
Journal of Convex Analysis

Volume 7 (2000), No. 2, 271–297

On the Lavrentieff Phenomenon for Some Classes
of Dirichlet Minimum Points

Riccardo De Arcangelis
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Starting from the results of [27],the Lavrentieff phenomenon for the functional F (Ω, ϕO, ·) : u ∈ BV (Ω) 7→
∫

Ω f(∇u)dx+
∫

Ω f∞( dDsu
d|Dsu| )d|D

su|+
∫

∂Ω f∞((ϕ0−γΩ(u))n)dHn−1 between BV (Ω) and BV (Ω)∩C1(Ω)

is studied, where f : Rn → [0,+∞[ is convex, f∞ is its recession function, ϕ0 ∈ L1(∂Ω), and γΩ is the
trace operator on ∂Ω. The occurrence of the phenomenon is first discussed by means of an example, and
then completely characterized. Sufficient conditions implying the absence of the phenomenon are also
proved, and some relaxation properties of F (Ω, ϕΩ, ·) are also established.

1. Introduction

In a paper of 1926, (cf. [36]), in connection with Tonelli’s partial regularity theorem for
the minimizers of one dimensional Dirichlet variational problems, (cf. [42]), M. Lavrentieff
observed the occurrence of the surprising feature of some Dirichlet variational problems for
integral functionals to depend critically on slight variations of the set of admissible func-
tions. He produced an example of a rather elaborated one dimensional integral functional
of the type

u ∈ W 1,1(]0, 1[) 7→
∫ 1

0

fL(x, u(x), u
′(x))dx

whose minimum on the class {u ∈ W 1,1(]0, 1[) : u(0) = 0, u(1) = 1} is strictly smaller
than its infimum on sets of smooth functions, for example on {u ∈ C1([0, 1]) : u(0) =
0, u(1) = 1}.
It is to be emphasized that this feature is surprising since fL is globally continuous and
strictly convex in the last variable, the integral u ∈ W 1,1(]0, 1[) 7→

∫ 1

0
fL(x, u(x), u

′(x))dx
is sequentially lower semicontinuous with respect to the weak W 1,1(]0, 1[)-topology, and
C1([0, 1]) is dense in W 1,1(]0, 1[) endowed with its strong topology.

Starting from Lavrentieff’s work, many paper have been devoted to the study of the
phenomenon in order to simplify the original example, (cf. [38, 35, 8]), and to give
sufficient conditions for its non occurrence, (cf. [5, 17, 20]).

More recently Buttazzo and Mizel, (cf. [13], and also [25]), proposed an abstract in-
terpretation of the Lavrentieff phenomenon by means of relaxation. Given a topolog-
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ical space (U, τ), a τ -dense subset V of U , and a τ -lower semicontinuous functional
F : U →]−∞,+∞], they considered the τ -lower semicontinuous envelope FV of

FV : u ∈ U 7→

{

F (u) if u ∈ V

+∞ otherwise

defined by

FV : u ∈ U 7→ sup{G(u) : G : U →]−∞,+∞], G τ -lower semicontinuous, G ≤ FV },

and observed that, being inf{F (u) : u ∈ V } = inf{FV (u) : u ∈ U}, the non occurrence
of the Lavrentieff phenomenon for F , U and V , i.e. the equality inf{F (u) : u ∈ U} =
inf{F (u) : u ∈ V }, can be deduced by the equality FV = F .

In this framework the occurrence of the Lavrentieff phenomenon for Neumann minimum
problems has been studied in many papers also for multiple integrals of the Calculus of
Variations defined in Sobolev and BV spaces, (cf. for example [1, 2, 9, 14, 19, 21, 25, 26,
44]). We recall that, given an open set Ω, BV (Ω) is defined as the set of the functions
in L1(Ω) having distributional partial first derivatives that are Borel measures with finite
total variations in Ω, and that, for every u ∈ BV (Ω), ∇u is defined as the density of the
absolutely continuous part of the vector measure Du with respect to Lebesgue measure,

Dsu as its singular part, and ∇su
(

= dDsu
d|Dsu|

)

as the Radon-Nikodym derivatives of Dsu

with respect to its total variation |Dsu|.
For example, in [21], the case has been treated in which Ω is a smooth bounded open subset
of Rn, f : Rn → [0,+∞[ is convex, U = BV (Ω), τ is the L1(Ω)-topology, V = C1(Rn),
and F is the classical Goffman-Serrin integral defined as

F : u ∈ BV (Ω) 7→
∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|

(as usual we have denoted by f∞ the recession function of f defined by f∞ : z ∈ Rn 7→
limt→0 tf(

z
t
)), and it has been proved the non occurrence of the Lavrentieff phenomenon

for F , BV (Ω) and C1(Rn).

