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Abstract. By using totally isotropic subspaces in an orthogonal spaceÄ+(2i, 2), several infinite families of
packings of 2k-dimensional subspaces of real 2i -dimensional space are constructed, some of which are shown to
be optimal packings. A certain Clifford group underlies the construction and links this problem with Barnes-Wall
lattices, Kerdock sets and quantum-error-correcting codes.
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1. Introduction

The central problem is to arrangeN n-dimensional subspaces ofRm so they are as far apart
as possible. Numerous constructions and bounds were given in [10, 20] (see also [21]). In
the present paper we give an algebraic framework for constructing such arrangements that
explains all the examples constructed or conjectured in [20].

The two main constructions obtained by these methods are stated in Theorems 1 and 2.
Theorem 3 describes an unrelated construction which yields another infinite family of
optimal packings. Table 1 summarizes the parameters of the packings obtained in dimensions
up to 128.

G(m, n) will denote the Grassmannian space ofn-dimensional subspaces ofRm. We
shall refer to the elements ofG(m, n) as n-dimensional planes, or simplyplanes. For
reasons discussed in [10], we define thedistancebetween twon-dimensional planesP, Q
in Rm by

d(P, Q) =
√

sin2 θ1+ · · · + sin2 θn , (1)

whereθ1, . . . , θn are the principal angles1 betweenP andQ. For given values ofm, n, N we
wish to find the best packings ofN planes inG(m, n), that is, subsetsP = {P1, . . . , PN} ⊂
G(m, n) such thatd(P) = mini 6= j d(Pi , Pj ) is maximized (d(P) is called theminimal
distanceof the packing). We refer to [10] for applications and earlier references.

It was shown in [10] thatG(m, n)equipped with the metric (1) has an isometric embedding
in RD, D = (m− 1)(m+ 2)/2, obtained by representing each planeP ∈ G(m, n) by
the orthogonal projection fromRm to P. If A is ann×m generator matrix forP, whose
rows are orthonormal vectors spanningP, then the projection is represented by the matrix
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5P = At A, wheret denotes transposition.5P is anm×m symmetric idempotent matrix
with tracen, and so lies inRD. All such5P for P ∈ G(m, n) lie on a sphere of radius√

n(m− n)/m in RD. Furthermore, if two planesP, Q ∈ G(m, n) are represented by
projection matrices5P,5Q then

d2(P, Q) = n− trace (5P 5Q) = 1

2
||5P −5Q||2 , (2)

where2 || || denotes theL2 or Frobenius norm of a matrix ([10], Theorem 5.1).
It follows from this embedding that ifP is a packing ofN planes inG(m, n) then

d(P)2 ≤ n(m− n)

m

N

N − 1
(3)

(the “simplex bound”). Equality requiresN ≤ D + 1 = (m+1
2

)
, and occurs if and only if

the N points inRD corresponding to the planes form a regular equatorial simplex ([10],
Corollary 5.2). Also, forN > D + 1,

d(P)2 ≤ n(m− n)

m
(4)

(the “orthoplex bound”). Equality requiresN ≤ 2D = (m− 1)(m+ 2), and occurs if the
N points form a subset of the 2D vertices of a regular orthoplex (generalized octahedron).
If N = 2D this condition is also necessary ([10], Corollary 5.3).

2. The algebraic framework

The following machinery was used in [7] to construct Kerdock sets, among other things,
and in [8, 9] to construct quantum error-correcting codes. The starting point is the standard
method of associating a finite orthogonal space to an extraspecial 2-group, as described for
example in [2], Theorem 23.10, or [15], Theorem 13.8.

