of
the maximality ofzy, and sozy must be unique. For F3, let be maximal inP such that
w—>a — ---— a& =Zandw — by - ... — bg = zgwithr > s. Clearlys > 1,

and sob; < z5. Use D1 to construat,, c3,...alonga; — --- — a = zp such that

a; — ¢z andb; — ¢y, thena, — czandc, — cs, etc. By the maximality ofg, there must
existsomé < r suchthati =a&. Thusby - ¢, - .- > ¢ =a — -+ > a = 7
andb; — b, —» -.- — bs = 7 are chains of lengths — 1 > s — 1, contradicting the
maximality ofw. For F4, note that if an element is covered by three or more other elements
then D1 and D2 forc® to be infinite, as illustrated in figure 2. O

4. Slant sum decomposition

It is easy to see that a posetdscomplete if and only if each of the posets defined by the
connected components of its order diagraah-complete. So for our classification, we will

consider only connectedtcomplete posets. The notion of slant sum introduced here will
be used to break connectedcomplete posets into smaller pieces, as illustrated in figure 3.
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In this paper, aooted treeis a poset which has a unique maximal element, and is such
that each non-maximal element is covered by exactly one other element. It is easy to se
that rooted tree posets atecomplete.

Let P be a connected poset with a unique maximal elemeAttop tree element x P
is an element which is covered by at most one other element and is such thag everis
covered by at most one other element. Tdyetree Tof P consists of all top tree elements.

It is easy to see that is a filter of P which is a rooted tree under the order inherited from
P. Obviously the top tree of a rooted tréeis all of T.

Let P be a connected-complete poset with top tree. An elementy € P is acyclicif
y € T and it is not in the neck of ang-interval for anyk > 3. An element ofP is cyclic
if it is not acyclic. If y € P is cyclic, then either it is in the neck of sondg-interval or
there exists some > y which is covered by two elements. fe T, thenitis cyclic if and
only if it is in the neck of somelg-interval.

Let P; be ad-complete poset containing an acyclic elemgnt_et P, be a connected
d-complete poset which is non-adjacentRg By F2, letx denote the unique maximal
element ofP,. Then theslant sunof P, with P, aty, denotedP, Y\, P, is the poset formed
by creating a covering relation — y. A d-complete poseP is slant irreducibleif it is
connected and it cannot be expressed as a slant sum of two non-émghyplete posets.
Suppose thal is a connected-complete poset with top trée. An edgex — yof Pisa
slant edgdf x, y € T andy is acyclic.

All of the elements of a rooted tré® are acyclic. A one element podetis d-complete.

If y € Py, then the slant surR;, Y\ P> will be a rooted tree. Any iterated slant sum formed
with one element posets will be a rooted tree, and every rooted tree can be obtained in thi
fashion.

All of the edges of a rooted tree are slant edges. One element posets are slant irre
ducible. Removing all of the edges of a rooted tree produces a disjoint union of slant
irreducible posets. What if we remove a slant edge from an arbitrary conriectadplete
poset?

Proposition A Let P be a connected d-complete poset and let-xy be a slant edge.
Let B := (x) and let R := P — (x). Then P is a slant sum;P\ P, of two non-adjacent
connected d-complete posetsdnd R. The top tree of T of P is the slant sum¥Tx T,
of the top trees fand T, of P, and B. The acyclic elements of P are acyclic in & P,
and slant edges other thanx y are slant edges inRor P,.

Proof: By definition, y is acyclic. Sincey is the only element covering in P, there
cannot be anyl-conditions passing through and beyond. Suppose that some element
u # X in (x) is covered by some elementin P — (x). Sincex is covered only byy, an
argument similar to that used to prove F1 could be used to showytivauld be the top
element of a diamond. So aside from— y, the subset®; and P, are non-adjacent and
any dg-intervals contained itix) c P are completed withinx). HenceP, := (x) is d-
complete. Sinc®; is anideal ofP, the subseP; is afilter. HenceP; isd-complete. Clearly

y will remain acyclic inP;. Obviouslyx is the maximal element ofj. Removing one
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edge of a connected poset creates at most two componen2 =38 Y\ P, as claimed.
The other statements are easy. O

Going in the other direction, we have:

PropositionB Let P, be a connected d-complete poset with acyclic elementy anglbet P
a connected d-complete poset with maximal element x. Then the slant sur, P\, P,

is a connected d-complete poset. ifahd T, are the top trees of Pand B, then T Y\« T>

is the top tree of P. The acyclic elements @faRd B are acyclic in P, the slant edges of
P, and B are slant edges in fand the edge x> y is a slant edge in P.

Proof: The added edge is the only edge joining an elemer®db an element of;.
Sincey is not below any element which is covered by two elements<aadhot covered by
any other element, adding a downward edgg e&annot cause a violation of D1, D4, D3,
or D6. Sincey is not in the neck of ang-interval in P, adding this edge cannot cause
a violation of D2 or D5. SdP; ¥\« P, is d-complete. It is given thay is acyclic inPy; in
order fory to not be acyclic inP, the elemenk would have to be the maximal element of
somed, -interval in P, for somek > 4. This is impossible sinc®; is d-complete. The
other statements are easy. O

These two results can be combined to immediately yield:

Proposition C Let P be a connected d-complete poset. Then P is slant irreducible if and
only if it contains no slant edges. AlsB is slant irreducible if and only if every acyclic
element is a minimal element of its top tree.

We now use this proposition to describe the structure of any conneéatethplete poset
P. First locate all of its slant edges. These may be erased in any order to produce
collection Py, P, ... of uniquely determined smaller non-adjacent connedtedmplete
posets. No new slant edges are created, and so ed&shlef, ... are slantirreducible. We
say thatP;, P., ... are theslant irreducible components P.

Conversely, suppose thBt, P,, ... are slantirreducibld-complete posets in which we
have identified all acyclic elements. In general, many different possible larger connecte
d-complete posets can be formed from these posets by forming various slant sums. Acycl
elements remain acylic and may be used more than once, but maximal elements cease
be maximal after being used as the bottom of a slant edge. This procedure generalizes
process of producing any rooted tree by forming an iterated slant sum of one element pose
There exist slant irreducibl@-complete posets with no acyclic elements; given only such
posets we would not be able to form larger connedt@dmplete posets.

The remaining sections of this paper will be devoted to listing all possible slantirreducible
d-complete posets. We will regard the one element poset as the trivial slant irrediicible
complete poset. Byrreducible componentve will mean a slant irreducibld-complete
poset which has two or more elements. An irreducible component has a unique maxim:
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Figure 3

element and is not a rooted tree. Hence its order diagram contains at least one cycle whe
viewed as a graph.