The study of relaxed Dirichlet minimum problems in BV spaces has been first performed
in [32] where, also in more general settings, given f : Rn → [0,+∞[ convex and verifying

|z| ≤ f(z) ≤ M(1 + |z|) for some M ≥ 1 and every z ∈ Rn, (1.1)

a smooth bounded open set Ω, and ϕ0 ∈ L1(∂Ω), the functional

F (Ω, ϕ0, ·) : u ∈ BV (Ω) 7→
∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|+

+

∫

∂Ω

f∞((ϕ0 − γΩ(u))n)dHn−1 (1.2)

has been introduced in connection with the minimization in {v ∈ W 1,1(Ω) : γΩ(v) = ϕ0}
of the variational integral u 7→

∫

Ω
f(∇u)dx, (in (1.2) we have denoted by n the exterior
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unit vector normal to ∂Ω, by Hn−1 the (n − 1)-dimensional Hausdorff measure, and, for
every u ∈ BV (Ω), by γΩ(u) the interior trace of u on ∂Ω).

More recently in [27] the relaxation properties of the functional in (1.2) have been in-
vestigated under general assumptions on the data, and it has been proved that, if f is
just convex, Ω has Lipschitz boundary, ϕ0 ∈ L1(∂Ω), and u0 ∈ W 1,1

loc (R
n) is such that

γΩ(u0) = ϕ0 and
f(t∇u0) ∈ L1

loc(R
n) for every t ∈ R, (1.3)

then F (Ω, ϕ0, ·) is the L1(Ω)-lower semicontinuous envelope on the whole BV (Ω) of the
functional

u ∈ BV (Ω) 7→

{
∫

Ω
f(∇u)dx if u ∈ u0 + C∞

0 (Ω)

+∞ otherwise,

(cf. Theorem 2.5 in [27]). Moreover, if in addition u0 ∈ C∞(Ω), it has also been proved
that F (Ω, ϕ0, ·) is the L1(Ω)-lower semicontinuous envelope on the whole BV (Ω) of the
functional

u ∈ BV (Ω) 7→

{
∫

Ω
f(∇u)dx if u ∈ W 1,1(Ω) ∩ C∞(Ω), γΩ(u) = ϕ0

+∞ otherwise,

(cf. Theorem 3.1 in [27]).

In the present paper we want to study some aspects of the Lavrentieff phenomenon for the
functional in (1.2), BV spaces and sets of smooth functions, under general assumptions
on the data and, in particular, when (1.1) is dropped.

To do this we consider a convex function f : Rn → [0,+∞[, a bounded open set with
Lipschitz boundary Ω, ϕ0 ∈ L1(∂Ω), u0 ∈ W 1,1

loc (R
n) verifying γΩ(u0) = ϕ0, and, first of

all, we observe that, since F (Ω, ϕ0, u) =
∫

Ω
f(∇u)dx for every u ∈ W 1,1(Ω)∩C∞(Ω) with

γΩ(u) = ϕ0, by the above recalled results of [27] the non occurrence of the Lavrentieff
phenomenon for F (Ω, ϕ0, ·), BV (Ω) and u0 +C∞

0 (Ω), or for F (Ω, ϕ0, ·), BV (Ω) and {u ∈
W 1,1(Ω) ∩ C∞(Ω) : γΩ(u) = ϕ0} follows, provided the relative assumptions are fulfilled.

On the other side, the presence in (1.2) of the boundary integral, that allows F (Ω, ϕ0, ·)
to be defined and possibly finite on the whole BV (Ω), suggests the consideration of the
Lavrentieff phenomenon also for F (Ω, ϕ0, ·), BV (Ω) and sets of smooth functions with no
fixed boundary traces.