The end result will be the construction of various packings ofn-spaces in a parent space
V = Rm, wherem= 2i . As basis vectors forV we useeu, u ∈ U = F i

2. The constructions
will involve certain subgroups of the real orthogonal groupO = O(V,R).

Fora, b ∈ U we define transformationsX(a) ∈ O, Y(b) ∈ O by

X(a) : eu → eu+a, Y(b) : eu → (−1)b·ueu, u ∈ U,

where the dot indicates the usual inner product inU . Then X = 〈X(a) : a ∈ U 〉,
Y = 〈Y(b) : b ∈ U 〉 are elementary Abelian subgroups ofO of order 2i , andE = 〈X,Y〉
⊂ O is an extraspecial 2-group3 of order 22i+1 ([7], Lemma 2.1). The elements ofE have
the form±X(a)Y(b), a, b ∈ U , and satisfy

Y(b)X(a) = (−1)a·bX(a)Y(b),

(−1)sX(a)Y(b)(−1)s
′
X(a′)Y(b′) = (−1)a

′ ·b+s+s′X(a+ a′)Y(b+ b′).
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The center4(E) of E is {±I }, and Ē = E/4(E) is an elementary Abelian group of
order 22i whose elements can be denoted byX̄(a)Ȳ(b), a, b ∈ U , where we are using the
bar ¯ for images under the homomorphism fromE to Ē. As in [2], Theorem 23.10, we
define a quadratic formQ : Ē→ F2 by

Q(ḡ) =
{

0 if g2 = +I
1 if g2 = −I

for ḡ ∈ Ē, whereg ∈ E is any preimage of̄g, and soQ(X̄(a)Ȳ(b)) = a · b.
The associated alternating bilinear formB : Ē × Ē→ F2 is given by

B(ḡ1, ḡ2) = Q(ḡ1+ ḡ2)+ Q(ḡ1)+ Q(ḡ2),

for ḡ1, ḡ2 ∈ Ē, and so

B(X̄(a)Ȳ(b), X̄(a′)Ȳ(b′)) = a · b′ + a′ · b. (5)

Then(Ē, Q) is an orthogonal vector space of typeÄ+(2i, 2) and maximal Witt index (cf.
[12]).

The normalizer ofE in O is a certain Clifford groupL, of order

2i 2+i+2(2i − 1)
i−1∏
j=1

(4 j − 1)

(cf. [7], Section 2).L is generated byE, all permutation matricesG(A,a) ∈ O : eu →
eAu+a, u ∈ U , whereA is an invertiblei × i matrix overF2 anda ∈ U , and the further
matrix H = (Hu,v), Hu,v = 2−i /2(−1)u·v, u, v ∈ U .

The groupL acts onE by conjugation, fixing the center, and so also acts onĒ. In fact
L acts onĒ as the orthogonal groupO+(2i, 2) ([7], Lemma 2.14).

This Clifford groupL has arisen in several different contexts, providing a link between
the present problem, the Barnes-Wall lattices (see [4, 5, 20, 22]), the construction of orthog-
onal spreads and Kerdock sets [7], and the construction of quantum error-correcting codes
[3, 9]. It also occurs in several purely group-theoretic contexts—see [7] for references.

The connection with quantum computing arises because if certain conditions are satisfied
the invariant subspaces mentioned in Theorem 1 form good quantum-error-correcting codes
[8, 9].

3. The construction from totally singular subspaces

A subspacēS ⊆ Ē is totally singular if Q(ḡ) = 0 for all ḡ ∈ S̄. Then dimS̄ ≤ i , and
if dim S̄ = i then S̄ is maximally totally singular. It follows from (5) that the preimage
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T ⊆ E of a maximally totally singular spacēT is an Abelian subgroup ofE, of order
2i+1. T contains−I , and has 2i+1 linear characters, associated with 2i mutually perpendi-
cular one-dimensional invariant subspaces forming a coordinate frameF(T) ⊂ V ([7],
Lemma 3.3).