Theorem Let P be a connected d-complete poset. It may be uniquplyo the order of
operation$ decomposed into a slant sum of one element posets and irreducible component:
The top tree of P is an analogous slant sum of the top trees of the irreducible components

In order to avoid producing a huge number of one element components during the de
composition, one might want to avoid erasing slant edges which occur within trees. It is
possible to describe a smaller set of “cut” edges whose removal will produce a slant sum o
maximal subtrees and (non-trivial) irreducible components: Suppose tisat connected
d-complete poset with top tree elemertandy. A slantedgex — yisadown cutedgd y
is the side element of some diamondHnitis anup cut edgéf x is cyclic. A slantedge may
be both a down cut edge and an up cut edge. In figure 3, both kinds of cut edges are denot:
with double slash marks. Erasing all of these edges produces our preferred “grapevine
view of an arbitrary connecteticomplete poset: Such a poset consists of many irreducible
components (viewed as bunches of grapes: any irreducible component contains at lea
one cycle; view the minimal cycles as grapes) which are connected together with maxima
tree portions (portions of the vine outside of the bunches). The only botanically incorrect
aspect of this model is that our vine can recontinue from a “corner” of a bunch of grapes.
The larger dots and the heavier edges indicate the top trees of the irreducible componen
of this d-complete poset.

5. The top tree of an irreducible component

From now on, letP denote some fixed irreducible component, nhamely, a slant irreducible
d-complete poset with at least two elements. In this section we learn that the tdpafee
P must be “Y-shaped”.
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Lemma Let T be the top tree of an irreducible component P. Supppge=ZT are such
that z is the top of a diamond with side elementy. Theny is a diamond top in P if and onl
if it is not a minimal element of T.

Proof: If yis not minimal inT, itis cyclic in P by Proposition 4.C. Since the bottom of
the diamond whose top iscannot be inl, we know thaty covers at least two elements.
So it cannot be cyclic by being a strict neck element df-interval for somek > 4. Hence

y must be a diamond top. Suppose thas a diamond top irP. If each of the elements
covered byy is covered by some element different fromthere would be two distinct
elements covering. Buty € T. So one element covered lgyis covered by onlyy, and
that element must be ifi, contradicting the minimality of in T. O

We now need to define a particular kind of rooted tree. fet 0 andh > g > 0
be integers. The rooted tré& f; g, h) consists of one “branch” element above which
a chain of f elements has been adjoined and below which two non-adjacent chains witl
g andh elements, respectively, have been adjoined toward the left and toward the righ
respectively.

From now on, all order diagrams will be rotated°4%unterclockwise before being
drawn, so that the “up” direction is “Northwest”. With this convention, the order diagram
for Y(f; g, h) appears as thé + g + h + 1 topmost and leftmost elements in figure 4.

Theorem Let P be an irreducible component. Then its top tree T is of the fagrim &, h)
forsome f>0and h> g > 1.

Proof: Consider a non-minimal elementof T. By Proposition 4.C, it is cyclic. Since
z € T, it must be in the neck of sond-interval for somek > 4. But elements in the
strict neck of adk-interval fork > 4 cover exactly one other element Bf Thereforez
can cover two or more other elementslobnly if it is the top of some diamond iR. The
only way z can cover two or more other elementsTofind be a diamond top iR is for
the side elements andy of the diamond to be the other elementslotovered byz. Of
coursez cannot cover any other elementsBf or of T. So branches i can only be
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two-fold branches such that there exists a fourth elemeRtwhich is covered by each of
the branching elements.

SinceP is not atree, the s — T is non-empty. Letw be a maximal elementd® — T.
Note thatw must be covered by two elementsTiofcall themx andy. Then there exists an
elementz of T which covers bottkx andy. SoT has at least one branching.

Now we show that there can only be one such branchingz heta minimal such branch
node, which covers andy. Letv be minimal inT such thatv > z and such that is
another such branch node. ltetndu be covered by, and lets ¢ T be covered by andu.
One oft andu must be above in T; suppose that it isi. By the lemmay is a diamond
top. One of the side elements of this diamond must Be icall itr . Letq be the bottom of
this diamond. Application of the lemma can be iterated until an element analogpois to
actuallyz. For simplicity of notation, depict this with = z. Then not only wouldz cover
x andy as a diamond top, it would also covgr This is impossible by D2. Therefore, we
must havey coinciding with eitheix ory. Butg ¢ T and bothx, y € T. Therefore, there
is exactly one branch i, and it is a two-fold branch. Draw so that the longer lower
branch ofT is to the right. |

6. The top filter of an irreducible component

We continue to consider the fixed irreducible comporient et f, g, andh be such that the
toptreeT of PisY(f; g, h). Letey be the branch node ifi. Lete; ande, be the elements

of T covered byey, with e; being on the left branch (the one of lenggh Letes ¢ T be the
unigue element oP covered bye; ande, whose existence was noted in the proof of the
theorem. Successively label the elemenfs abovesy by ny, ..., n;. Label the remaining
elements on the two lower branchesdgy ..., ag andd,, ..., dy. All of these elements
named so far are shown in figure 4, as are some other elements whose existence will soc
be proved. Given this notation, we can state some additional facts which are apparent fror
the proof of Theorem 5:

Proposition A Let P be an irreducible component with top tree Y(f; g, h). For
2<i < f, the elementincoversonly ;. For1l <i < f — 1, the elementnis covered
only by n,1. The elementgs covered only by pand is a diamond top of a diamond with
side elements;eand e.

Acyclic elements of irreducible components can only possibly occur at two specific
locations:

Proposition B Let P be an irreducible component with top treesT Y(f; g, h). The
branch elementsaa..., a1 and @, ..., dy—; are diamond tops. The minimal elements

ag and d, of T cannot be diamond topand these are the only two elements of P which
could be acyclic elements. Each of these elements is acyclic if and only if it is not in the
strict neck of somedinterval for some k> 4.

Proof: Continuing the proof of Theorem 5, repeated applications of Lemma 5 can be
used to show that all but the last element of each lower branch are diamond tops. Anc
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Lemma 5 implies that these last elements are not diamond tops, since they are minimal
T. These minimal elements df are the only possible acyclic elementskf Since they
cannot be diamond tops, each fails to be cyclic precisely when it lies in the strict neck o
somedy-interval for somek > 4. O

Before proceeding, we need to state a local structural fact-fmomplete posets.

Lemma LetP be ad-complete posetith z x, y € P. Suppose that z covers x anegch
of which is a diamond bottom. Then z can cover at most one other element q. This elemen
can be covered by no other elemeratad any element covered by g can be covered only

by q.