A first choice in this direction could be C1(Rn) as in [21]. This choice however seems to
be not interesting from the point of view of Lavrentieff phenomenon, since in general one
could have

∫

∂Ω
f∞((ϕ0 − γΩ(u))n)dHn−1 = +∞ for every u ∈ C1(Rn).

On the other hand if υ ∈ L1(∂Ω) is such that
∫

∂Ω
f∞((ϕ0 − γΩ(υ))n)dHn−1 < +∞, it

is well known that there exist functions in W 1,1(Ω) ∩ C∞(Ω), (that clearly agrees with
BV (Ω)∩C∞(Ω)), whose traces on ∂Ω are υ, (cf. [30]). This actually avoids a too violent
influence of the boundary integral on F (Ω, ϕ0, ·), and therefore suggests the study of the
Lavrentieff phenomenon for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ C∞(Ω).

In this framework we first of all propose an example exhibiting a surprising and unexpected
phenomenon, namely that Lavrentieff phenomenon may be produced in an integral on a
bounded open set Ω, having functional dependences on the admissible functions only
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through their gradients in Ω and their values on ∂Ω, just by weak local summability
constraints on the values of the admissible functions and not by the properties of their

gradients. For every n ≥ 3, p ∈
]

n−1
2
, n− 1

[

, and q ∈
]

(n−1)p
n−1−p

,+∞
]

we produce a

bounded open set with Lipschitz boundary Ω ⊆ Rn, a convex function f : Rn → [0,+∞[,
and ϕ0 ∈ L1(∂Ω) so that

min{F (Ω, ϕ0, u) : u ∈ BV (Ω)} = min{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω)} <

< inf{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω) ∩ Lq
loc(Ω)} =

= inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ Lq
loc(Ω)} = +∞,

(cf. Example 3.3).

Obviously, being C1(Ω) ⊆ L∞
loc(Ω), the same example also proves the occurrence of the

Lavrentieff phenomenon for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ C1(Ω), (cf. Example 3.4).

It is clear that Lavrentieff phenomenon is strictly linked to the regularity properties of
the solutions of variational problems, and the examples in section 3 also show that the
proposed functional cannot have solutions whose q-th powers are locally summable. Nev-
ertheless it is to be pointed out that actually we prove even more, namely that there is an
infinite gap between the infima taken into account. We refer to [31] and [39] for examples
on the non regularity of the solutions of some partial differential equations connected to
functionals of the type in (1.2).

Finally, in section 4, given a convex function f : Rn → [0,+∞[, a bounded open set with
Lipschitz boundary Ω, and ϕ0 ∈ L1(∂Ω), the study of the non occurrence of Lavrentieff
phenomenon for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ C∞(Ω) is carried out, and it is proved
that it can be characterized in terms of the finiteness of F (Ω, ϕ0, ·) on suitable subspaces
of BV (Ω).

First of all it is observed that obviously

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} = +∞

if and only if

inf{F (Ω, ϕ0, v) : v ∈ BV (Ω)} = +∞. (1.4)

Then, in order to treat the nontrivial case of the functionals not identically equal to +∞,
it is proved that, under the following assumption on f

for every ω ∈ (L1(]0, 1[n))n verifying f(ω) ∈ L1(]0, 1[n)

there exists tω ∈]1,+∞[ such that f(tωω) ∈ L1(]0, 1[n),
(1.5)

it results that

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} < +∞

if and only if

inf{F (Ω, ϕ0, v) : v ∈ BV (Ω) ∩ L∞
loc(Ω)} < +∞, (1.6)

(cf. Theorem 4.8).
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As corollary it turns out that, if (1.5) holds, the Lavrentieff phenomenon for F (Ω, ϕ0, ·),
BV (Ω) and BV (Ω) ∩ C∞(Ω) occurs if and only if inf{F (Ω, ϕ0, v) : v ∈ BV (Ω)} < +∞
and inf{F (Ω, ϕ0, v) : v ∈ BV (Ω) ∩ C∞(Ω)} = +∞, (cf. Theorem 4.9).

Such results are deduced by working in the above described framework of relaxation by
performing the following steps.

First of all it is observed that both F (Ω, ϕ0, ·) agrees on the whole BV (Ω) with the

L1(Ω)-lower semicontinuous envelope of the functional

u ∈ L1(Ω) 7→

{

F (Ω, ϕ0, u) if u ∈ BV (Ω) ∩ C∞(Ω)

+∞ otherwise
(1.7)

and is identically equal to +∞ if and only if (1.4) holds.