SinceL acts asO+(2i, 2) on Ē, L takes any ordered pair of maximally totally singular
subspaces that meet in{0} to X andY, respectively. The corresponding coordinate frames
in V are

F(X) =
{

e∗v =
1

2i /2

∑
u∈U

(−1)u·veu : v ∈ U

}
(6)

and

F(Y) = {eu : u ∈ U }, (7)

respectively.
If S̄⊆ T̄ has dimensionk, its preimageS⊆ E has 2k+1 linear characters, and 2k distinct

invariant subspaces, each of which is spanned by 2i−k of the vectors inF(T).
We can now state our first main construction for Grassmannian packings.

Theorem 1 Given k, with0≤ k ≤ i−1, the set of all invariant subspaces of the preimages
S of all(i − k)-dimensional totally singular subspacesS̄ ofĒ is a packing of N planes in
G(2i , 2k) with minimal distance d= 2(k−1)/2, where

N = 2i−k

[
i
k

] i−1∏
j=k

(2 j + 1),

and [
i
k

]
= (2i − 1) · · · (2i−k+1− 1)

(2k − 1) · · · (2− 1)

is a Gaussian binomial coefficient.

Proof: There are[
i
k

] i−1∏
j=k

(2 j + 1)

choices forS̄ ([6], Lemma 9.4.1) and each̄Syields 2i−k planes.
We compute the distance between two planes from (2). SupposePj is a 2k-dimensional

invariant subspace ofV corresponding to the characterχ j of the subgroupSj ⊆ E, for
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j = 1, 2. We may assume−I ∈ S1 ∩ S2 andχ1(−I ) = χ2(−I ) = −1. Then

5 j = 1

|Sj |
∑
g∈Sj

χ j (g)g ∈ O

is the orthogonal projection ontoPj . Also

trace(51 52) = 1

|S1||S2|
∑
g1∈S1

∑
g2∈S2

χ1(g1)χ2(g2) trace(g1g2)

= 1

|S1||S2|
∑

g1∈S1∩S2

∑
g2=±g−1

1

χ1(g1)χ2(g2) trace(g1g2)

= 2

|S1||S2|
∑

g1∈S1∩S2

χ1(g1)χ2
(
g−1

1

)
trace(I )

=


2|S1 ∩ S2|2i

|S1||S2| if χ1 = χ2 on S1 ∩ S2

0 otherwise.

(8)

This implies from (2) that

d2(P1, P2) =


2k − |S1 ∩ S2|

|S̄1||S̄2|
2i if χ1 = χ2 on S1 ∩ S2

2k otherwise.

(9)

So if S1 = S2 andχ1 6= χ2 the planes are orthogonal and at distance 2k/2; otherwiseS1 6= S2,
|S1 ∩ S2| ≤ 2i−k−1, and their distance satisfies

d2 ≥ 2k − 2k−1 = 2k−1,

as claimed. 2

The principal anglesθ1, . . . , θ2k between any two planes in the packing may be found by a
similar calculation, using the fact that the singular values of5152 are cos2 θ1, . . . , cos2 θ2k

together with 2i − 2k zeros. It turns out that the principal angles are either all equal toπ/2,
or elseN1 of them are equal to arccos 2−r/4 and 2k − N1 are equal toπ/2, wherer is the
rank of Q on S̄1 ∪ S̄2 and

N1 = 22k−i+r/2|S̄1 ∩ S̄2| .

Examples Takingk = 0 in the theorem we obtain a packing of

(2+ 2)(22+ 2) · · · (2i + 2)



134 CALDERBANK ET AL

lines in G(2i , 1) with minimal angleπ/4 (as in [20]). These are the lines defined by the
minimal vectors in the 2i -dimensional Barnes-Wall lattice together with their images under
H (cf. [11], p. 151).4

With i = 2, k = 1 andi = 3, k = 2 we obtain two important special cases: 18 planes
in G(4, 2) and 70 planes inG(8, 4) (cf. [10, 20]). More generally, whenk = i − 1 we
obtain the packing of

f (i ) = 2(2i − 1)(2i−1+ 1)

planes inG(2i , 2i−1) with d2 = 2i−2 that is the main result of [20]. These packings
meet the orthoplex bound of (4) and are therefore optimal. (We do not know if any of
the other examples are optimal. Even if not optimal as Grassmannian packings, they may
be optimal subject to constraints on the spectrum of distances between planes—cf. [7],
Proposition 3.12.) An explicit recursive construction for the special casek = i−1 is given in
[20].