Proof: Letr ands denote the diamond tops coveringrhich correspond to the diamond
bottomsx andy. Letu denote the diamond top coveringnds. If z covered bothy; and
g2, then [z, u] and [gy, u] would violate D6 withk = 4. Suppose is covered byz. If q
is also covered by an element other tlzeso that D3 is not violated, then a third diamond
topt would coverz, violating F4. Letw be covered byy. If w is covered by an element
v other thang, there must be a diamond top corresponding to the diamond bettoth
cannot bez by D2 sincez coversx andy. (This would be the case if = x orv = y.)
Hence, an element other tharwoversg, violating an earlier conclusion. O

We return to the consideration of the fixed irreducible compotfenith top treeT =
Y(f;9,h). Letbhy, ...,by andcy, ..., cy, denote the bottoms of the diamonds whose
existence arose during the proof of Proposition Bf. it 0 andh > g > 1, define the poset
U (f; g, h) by the order diagram of figure 4. We now show that the irreducible component
P must contain a filter of this form; we call it thtep filter of P.

Proposition C If the irreducible component P has top tree & Y(f; g, h), then it
contains a filter of the form (f; g, h), which itself contains T. The only elements of
U(f; g, h) which can cover elements outside oftig, h) are by, ..., by, Co, ..., Cn,

t, ..., tf.

Proof: The diamond tog, cannot be a strict neck element for ayyinterval. Therefore,
in order for the edgey — n; to not be a slant edge, the elemanmust be the top of some
ds-interval with diamond bottone;. Hencees covers some elemett Apply the lemma
with z = e3. Sot; is covered only bye;, ande; covers no elements aside frdm c,, and
t1. Repeating the slant edge reasoningrfowith i > 2 leads to the existence tf . . ., t;
as shown. Upward diamond propagation implies the&n be covered only ky_;. By F4,
none ofty, ..., bgorezorcy, ..., ¢, can be covered by other elements. The diamond tops
a,...,ag-1 anddy, ..., dy_1 cannot cover elements other than the two elements shown.
If ag covers anothex aside frombg, thenx could be covered only bgg, or else upward
propagation of diamonds would change But thenx € T, contradicting our assumeid

O
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7. The list of possible irreducible components

Recall that an irreducible component is a slant irreduabt®mplete poset which contains
two or more elements. In Sections 9—-13, we will define 15 disjoint classes of irreducible
component§, .. ., C15 which will be seen to exhaust the set of all irreducible components.
Here we present the resulting list, which is indexed by Table 1.

For each triple of value$ > 0, g > 1, andh > g allowed by theNth line of Table 1,
define thanaximal poset M = My(f; g, h) to be the poset defined by the order diagram
of figure 5N. (One is to takef, g, and h large solid dots, respectively, to the left, below,
and right of the junction large solid dot.) Also define thsimal poset Iy = L(f; g, h)
to be the filter oMy consisting of all large solid dots, circled dots, solid dots, solid squares,
and boxed squares. (In other words, all elementd gfother than hollow dots and hollow
triangles.) We will prove that thélth class of poset§y consists of all posets which are
filters of My (f; g, h) containingL(f; g, h), asf, g, andh run over all values allowed
by the table. These posets will all be distinct, and so each irreducible component will occul
exactly once in our listing.

Table 1

Class Colloquially f g h Name A E ne Acylics
1 Shapes =0 >1 =g ay0;g,h;Al] A(g—1,h-1) — L, R
2 Shifted shapes =1 =1 >1 dq[1; 1, h; u] — =(h, hy! L2 R
3 Birds >1 >2 >g w[f:g h® — — L, R
4 Insets >2 =1 >1 e[f;Lh;41* A(f,h—1) — LR
5 Tailed insets >2 =1 >2 e[f;1 h;5x u] A(f—-11) AL, h—-2) R
6 Banners >2 =1 >3 ey[f;1,h;6; 4] A(2,h-23) — R
7 Nooks >2 =1 >3 ey[f;1,h;7;4] A(f—-22 — R
8 Swivels >2 =1 =2 e[f;1,281] A(f—-1,4° — R2
9 Tailed swivels >3 =1 =2 e,[f;1,2,9 A, u] A(f—-33 A(2,1) R2
10 Tagged swivels>4 =1 =2 e)[f;1,2,10,1] A(f—-4,4) — —
11 Swivel shifteds >4 =1 =2 en[f; 1,2 11; 1] — o(f-3,f+1% R
12 Pumps >3 =1 =2 e[f;1,2,121] A(f-3,2 — —
13 Tailed pumps >3 =1 =2 e,[f;1,2,13 1] A(f-3,1) — —
14 Near bats >3 =1 =2 g[f;1,2 14] — — —
15 Bat =3 =1 =2 e][3;1,215] — — —

LIn Class 2, the shifted shapemust contain the element depicted with the boxed square.

2|n Classes 2, 8, and 9, these elements are acyclic only when the elements depicted with the hollow triangles
do not exist.

3In Class 3, the name,[1; g, h]is used if f = 1.

4In Class 4, the nama[ f; 1, 1] is used ifh = 1.

5In Class 8, the shapemust contain the two elements depicted with solid squares.

6In Class 11, the shapemust contain the four elements depicted with solid squares.
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Define thetop tree poset § = Tn(f; g, h) to be the filter ofMy (f; g, h) consisting of
all large solid dots. Also define thep filter poset |, = Un(f; g, h) to be the filter of
Mn (f; g, h) consisting of all large solid dots, circled dots, and boxed squares. For each
N, it is obvious thafTy (f; g, h) is the top tree oMy (f; g, h) and thatTy(f; g, h) =
Y(f;g,h). Itis also obvious thatyy(f; g, h) is the top filter ofMy(f; g, h), i.e., that
Un(f;g,h) =U(f; g, h),asdefinedin Section 6. The element&gfbeyondJy consist
of the solid dots and the solid squares. Tptional poset @ = Oy (f; g, h) is the ideal
of My consisting of all hollow dots and hollow triangles, i.e., the complemerit\pin
Mn. The optional posets andu listed in Table 1 are usually filters @y. ForC,, Cs,
andCy,, the posetg andx are required to contain from one to four elements gfas well
for notational convenience. Such elements are depicted with boxed or solid squares.

In 14 out of the 15 classes, the top théef ; g, h) of the irreducible components is such
that min[f, g, h] < 1. When viewed as a Dynkin diagram for a simply laced Kac-Moody
algebra, most or all such trees are of tyldeD, or E, depending upon how “typ&” is
defined. Therank ofthe algebrais= f +g+h+ 1. SowewillwriteX,(f; g, h) instead
of Y(f; g, h) when min[f, g, h] < 1, whereX € {A, D, E}. In particular, takeX = A
when f = 0 and takeX = D when two of{ f, g, h} are both equal to 1. Historically it has
perhaps been required thdt g, h} © {1, 2} and minf f, g, h} —{1, 2}] > 2in orderto take
X = E. Butwe will more generally require only4 { f, g, h} and minf f, g, h} — {1}] > 2
in order to regard/ (f; g, h) as aDynkin diagram of general type. Eor the fifteenth class
Cs, the only restrictions aré > 1 andh > g > 2. There we use the lettat rather than
A, D,orEwhenf > 2. So each of the top trees appearing in figure 5 can be denoted
Xn(f; g, h),whereX € {A, D, E, Y}andn > 3.