Then it is proved that, under assumption (1.5), both F (Ω, ϕ0, ·) agrees on the whole

BV (Ω) with the L1(Ω)-lower semicontinuous envelope of the functional in (1.7) and is
not identically equal to +∞ if and only if (1.6) holds, (cf. Theorem 4.7).

We also point out that, if p ∈ [1,+∞[ and

f(z) ≤ M(1 + |z|p) for some M ≥ 0 and every z ∈ Rn, (1.8)

then in theorems 4.7 and 4.8 condition (1.6) can be replaced by

inf{F (Ω, ϕ0, v) : v ∈ BV (Ω) ∩ Lp
loc(Ω)} < +∞. (1.9)

Finally some sufficient conditions implying (1.6) are proposed, and the consequent results
on relaxation and absence of Lavrentieff phenomenon are proved. For example if n = 1,
or if ϕ0 ∈ L∞(∂Ω), or if the right-hand side of (1.1) holds, or if there exists u0 ∈ BV (Ω)∩
L∞
loc(Ω) such that γΩ(u0) = ϕ0 and

∫

Ω
f(∇u0)dx +

∫

Ω
f∞(∇su0)d|Dsu0| < +∞, then the

Lavrentieff phenomenon for F (Ω, ϕ0, v), BV (Ω) and BV (Ω) ∩ C∞(Ω) cannot occur. In
particular it cannot occur if there exists u0 ∈ C∞(Ω) with γΩ(u0) = ϕ0 verifying (1.3).

2. Notations and preliminary results

For every x ∈ Rn and r > 0 we denote by Br(x) the open ball centred at x with radius r.

For every Lebesgue measurable subset E of Rn we denote by Ln(E) the n-dimensional
Lebesgue measure of E.

Given two open subsets of Rn A and B, we say that A ⊂⊂ B if A is a compact subset of
B.

We now recall some properties of BV spaces, we refer to [29], [33] and [45] for complete
references on the subject.

For every open subsets Ω of Rn we denote by BVloc(Ω) the set of the functions in L1
loc(Ω)

that belong to BV (A) for every open set A such that A ⊂⊂ Ω.

Let Ω be an open set, we recall that W 1,1(Ω) ⊆ BV (Ω), that Dsu ≡ 0 for every u ∈
W 1,1(Ω) and that, consequently,

∫

Ω
f∞(∇su)d|Dsu| = 0 for every u ∈ W 1,1(Ω) and every

convex function f : Rn → [0,+∞[.
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We also recall that BV (Ω) ⊆ L
n

n−1 (Ω), (BV (Ω) ⊆ L∞(Ω) if n = 1).

If u ∈ BV (Ω), we denote by |Du| the total variation of the vector measure Du, and by
Su the set of the points in Ω where u has not an approximate limit, i.e. x ∈ Ω \ Su if and
only if there exists ũ(x) ∈ R such that for every ε > 0

lim
r→0

Ln({y ∈ Br(x) : |u(y)− ũ(x)| > ε})
rn

= 0.

It can be proved that (cf. Theorem 15.2 in [43], and 3.2.29 in [29]) Su is Hn−1-rectifiable,
and that (cf. 2.9.13 in [29]) the function ũ is Borel and equal to u Ln-a.e. in Ω. Moreover

the vector measure Du can be splitted as Du = D̃u + Ju, where D̃u(B) = Du(B \ Su)
and Ju(B) = Du(B ∩ Su) for every Borel subset B of Ω.

For Hn−1-a.e. x ∈ Su it is possible to define (cf. Theorem 9.2 in [43] and 3.2.26 in [29])
two real numbers u+(x) and u−(x), called the upper and the lower approximate limits of
u at x, and a unit vector νu(x) ∈ Rn such that for every ε > 0

lim
r→0

Ln({y ∈ Br(x) : (y − x) · νu(x) > 0, |u(y)− u+(x)| > ε})
rn

= 0,

lim
r→0

Ln({y ∈ Br(x) : (y − x) · νu(x) < 0, |u(y)− u−(x)| > ε})
rn

= 0.