For k = 1 andk = i − 2 we obtain two further sequences of packings whose existence
was conjectured in [20].

The construction given in the theorem can be restated in an equivalent but more explicit
way as follows. LetP0 be the 2k-dimensional plane spanned by the coordinate vectorseu,
whereu ∈ U is of the form 00. . .0 ∗ . . . ∗, with i − k initial zeros. Then the packing
consists of all the images ofP0 under the groupL.

The parameters of all the packings obtained from the theorem in dimensions up to 128
can be seen in Table 1.

Many other packings can be obtained from the images underL of other starting planes,
and still more by replacingL by smaller groups. We mention just one such family. With
them = 2i coordinate vectorseu ∈ V arranged in lexicographic order, letL(m, n) denote
the packing inG(m, n) obtained from the images underL of the plane spanned by the
first n coordinate vectors. TheL(2i , 2k) are the packings described in Theorem 1. In
particular,L(2i , 2i−2) contains(1/3) f (i ) f (i−1) planes and hasd2 = 2i−3. The numerical
evidence (see the entries marked “(1a)” in Table 1) suggests thatL(2i , 3 · 2i−3) contains
(1/3) f (i ) f (i − 1) f (i − 2) planes and hasd2 = 2i−4, and thatL(2i , 5 · 2i−4) contains
(1/3) f (i ) f (i − 1) f (i − 2) f (i − 3) planes and hasd2 = 2i−5.

4. Spreads and clique-finding

The packings constructed in Section 3 contains very large numbers of planes. Smaller
packings can be obtained by using only some of the totally singular spaces.

Theorem 2 Suppose a set of M totally singular(i − k)-subspaces̄S of Ē can be found
such that any pair intersect in a space of dimension at most l. Then the set of invariant
subspaces of all the preimages S⊆ E is a packing of2i−k M planes in G(2i , 2k) with
minimal distance satisfying

d2 ≥ 2k − 22k+l−i . (10)



A GROUP-THEORETIC FRAMEWORK 135

Table 1. Parameters of Grassmannian packings constructed in this paper.

m n N d2 Source

3 1 6 4/5 (3)

4 1 12 3/4 (2a)

4 1 24 1/2 (1)

4 1 24 0.5182. . . [10]

4 2 6 1 (2d)

4 2 6 6/5 [10]

4 2 18 1 (1)

7 3 28 16/9 (3)

8 1 240 1/2 (1)

8 2 20 3/2 (2d)

8 2 20 1.5789. . . [10]

8 2 40 3/2 (2c)

8 2 44 3/2 [10]

8 2 420 1 (1)

8 3 1680 1/2 (1a)

8 4 70 2 (1)

16 1 144 15/16 (2a)

16 1 4320 1/2 (1)

16 2 72 7/4 (2d)

16 2 136 7/4 (2c)

16 2 1040 3/2 (2c)

16 2 16200 1 (1)

16 3 151200 1/2 (1a)

16 4 72 15/4 (2e)

16 4 180 3 (2b)

16 4 6300 2 (1)

16 5 453600 1/2 (1a)

16 6 113400 1 (1a)

16 7 64800 1/2 (1a)

16 8 270 4 (1)

23 11 276 144/25 (3)

31 15 496 256/33 (3)

32 1 146880 1/2 (1)

32 2 272 15/8 (2d)

(Continued on next page.)
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Table 1. (Continued.)

m n N d2 Source

32 2 1138320 1 (1)

32 4 948600 2 (1)

32 8 94860 4 (1)

32 16 1054 8 (1)

47 23 1128 576/49 (3)