Building upon this Dynkin diagram notation, we now introduce a name for each possible
irreducible componer®. If P has top treeX,[ f; g, h], then it is assigned a name roughly
of the formx,[ f; g, h; N; A, u]. (The lower case X” instead of the upper casex”
continues the convention of [8, 9] of using the lower case letter for the poset of join
irreduciblesP and the upper case letter for the distributive latti¢®). This latticeJ (P)
is a Bruhat order, and in future papers we will denote the Bruhat order corresponding tc
the irreducible component,[ f; g, h; N; &, u] =: P by Xu[f; g, h; N; A, u] = J(P).)

If it is not determined by, f, g, andh, then the numbeN of the class of whichP is a
member is displayed. Finally, the parameteendu denote filters oDy (plus possibly a
few elements ot ) which determine the particular irreducible componEnt

Table 1 specifies which of the two minimal element3 gfare acyclic: Here the presence
of “L” means that the elemea of figure 4 is acyclic, andR” indicates that the elemedj
of that figure is acyclic. Fo€, (respectivelyCg andCyg), the elemengy (respectivelydy)
is not acyclic when the element @fy depicted with the hollow triangle is present.

Combining the knowledge of the irreducible components and their acyclic elements with
the procedure given at the end of Section 4 enables one to generate all codreateplete
posets with a given top tree.

Theorem If P is an irreducible componenthen it is described in exactly one of the
lemmas belowfor somel < N < 15,

The proof of the theorem is provided by the narrative of Sections 9-13: As we proceed,
we explain how the wordings of the definitions of the classes together with various local
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structural conditions imply that no irreducible components are being missed. The conditior
on f, g, andh which appear in Table 1 are incorporated into the definitions of the classes
Cn as we proceed.

Lemma 7N, 1<N<15. Letf, g, and h be fixed parameter values allowed by the Nth
row of Tablel. Then the poset N f; g, h) is an irreducible component. There exist no
extensions of M(f; g, h) to a larger irreducible component. A poset P is in the class of
irreducible component$y and has top tree ¥f; g, h) ifand only if P contains i (f; g, h)

and is a filter of My(f; g, h). All such filters of M,(f; g, h) are distinct. Specification
of posets. and/or u from the possibilities listed in Tablk corresponds to choosing one
member of . The acyclic elements for eachdC,, are listed in Tablel.

The least routine aspects of each of these 15 lemmas will be confirmed in Sectior
9-13 following the definition of the corresponding class of irreducible components. Oul
extension arguments will imply that eathy is a slant irreduciblel-complete poset. For
each class we will leave several routine verifications to the reader. The non-existence of slz
irreducible extensions dfly will follow from Lemma 8.A. If P is a filter of My (f; g, h),
then it isd-complete. If it containd \(f; g, h) as well, then it can be seen that it is slant
irreducible and has top treé( f; g, h). Verifying that any filterP of My which contains
Ly satisfies the other particular defining condition<Cqf for eachN will be left to the
reader.

The key step is the converse: Suppose Ehin the clas€y of irreducible components
and has top tre¥(f; g, h). We will argue thatP® must then be a filter oMy. (It will be
obvious that ifP € Cy, thenP 2 Ly.) The precise specification of membersdaf with
A and/oru will be performed as we proceed. A consequence of this specification will be
the fact that the members of each class for fixed valuek af, andh are distinct. The
conventiong < h guarantees that members of the same class for different parameter value
will never coincide. The reader may confirm the list of acyclic elements for each case usin
Proposition 6.B.

8. Extendingd-complete posets

Let Py be a fixed irreducible component. It will begin with a top thvgf ; g, h) and a top
filter U (f; g, h) for some values of > 0, g > 1, andh > g. If we fix these values
for f, g, andh and exhaustively list all possible irreducible componddtahich begin
with U (f; g, h), our fixed Py will eventually appear in the list of possibR’'s which we
generate. In this section we establish the mechanics which will be used for this process
Sections 9-13.

Let F be ad-complete poset. Al-complete poseP is anextensiorof F if F is a filter
of P. An elementx ¢ F is a 1extensiorwith respect toF if F U {x} is d-complete. A
dangle extension &f F is a 1-extension oF such thatw is covered by one element f.
A wedge extensioof F is a 1-extension oF such thatw is covered by two elements .
Since elements ai-complete posets are never covered by three or more elements, ever
1-extension of- is either a dangle extension or a wedge extension. The following lemma
follows immediately from the definition af-complete poset.
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Lemma A LetF be a d-complete poset with top tree T.

1. Suppose that ¥ F is covered by only ¥ F, and y¢ T. Then x is a dangle extension
for F if and only if it is the bottom element of somegidterval [X, z] for some = F
and some k= 4 such that z covers no element in F other than one elemdnrt af, the
element y is not in the neck of g-thterval, and any element in F covered by y must be
covered by at least one other element besides y.

2. Suppose thai ¢ F is covered by xy € F. Then w is a wedge extension for F if and
only if there exists some& F which covers only x and yhere is no element in F which
is covered by both x and ynd neither x nor y is in the neck of a-thterval for any
k> 3.

We will start withFo = U (f; g, h) and repeatedly do the following procedure: For each
i > 1 list all possible ways of extending eaéh_; found at the previous stage by one
element meeting the requirements of the lemma. In order to focus on one set of values fc
f, g, andh at a time, we will not consider 1-extensionskf ; which extend its top tree.
(These would be dangles beneathor dy.) So eachF produced will be an irreducible
component with top filte (f; g, h).

Let Py be a fixed irreducible component with top filtdk f ; g, h). SetFy := U (f; g, h)
andF; := Py, wheret := |P, — U(f;g,h)|. LetFp C F; C --- C F be any sequence
of filters starting withU (f; g, h) and increasing td, one element at a time. Since all
of these posets are connected, by F4 we see thatxgach F — Fj_;forl <i <t
is either a dangle or a wedge extension with respedttq. So repeated adjunctions
of dangle and wedge extensions beginning Withf ; g, h) are guaranteed to eventually
produceP,.

Suppose that a dangle (respectively, wedge) extension is adjoined at some stage. The
in that extension and in all later extensions, that element will be covered by exactly one
(respectively, two) elements.