ForHn−1-a.e. x ∈ Su the triplet (u
+(x), u−(x), νu(x)) turns out to be uniquely determined

up to an interchange of u+(x) with u−(x) and to a change of sign of νu(x).

The upper and lower approximate limits of u at point x which is not in Su coincide with
ũ(x), moreover, (cf. Theorem 15.1 in [43])

Ju(B) =

∫

B∩Su

(u+ − u−)νudHn−1 for every Borel subset B of Ω. (2.1)

If Ω is an open set with Lipschitz boundary, u ∈ BV (Ω) we denote by u(0) the null
extension of u to Rn defined by

u(0)(x) =

{

u(x) if x ∈ Ω

0 if x ∈ Rn \ Ω
for Ln-a.e. x ∈ Rn,

then it turns out that u(0) ∈ BV (Rn), and we define (cf. Definition 5.10.5 in [45]) the

trace γΩ(u) of u on ∂Ω as

γΩ(u) = (u(0))
+ + (u(0))

−.

It turns out that (cf. Theorem 5.9.6, Remark 5.10.6 and Remark 5.8.3 in [45]) for Hn−1-
a.e. x ∈ ∂Ω the vector νu(0)

(x) agrees with the exterior (interior) normal n(x) to ∂Ω at

x, moreover (u(0))
+(x) = 0 or (u(0))

−(x) = 0 and γΩ(u)(x) = (u(0))
+(x) or γΩ(u)(x) =

(u(0))
−(x).

Finally we recall that (cf. [45] Theorem 5.14.4) it results that

lim
r→0

1

rn

∫

Ω∩Br(x0)

|u(x)− γΩ(u)(x0)|
n

n−1dx = 0 for Hn−1-a.e. x0 ∈ ∂Ω, (2.2)
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from which it also follows that, when u ∈ W 1,1(Ω), γΩ(u) agrees Hn−1-a.e. in ∂Ω with
the usual Sobolev trace of u.

The following result is proved in [4].

Proposition 2.1. Let u ∈ BV (Ω), and let g : R → R be Lipschitz with g(0) = 0, then
g(u) ∈ BV (Ω) and

Jg(u)(B) =

∫

B∩Su

(g(u+)− g(u−))νudHn−1.

By Proposition 2.1 we deduce the following result.

Proposition 2.2. Let Ω be a bounded open set with Lipschitz boundary, u ∈ BV (Ω), and
let g : R → R be Lipschitz with g(0) = 0, then γΩ(g(u)) = g(γΩ(u)).

Proof. Let E ⊆ ∂Ω be a Borel set, and let u(0) and g(u)(0) be the null extensions of u

and g(u) to Rn.

By using the fact that g(0) = 0, it is soon verified that g(u)(0) = g(u(0)), hence, by virtue

of this and by Proposition 2.1, we get that g(u)(0) ∈ BV (Rn) and that

Jg(u)(0) = Jg(u(0)) =

∫

E∩Su(0)

(

g((u(0))
+)− g((u(0))

−)
)

νu(0)
dHn−1. (2.3)

Let us recall now that for Hn−1-a.e. x ∈ ∂Ω the vector νu(0)
(x) agrees with the exterior

(interior) normal n(x) to ∂Ω at x. Moreover, if x ∈ E \Su(0)
, (u(0))

+(x) = (u(0))
−(x) = 0,

consequently, being also g(0) = 0, it follows that g((u(0))
+(x)) = g((u(0))

−(x)) = 0 and,

by (2.3), that

Jg(u)(0) =

∫

E

(

g((u(0))
+(x))− g((u(0))

−(x))
)

ndHn−1. (2.4)

On the other hand, by (2.1), and arguing as above we get that

Jg(u)(0) =

∫

E

((g(u)(0))
+ − (g(u)(0))

−)ndHn−1, (2.5)

therefore from (2.4) and (2.5), being E an arbitrary Borel subset of ∂Ω, we conclude that

(

g((u(0))
+(x))− g((u(0))

−(x))
)

n(x) = ((g(u)(0))
+(x)− (g(u)(0))

−(x))n(x)

for Hn−1-a.e. x ∈ ∂Ω. (2.6)

Finally, being g(0) = 0, it turns out that g((u(0))
+)−g((u(0))

−) = g(γΩ(u)) and (g(u)(0))
+−

(g(u)(0))
− = γΩ(g(u)), and the thesis follows by (2.6).