64 1 2112 63/64 (2a)
64 1 9694080 1/2 (1)
64 2 1056 31/16 (2d)
64 2 152681760 1 (1)
64 4 1056 63/16 (2e)
64 4 262951920 2 (1)
64 8 2376 7 (2b)
64 8 56346840 4 (1)
64 16 2772 12 (2b)
64 16 1460844 8 (1)
64 32 4158 16 (1)

71 35 2556 1296/73 (3)

79 39 3160 1600/81 (3)

103 51 5356 2704/105 (3)

127 63 8128 4096/129 (3)

128 1 1260230400 1/2 (1)
128 2 4160 63/32 (2d)
128 2 40012315200 1 (1)
128 4 140043103200 2 (1)
128 8 62019088560 4 (1)
128 16 3445504920 8 (1)
128 32 22882860 16 (1)
128 64 16510 32 (1)

Proof: The bound on the minimal distance follows from (9). Equality holds in (10) if and
only if some pair of the subspaces intersect in a subspace of dimension exactlyl . 2

Examples

(a) Anorthogonal spread[7, 16, 18] is a partition of the nonzero totally singular points of
Ē into 2i−1+ 1 totally singulari -spaces. Such a partition exists if and only ifi is even
(the construction is closely related to Kerdock codes), and then Theorem 2 applies with
M = 2i−1+1,k = l = 0, producing 2i (2i−1+1) lines inG(2i , 1)with minimal angle
arccos 2−i /2.
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(b) More generally, aspread([14], Theorem 4.1.1) in a projective spacePG(s,q) is a
partition of the points into copies ofPG(r,q), and exists if and only ifr + 1 divides
s+ 1. Suppose nowi is even andj dividesi . If we take every totally singulari -space
in an orthogonal spread and partition the nonzero points into copies of aPG( j −1, 2),
using a spread, we obtainM = (2i − 1)/(2 j − 1) totally singularj -spaces inĒ which
meet only in the zero vector. This produces a packings of 2j (2i−1+1)(2i −1)/(2 j −1)
planes inG(2i , 2i− j ) with d2 = 2i− j − 2i−2 j .

In particular, becausei is even we can always takej = 2, obtaining 4(2i−1 + 1)
(2i −1)/3 planes inG(2i , 2i−2)with d2 = 3 · 2i−4. These packings meet the orthoplex
bound of (4).

(c) When the general constructions in (a) and (b) are not applicable, or do not give the
desired parameters, we may always resort to clique-finding. We form a graph whose
nodes represent all totally singular(i − k)-spacesS̄ ⊆ Ē, with an edge joining two
nodes if the corresponding spaces intersect in a space of dimension at mostl , and search
for a maximal clique. Theorem 2 gives the parameters of the resulting packing.

For example, wheni = 3, k = 1, l = 0, the graph on 2-spaces has 105 nodes and
contains maximal cliques of size 10, producing packings of 40 planes inG(8, 2) with
d2 = 1.5. These are suboptimal however, since packings of 44 planes inG(8, 2) with
d2 = 1.5 were obtained in [10].

For i = 4, k = 1, l = 0, the graph on 3-spaces has 2025 nodes and contains cliques
of size 17 (which is probably maximal), leading to packings of 136 planes inG(16, 2)
with d2 = 1.75. For l = 1 the graph contains cliques of size at least 130, giving
1040 planes inG(16, 2) with d2 = 1.5. We do not know if these are optimal.

Instead of orthogonal spreads in real space, we can also make use of their analogues
in complex or quaternionic space. Since the packings obtained do not seem especially
good we give only a summary.

(d) A symplectic spreadis the complex analogue of an orthogonal spread, and leads to a
family of 2i−1(2i−1+ 1) vectors inC2i−1

whose angles areπ/2 or arccos 2−(i−1)/2, for
i ≥ 2 ([7], Theorem 5.6). This produces packings of 2i−1(2i−1+ 1) planes inG(2i , 2)
with d2 = 2− 2−(i−2).