One quickly tires of considering all possible orders in which 1-extensions may be ad-
joined. Letx andy be two 1-extensions with respect tdaomplete posef. Although it
will be relatively rare, it is possible foy to fail to be a 1-extension with respectfoJ {x}.

And thenx will fail to be a 1-extension with respect U {y}. It can be seen that this
situation will arise only when there is some element F which covers a 1-extension

x ¢ F andzis such thaty, 7] is a dg-interval in F U {y} for somey ¢ F and some

k > 3. If this cautionary note is ignored, then any violation af-aomplete requirement
created by adjoining both elements will remain a violation if further elements are adjoined.
Hence, any such error would eventually be detected by noting that one of our “maximal
irreducible componentsMy defined in Section 7 is nat-complete. So we can be casual
concerning the order in which 1-extensions are adjoined. In addition,dfF is not a
1-extension ofF, then it will never be a 1-extension with respect to any extensiors. of

So once we rule out a conceivable 1-extension, we do not need to keep checking on it as
possibility.

Let F be ad-complete poset. The following local situation depicted in figure 6 will
often arise in Sections 9-13 when we are seeking all possible extensiénsSifppose
that for somes > 1 and somd& > 1 we have elementss — --- — a; — z and
bk — --- — by — zsuch thaty; covers onlya 1 for 1 <i < sand such thab; covers
only bj4q for 1 < j < t. Also suppose that covers onlya; andb; and thaias andb; are
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minimal in F. Finally, assume thatna, 1 <i < s,andnob;, 1 < j <'t,is a neck
element in anyy-interval, for anyk > 3.

Let Fy be the poset formed by successively adjoirshgedges in a grid pattern in the
region between the chaimg — --- — a; andb; — --- — by belowF. Itis clear that
Fu will be d-complete, as will any filteP of Fy which containg=. (Such poset® are
obtained by successively adjoining some shiageA (s, t) of wedges below.)

What about other 1-extensions o or a successor poset which are below First,
some terminology. A dangle extensionfbeneath am;, ab;, or z will be called afirst
generation dangle Any wedge extension oF or of a laterF’ which is beneath ag;
and/or ab; and which has both parents belawill be called afirst generation wedge
Later wedges both of whose parents are beneaili be calledhigher generation wedges
Wedges which have one parent which is befoand one parent which is not belawill be
calledouter wedgesAny dangle extension of a lat& which is beneath a first generation
wedge will be called @econd generation danglén any posef, an elemenk is anonly
child if it is covered by some element &f which covers only.

Here is the procedure we will follow when listing all possible extensions btlow z.

Firstnote all first generation dangles. If one of these is used, then exit this procedure and cc
sider that situation separately. Similarly, note all outer wedges and consider implementin
them at another time. By D1 and D3 it can be seen that the only possible first or higher get
eration wedges must be the obvious grid filling wedges noted above. After choosing sor
first generation wedges, look for possible second generation dangles using the followin

result:

LemmaB Letu be afirst generation wedge extension. It can have one second generatio

dangle g beneath it if and only if the diamond teporresponding to the diamond bottom
u is an only child with respect to an element other than aara b;. There are no dangle
extensions beneath higher generation wedges.
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Proof: Lety be such thay covers only. Then [y, y] will be a ds-interval, and adjoining

one dangle beneathu creates nd-complete violations. If no suchexists, thendj, v] will

be an incompletel, -interval. Letu be a higher generation wedge extension ana le¢

the corresponding diamond top. Theis an earlier wedge extension which we adjoined,
and none of these which became diamond tops by some later obvious wedge extensions &
only children. So as above, the elemartan have no dangles beneath it. O

Outer wedge possibilities will rarely arise. By D1, the two parents must already be
covered by a mutual element. This situation will arise only when the parent kzetone
of theg; or bj and the grandparent is not belaw

Whenever the situation of figure 6 arises in Sections 9-13, we will assume that the
reader will assist us in performing the procedure described above: Note all first generatior
dangles and outer wedges for future consideration. Add some first generation wedge:
Using Lemma B, note all second generation dangles for future consideration. Add some
higher generation wedges to complete an adjoined shape\ (s, t) of wedges between
the two chains. Lemma B excuses us from checking for later dangles. Altogether, this
routine will be referred to as the “Grid Filling Procedure”, or “GFP”".

From Sections 5 and 6, recall that any irreducible compoRems a top tre& (f; g, h)
for somef > 0 andh > g > 0 and contains the top filtdd (f; g, h). The classe§;,
C,, and(Cs are defined to consist of all irreducible components having certain values for
f, g, andh. To describe these classes we need to generate all extensiors pf, h).
If N > 4, the clas€y is defined to consist of all irreducible components which contain a
specified posev, as a filter, which have the same top treé/asand which satisfy certain
other conditions. Then we need to generate all extensio¥s which satisfy the specified
conditions. By Proposition 6.C, at the beginning of the extension process we only need tc
consider extensions beneath the elembgsits. ., by, Co, ..., Ch, andty, ..., ts.

9. Classes 1-3: Shapes, shifted shapes, and birds

In this section we define the three simplest classes of irreducible components and confirr
the corresponding LemmaN's. Ifthe top tree of an irreducible compondnts T, let f, g,
andh be such thal = Y(f; g, h). Recallthatf > 0, g > 1, andh > gin general. To be
thorough, in the definition of each class we will restate all known constraints gnandh.

Either f =0 or f > 0. Let(C; consist of all irreducible components for whidh= 0,
g>1 h>g.

To prove Lemma 7.1, note that the top filtgr0; g, h) for any P € C; is as shown
in figure 7. By Proposition 6.C, all extensions will be beneath Following GFP, it
can be seen that the only possible extensieraf U (0; g, h) are the filters ofM; which
containL; = U (0; g, h). Each such filter is determined by its intersection withy such
intersections are elemerit®f A(g—1, h—1). (Note that each posat[0; g, h; A] € C1 is
a shape whose first two columns are of lengith 1 and whose first two rows are of length
h+1)
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Now assume that = 1. Eitherg=1 org > 2. LetC, consist of all irreducible compo-
nents for whichf =1, g=1, h > 1.

To prove Lemma 7.2, note that the top filtd1; 1, h) for any P € C, is as shown in
figure 8. By Proposition 6.C, all extensions will be beneathFollowing GFP, the only
near term wedge extensions are first generation wedge extensions; adjoih upltaf
these, starting from the left. Note theatis an only child ofe;. If at least one first generation
wedge was chosen, then there is a second generation dangle beneath the first one. If
do not use this dangle, we are done. If we use it, then the situation is now equivalent t
the one with which we started, provided that> 3. Repeat this reasoning. Eventually,
there will not be another element such that a wedge can be adjoined beneath it and the m
recent dangle. Hence, we see that the only possible extenBiaridJ (1; 1, h) are the
filters of M, which containL,. Each such filter is determined by its intersection with
such intersections are elemeptsf X (h, h), once the elemertt has been adjoined. (Note
that each poset,[1; 1, h; u] € C,is a shifted shape with at least three rows and whose first
two rows have lengths + 2 andh + 1.)



DYNKIN DIAGRAM CLASSIFICATION 85

Next suppose thag > 2. We still havef > 1 andh > g. The next class will handle the
remainingf = 1 cases and the simplest casesffloz 1. LetC; consist of all irreducible
components for which > 1, g>2, h>g.

To prove Lemma 7.3, note that the top filté f; g, h) for any P € C3 is depicted in
figure 4. None ofbg, ..., by, Cn, ..., ¢ have dangles beneath them. Since> 1, the
elementt; exists. None of;, ..., t; have dangles or wedge extensions beneath them. A
wedge extension beneath any twobaf c,, andt; is ruled out by D2, and so no wedge
extensions exist. So there are no extensions$(df; g, h), and everyP in Cs is of the form
M3z = L3. (Lemma 7.3 can be paraphrased as: If all three paramétegs andh are
“non-minimal”, then any irreducible componelRtmust be “minimal”, i.e., it consists only
of L3=U(f;g,h).)

10. Classes 4-6: Inset-type classes

We now define and describe the simplest three classes of irreducible compeentsgst

the remaining cases df > 2 andg = 1. For fixedf > 2andh > 1, letV, := U (f; 1, h).

The only 1-extension with respect ¥4, is the wedgep beneatht; andc,, as shown in
figure 9. Oncep is adjoined, we next consider several possible ways to adjoin a few more
elements one or two steps bel@ysee figures 10 and 11. The most notable aspect of such
extensions is whether there exists some elemewtich is covered only byp.

Lemma Letf>2 g=1,andh> 2. LetV := V,U {p}. There exist at most three
1-extensions of Ma wedge r beneath tand p a dangle g beneath,jand, if h > 3,a wedge

s beneath p andsc It is possible to extend V by any of th&combinations of these three.
Next consider extensions of V= V4 U {p, q}. There is never a dangle beneath g. If s is
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Figure 10

Figure 11

adjoined beneath p angahere is one wedgebeneath dwith ). If ris adjoined beneath
t, and p there is one wedge u beneatlfwgth r). If both r and s are adjoinedhen g can
cover no other elements.

Proof: For the last statement, note that dangles bengdthve already been ruled out,
and then apply Lemma 6. O

Further consider the two cases of adjoining bip#nds or bothg andr after adjoiningp.
In the former (latter) case, one may then choose to adjdirespectivelyu) or not. The
subcase in which is adjoined is depicted in figure 10 and is the starting poinC§oiThe
subcase in whiclu is adjoined is depicted in figure 11 and lead€’teC15. Considering
these two subcases for each of these two of the origtheages yields six cases and four
subcases for the local structure immediately befow

The four cases in which no dangle is adjoined bengatiill form the fourth class: Let
C4 consist of all irreducible components for whi¢h> 2, g = 1, h > 1, and which are
extensions of/, in which there do not exist elemergndq such that) is covered only byp.
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Note that the existence of any df, c,, or p is not being assumed, and so the only
condition onhish > 1. If h > 2 but p does not exist, then the irreducible component is
in C4. This is also the case whdn= 1 andc, andd, do not exist. Then it can be seen
that the only irreducible componentlis(f; 1, 1) = d;,3(1). So the posetdy(1) are in
Cswhenk > 5. (The posetslz(1) andds(1) are the smallest members of Classes 1 and 2,
respectively.)

To prove Lemma 7.4 wheh > 2, consult figure 9: novad, andc, must exist. The
consideration of the only second generation darngltesneattp, has been deferred to later
classes. Following GFP, it can be seen that the only possible exteriiohtl ( f; 1, h)
here are the filters d¥1, which containL4. Each such filter is determined by its intersection
with O4; such intersections are elementef A(g — 1, h — 1).

In the remaining cases, bofhand a dangle beneathp exist. So necessarilly > 2.

Now eitherq does not cover any other elements, or it does. The two subcases and the twi
cases in whichy covers no other elements will form the fifth class: Cgtconsist of all
irreducible components for which > 2, g = 1, h > 2 and which are extensions ¥ in
which g is minimal.

To prove Lemma 7.5, adjoipbeneatip in figure 9 at a 45angle. There can be no other
dangles beneath, and there are no elements benegtiWe are left with two simple grid
filling situations, which yield filters oMz containingLs.

In the remaining cases, covers at least one other element. The lemma described the
only two scenarios in whicly covers another element; for the next class we take the first
subcase mentioned there. For fixedg, andh, define the posé¥s := V4 U {p, q, s, v}.

It is depicted in figure 10. Sinceis assumed to exist, we will necessarily héwve 3. Let
Cs consist of all irreducible components for which> 2, g = 1, h > 3, and which are
extensions o¥/.

To prove Lemma 7.6, first note that there are no dangle extensions béfze#titially,
the only wedge extension is beneatlandc,. Follow GFP to produce all filters dflg
containingLe.

11. Class 7: Nooks

All of the remaining cases fof > 2 andg =1 begin with the second subcase described
in Lemma 10. So from now on we will only consider extensions of the pdset= V,
U{p,q,r, u} depicted in figure 11. Our next juncturehis>=3 orh=2. Let(; consist
of all irreducible components for whici >2, g=1, h> 3, and which are extensions
of V7.

To prove Lemma 7.7, note that the existencegfules out putting a dangle beneath
In fact, there are no dangles anywhere ben&attand initially the only wedge extension
is beneaths andr. Follow GFP to produce all filters dfl; containingL .

12. Classes 8-11: Swivel-type classes

We are left with extensions of; which haveh = 2. To conserve letters, renareg .=
d2, & 1= Cp, € := p, ande; := q. Note that there is a dangle extension beneaitall
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Figure 12

it s. And if sis adjoined, then there is a dangle extension beneath it; calbde figure 12.
Let Cg consist of all irreducible components for whi¢ch> 2, g = 1, h = 2, and which
are extensions d¥; which use no dangle extensions except possibly famdv.

To prove Lemma 7.8, note that there are initially no wedges other than the one bigneath
andr, and follow GFP. For notational convenience, include the elenreaislu with the
optional elements frorMig — Lg when defining..