(e) In a similar way, Kantor [17] constructs a family of 2i−2(2i−1+1) lines in quaternionic
space of dimension 2i−2 whose angles areπ/2 or arccos 2−(i−2)/2, for all eveni ≥ 4.
This produces packings of 2i−2(2i−1+ 1) planes inG(2i , 4) with d2 = 4− 2−(i−2)l .

5. An infinite family of packings meeting the simplex bound

A packing of 28 planes inG(7, 3)meeting the simplex bound of (3) was given in [10]. This
may be generalized as follows.

Let pbe a prime which is either 3 or congruent to−1 modulo 8, so that a Hadamard matrix
H of order (p + 1)/2 exists. LetQ = {q1, . . . ,q(p−1)/2} denote the nonzero quadratic
residues modulop, and R = {r1, . . . , r(p−1)/2} the nonresidues. The entries ofH will
be denoted byHs,t , for 0≤ s, t ≤ (p−1)/2, where we assumeHs,0 = H0,t = 1 for all s, t .
We will construct a packing inG(p, p−1

2 ). Let es(0≤ s ≤ p− 1) be coordinate vectors in
Rp, letC = (1+√p+ 2)/

√
p+ 1, and fix an elementk ∈ R. Let Pt (0≤ t ≤ (p− 1)/2)
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be the(p− 1)/2-dimensional plane spanned by the vectors

eqs + HstCekqs, 1≤ s ≤ p− 1

2
.

For eachPt we obtainp−1 further planes by applying the cyclic permutation of coordinates
ei → ei+1(mod p), for a total ofp(p+ 1)/2 planes.

Theorem 3 The above construction produces a packing of p(p + 1)/2 planes in
G(p, p−1

2 ) in which the distance between every pair of planes satisfies

d2 = (p+ 1)2

4(p+ 2)
.

This packing meets the simplex bound of(3) and is therefore optimal.

Proof: The principal angles between two planes in the same orbit under the cyclic shift,
for exampleP0 andP1, are 0( p−3

4 times) and arcsin 2C/(1+ C2) (
p+1

4 times), and so

d2(P0, P1) = p+ 1

4

4C2

(1+ C2)2
= (p+ 1)2

4(p+ 2)
. (11)

If the two planes are in different orbits, it is best to compute the corresponding projection
matrices and then use (2) to compute the distance, making use of Perron’s theorem [19]
on quadratic residues. Again the distance is given by (11). We omit the details of this
calculation. 2

For example, whenp = 7 andC = √2, takingk = 3 we find that the planesP0, . . . , P3

are generated by

0 1 2 3 4 5 60 1 0 ±C 0 0 0
0 0 1 0 0 0 ±C
0 0 0 0 1 ±C 0

 ,
where the product of the signs is+1 (as given in [10]). The full set of 28 planes is obtained by
cycling the seven coordinates. Changingk to 6 we obtain a packing with the same distances
but in which some of the principal angles have changed, showing that the packings of
Theorem 3 are not unique.
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Packings obtained from Theorem 3 are labeled “(3)” in Table 1.

6. A table

Table 1 lists the parameters of the packings constructed in this paper in dimensions up
to 128. When better packings with same parameters were given in [10], these are also
mentioned. In the last column, “(1)” refers to Theorem 1, “(1a)” to the packings described
at the end of Section 3, “(2a)”, . . . , “(2e)” to the examples following Theorem 2, and “(3)”
to Theorem 3.

We must stress however that a very large number of other packings are known, especially
in dimensions up to 16: see the constructions and tables in [10] and [21].

Notes

1. [13], p. 584.
2. [13], p. 56.
3. [15], p. 349.
4. The group of the Barnes-Wall lattice in dimension 2i is a subgroupG of index 2 inL. This lattice can therefore

be constructed by taking unit vectors along the coordinate frameF(Y), forming their images underG and then
taking their integral closure.
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