We are left with extensions &f; with h = 2 and in which at least one dangle extension
aside froms andv is used. First suppose thatloes not exist. Then it can be seen that no
extensions of/; have dangle extensions. So from now on, the eleraemist be present.
There are no dangles f&f; U {s} aside fromv. The only extension is a wedge benetth
andr; call it b, (see figure 13). We must adjoin it. Lbt denote the wedge benedih

tr1 I
te

Figure 13
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andu. If we do not adjoinbs, it can be seen that no dangles will ever arise. So we must
adjoinbs as well. Similar reasoning forces us to adjoin a welklgbeneatts; ands. Now
there exists a dangle beneatfcall it p. It can be seen that if we never adjginthen there

will be no future dangles aside from whether we adjoin or not. (If p is not adjoined,

all possibilities have already appearediy)

All of the remaining cases must have the danghedjoined in addition td,, bs, andb,.
So from now on we consider only extensions of the pd&et= V7 U {s, by, bz, bs, p},
which is depicted in figure 13. The existencesdmplies thath = 2; the existence df,
implies thatf > 3. Eitherp does not cover any other elements, or it does.dyetonsist
of all irreducible components for which > 3, g = 1, h = 2, and which are extensions
of Vg in which p is minimal.

To prove Lemma 7.9, note that the only dangle extensionTe only possible extension
activity arises as grid filling between theandb; chains, and, it is adjoined, as grid filling
betweerb, andv. Here the shapg is defined to contain if it is adjoined.

We are left with extensions ofy in which p covers at least one other element. Qet
denote an element covered py To avoid creating an incomplet§ -interval, the element
g must be covered by some other element,wayrhenw and p must be covered by one
element, sayx. But sincep is a dangle, we must have= b,. Repeating this reasoning
rules out having a second element coveregbyo avoid violating D6, the element must
be covered by something besidas sayy. Thenb, andy would both have to be covered
by one element, sag. Sinceb, is already covered by two elements, by F4 we must have
Z=Dbzorz=s.

Let P be a connected-complete poset with unique maximal elemegtLetx € P be
such that the length of any chain (by F3)Pnfrom z to x is n. Then thedepths(x) of x
in P is defined to be-n.

First suppose that = bg, as shown in figure 14. lj is not covered by another element
besideds; which is less tham, then [y, r] would be an incompletd, -interval. So some

Figure 14



90 PROCTOR

Figure 15

m # bz must covery. Note thats(m) = §(p) + 2 = §(b3) = §(s). Clearlym £ s. The
only extension olVy or a successor of deptiibs) is the element, shown in figure 15.
Som = ¢,. Renamec; ;= y andcs ;= w. Summarizing, the assumption that= bs
forces the existence of the new elemeeys c3, andc, in Vi1 := Vo U {cy, C3, C4, Q.
(These elements do not coincide with any preexisting elements, and there can be no edq
emanating upward from these elements besides the edges shown.) Now either the dan
v exists, or it does not. Assume that it does, and\4gt:= Vi3 U {v}. This poset is
shown in figure 15. In order far, to exist, we must havd > 4. LetCyg consist of all
irreducible components for which > 4, g = 1, h = 2, and which are extensions of
Vio.

To prove Lemma 7.10, note that there are no extensiong obr its successors not
between the two chains with — 4 and 4 elements, respectively. Apply the GFP.

Continue to assume that= bs, but now suppose thatdoes not exist. Erasan figure 15
todepictVyy. LetCyqconsistof ofallirreducible components forwhi¢h=4,g =1, h=2,
and which are extensions ®f; in which s covers no dangle.

To prove Lemma 7.11, note that there can be a dangle, agllliteneattcs := g. This
is the only possible extension ®f; outside of the obvious grid region (and aside from a
dangle beneath, which is treated irC10). If cg is not adjoined, then only obvious grid
filling wedges can be adjoined. df is adjoined, then a slightly wider grid region becomes
available. Adjoining first generation wedg#s . . ., ds beneattc,, . . ., cs then creates the
possibility of a dangle, call itl;, beneathds. It can be seen that this process can continue
as long as there are remainia, and that there are no other possibilities. For notational
convenience, require that the elememtscs, ¢4, Cs be included with the optional elements
of My, to produce afilter o2 (f — 3, f + 1)},.
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Figure 16
13. Classes 12-15: Pump- and bat-type classes

We are left with the cases in whigh= s. After renamingg, := s, figure 16 shows the poset
determined by the = s assumption. (Also, the renamings:=r andas := u have been
implemented.) Herés := w andas := y are the new elements which arose leading up to
thez = s option. (These elements could not have coincided with any preexisting elements,
and there cannot be any additional edges emanating up from either of them.) It can be see
that this poset is a legitimate extension\@f So we are left to consider extensions of the
posetVi, := Vg U {as, bs, q} depicted in figure 16. All remaining irreducible components
must be extensions &f;,. Necessarilyf > 3.

It can be seen that the only possible 1-extensiong;gfand its successors are wedge
extensions between the chaigs«< - -- <« t; andt; < b, < bz and (possibly iterated)
dangle extensions beneath Notice that some of these extensions may conflict with each
other. By now, the proofs of the Lemmas\7have become routine, and there are no
wrinkles in the proofs for the last four classes. So no comments will be made for the proofs
of Lemmas 7.12-7.15.

Eitherq does not cover any other elements, or it does.d;gtonsist of all irreducible
components for whiclf > 3, g = 1, h = 2, and which are extensions ¥f; in whichq
is minimal.

Now suppose thag covers some other element, saylt can be seen thatmust be a
dangle. Either does not cover any other elements, or it does.\ggt= Vi, U {r}. Let
C13 consist of all irreducible components for whi¢h> 3, g = 1, h = 2, and which are
extensions o¥/13 in whichr is minimal.

Now suppose that covers some other element, saylt can be seen tha must be a
dangle. Eithes does not cover any other elements, or it does.\&gt= Vi3 U {s}. Let
C14 consist of all irreducible components for whidh> 3, g = 1, h = 2, and which are
extensions o¥4 in which s is minimal.
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Now suppose that covers some other element, saylt can be seen that must be a
dangle and that, cannot exist. Hencé = 3. SetV;5 := V14U {u}. LetCis consist of all
irreducible components for which > 3, g = 1, h = 2, and which are extensions .

Actually, the irreducible componelts cannot be extended, and so it is the only member
of C15. We have argued between the definitions of the classes that those definitions have ¢
hausted all possibilities for irreducible components. Hence, the proof of Theorem 7 is corr
plete, if it is accepted that the figures\bdescribe all of the possibilities within each class.

14. The self-duald-complete posets are the minuscule posets

A posetP is self-dualif it is isomorphic to its order duaP*. In this section we use the
classification theorem to identify the self-duddcomplete posets. We can immediately
reduce to the connected case. The global tree structure of a self-dual slant sum must
that of a chain. A connected-complete poset has a unique maximal element. Notice
that an acyclic element of an irreducible component cannot be a minimal element of the
component. So if an irreducible component appears as the “upper” poset in a slant sut
the order dual of that slant sum will have more than one maximal element. Hence onl
the trivial slant irreduciblel-complete poset, the one element poset, could appear as the
upper poset in a self-dual slant sum. To be self-dual, the bottommost poset must also be t
one element poset. So chains are the only self-dual slant reducible condexiatplete
posets. Obviously, the one elemelRtomplete poset is self-dual.

We are left to consider irreducible components which are self-dual by themselves. Suc
a poset must have a unique minimal element. Searching all filters of the 15 maxime
irreducible components first for the property of having a unigue minimal element and thel
for the property of being self-dual yields one poset for each sdft;of(h)-values in classes
C1, C2, andCys. Also, one poset is produced for eaéh> 2 whenh = 1 in C4, and one
poset arises ifg when f = 2.

In [8] it was observed that the weight diagrams of irreducible minuscule representation
of simple Lie algebras are always distributive lattices. Therér@aucible minuscule
posetwas defined to be a poset which arises as the poset of join irreducibles for such
distributive lattice. If an irreducible minuscule representation of the simple Lie algebra
of type X, had highest weight;, then the corresponding minuscule poset was denoted
Xn(j). Some distinct minuscule representations give rise to identical minuscule posets. A
irreducible minuscule posets were depicted in figure 2 of [9].

Comparison of the conclusions of the first two paragraphs of this section with figure 2 o
[9] produces the following theorem:

Theorem1 LetP be aconnected d-complete poset which is self-dual. Then P is one of th
irreducible minuscule posetg§), n>1andl<j <[n/2], dy(n), n>4, dy(1), n> 5,
es(6), and e(7). Every irreducible minuscule poset appears once in this list.

Whenn = 1, the pose&, (1) is the one element poset. Whenr= 1 or j = n, the poset
an(j) is then-element chain. The remaining cases are irreducible components. Whe
2 < j <[n/2], the pose,(j) is denoteda,[j —1L,n— j;(j —2 x (n— j — D] in
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this paper, wherg¢j — 2) x (n — j — 1) denotes the shape with— 2 rows of length

n— j — 1. Whenn > 4, the posetl,(n) is denotedd,[1; 1, n — 3; J(2 x (n — 4))] here,
whereJ(2 x (n — 4)) denotes the shifted shape with row lengths 3, n—4,...,2, 1.
Whenn > 5, the posetl, (1) is denotedd,[n — 3; 1, 1] here. The posets(6) ande;(7)

are denoted bws[2; 1, 2; 8; (4)] and /[3; 1, 2; 15] in this paper, where (4) is the shape
consisting of one row of length 4. Order diagrams for these five families of posets appeare
in figure 2 of [9]. In that paper, it was shown that the irreducible minuscule posets are the
only connected posets whose elements can be labelled with numbers such that a certa
system of linear equations determined by the structure of the poset (which implied the
existence of a nice glC) representation) is satisfied.

15. Weyl group comments

The results of [7] can be combined with the results of this paper to obtain a listing of all of
theA-minuscule elements in any simply laced general Weyl giup_et G be the simple
graph with node se\¥l which specifiedV. Fix a dominant integral weight. The definition

of the “A-minuscule” property for elements € W was given in Section 1.

Using [7], every concept developed in this paper decomplete posets can be trans-
lated into an analogous concept forminuscule Weyl group elements. This includes
‘connected poset’, ‘slant sum’, and ‘irreducible component’. So this paper can be viewed
as a classification of a certain kind of Weyl group element. Here is an overview: Any
reduced decomposition ofjaminuscule element oV corresponds to an increasing se-
quenceF; € F, € --- € F of coloredd-complete posets such thej — Fj_; consists
of one element of color; € N. Ignoring the colors, we obtain @complete poseky
corresponding taw. The “support” of any.-minusculew in N consists of a union of tree
subgraphs ofs. Suppose thaG is connected. To generate all connectethinuscule
elements ofV which use each generatgrat least once, one would successively consider
all “rooted spanning trees” &&. When translated to the (order dualized) context of [7], the
list of possibled-complete posets for each such tree provided by the present paper would,
when colored, become the list of theminuscule elements whose bottom trees are the
fixed rooted spanning tree. All of the reduced decompositions for eachusaohld then
be formed by finding all of the order extensions of the corresponding cotbmxmplete
poset.

In this way it can be seen that there is no infinite sequénde, ... from N such that
S, ' S,S, IsAi-minuscule foreverk > 1. (Buttherearesuch sequences, e.g., fromfigure 8
of [14] (also see Section 2 of [7]), if we had not requikeit be “dominant” in the definition
of A-minuscule.) Theorem 7 implies that everyminuscule slant irreducible component
arises as an initial subword of one of the (finite) maximal irreducible compouagntd <
N < 15, which can be based upon a fixed top tree.

All of the preceding can be recast in the context of a restricted version [7] of the numbers
game of Mozes [6] rather than in the contextiefinuscule elements. This restricted
game is played on the possible labellings of the nodes of a simple graph with integers. Th
possible moves at any stage correspond to nodes which-Hhalabels. In this context, the
present paper classifies the possible evolutions of all such games which begin with all label
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non-positive. We do not know of any overlap between our “non-existenzenghuscule
elements of arbitrary length for a fixgd” result just stated and the various terminating
numbers games results of [1-3, 6].

Suppose that we start with a given uncolodedomplete pose® with top treeT. LetN
consist of the nodes df, and letG be any simple graph which contaifisas a subgraph.
Each element oP can be uniquely “colored” with one of the colors fray as described
in Proposition 8.6 of [7]. Then the sequence of colors produced by reading off the color
of some or all of the elements & from the top down will specify a-minuscule element
w=S§, - S,S, in the simply laced general Weyl group whose Dynkin diagra@.is

Let us continue the discussion of [14] from Section 1. To see thahinuscule element
w is fully commutative, use Theorem A of [7] and Theorem 2.2 of [14]. Theomplete
posetF, we associated to € W four paragraphs above is the “heap” of a fully commutative
elementw, by Lemma 2.1 of [14]. Our environment is more specialized than that of [14]:
Stembridge does not restrict to the simply laced case, and even there he knows of ma
elementsw which are noti-minuscule but are such thag, [w] is a distributive lattice
in the Bruhat order. So he has many he&p$or Coxeter group elements such that
J(P) = [e, w]is adistributive lattice, in addition to treecomplete posetB. Is there some
way of characterizing th@-minuscule elements amongst all fully commutative elements
using only Coxeter theoretic notions?
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