We now recall the following lower semicontinuity results, (cf. [41] and [27] respectively).
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Proposition 2.3. Let f : Rn → [0,+∞[ be convex, then for every bounded open set Ω
the functional

u ∈ BVloc(Ω) 7→
∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|

is L1
loc(Ω)-lower semicontinuous.

Proposition 2.4. Let f : Rn → [0,+∞[ be convex, Ω be a bounded open set with Lipschitz

boundary, ϕ0 ∈ L1(∂Ω), and let F (Ω, ϕ0, ·) be given by (1.2), then F (Ω, ϕ0, ·) is L1(Ω)-
lower semicontinuous.

Given a mollifier ρ, i.e. a function in C∞
0 (B1(0)) such that ρ ≥ 0 and

∫

B1(0)
ρ(y)dy = 1,

we denote, for every open set Ω, every u ∈ L1
loc(Ω), ε > 0, and x ∈ Ω with dist(x, ∂Ω) > ε,

by (ρε ∗ u)(x) the regularization of u at x defined by (ρε ∗ u)(x) = 1
εn

∫

Rn ρ(
x−y
ε
)u(y)dy.

We recall that uε ∈ C∞({x ∈ Ω : dist(x, ∂Ω) > ε}), and that ρε ∗ u → u in L1
loc(Ω) as

ε → 0.

Let us recall the following result, (cf. Lemma 3.3 in [15]).

Lemma 2.5. Let Ω0 be a bounded open set, Ω an open set with Ω ⊂⊂ Ω0, ε ∈]0,
dist(Ω, ∂Ω0)[, f : Rn → [0,+∞[ be convex, and u ∈ BVloc(Ω0), then

∫

Ω

f(∇(ρε ∗ u))dx ≤
∫

Ω0

f(∇u)dx+

∫

Ω0

f∞(∇su)d|Dsu|.

By Lemma 2.5 we deduce the following result.

Lemma 2.6. Let Ω0 be a bounded open set, Ω an open set with Ω ⊂⊂ Ω0, f : Rn →
[0,+∞[ be convex, and u ∈ BVloc(Ω0) such that

∫

Ω0

f(∇u)dx+

∫

Ω0

f∞(∇su)d|Dsu| < +∞,

then

lim sup
ε→0

∫

Ω

f(∇(ρε ∗ u))dx ≤
∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|.

Proof. Let Ω′ be an open set such that Ω ⊂⊂ Ω′ ⊂⊂ Ω0 then, by Lemma 2.5 applied to
Ω′ and Ω, we get

lim
ε→0

∫

Ω

f(∇(ρε ∗ u))dx ≤
∫

Ω′
f(∇u)dx+

∫

Ω′
f∞(∇su)d|Dsu|.

If Ω′ decreases to Ω the thesis follows.

Finally we recall some results of technical nature, the first one being proved in [22], (cf.
Lemma 2.2 in [22]).

Lemma 2.7. Let Ω be a bounded open set, f : Rn → [0,+∞[ be convex, {ωh} be bounded
in L∞(Ω;Rn), and ω ∈ L∞(Ω;Rn) be such that ωh → ω Ln-a.e. in Ω, then

lim
h→+∞

∫

Ω

f(ωh)dx =

∫

Ω

f(ω)dx.



R. De Arcangelis, C. Trombetti / On the Lavrentieff Phenomenon 279

Lemma 2.8. Let f : Rn → [0,+∞[ be convex, E be a measurable set with Ln(E) < +∞,

and ω : E → Rn be measurable, then the limit limt→1+
∫

E
f(tω)dx exists.

If in addition
∫

E
f(t0ω)dx < +∞ for some t0 ∈]1,+∞[, then

lim
t→1+

∫

E

f(tω)dx =

∫

E

f(ω)dx.

Proof. If
∫

E
f(tω)dx = +∞ for every t ∈]1,+∞[ then clearly limt→1+

∫

E
f(tω)dx exists.

If
∫

E
f(t0ω)dx < +∞ for some t0 ∈]1,+∞[ then, by the convexity inequality

f(tω) ≤ t

t0
f(t0ω) + (1− t

t0
)f(0) for every t ∈]1, t0],

and Lebesgue Dominated Convergence Theorem, the thesis follows.

Lemma 2.9. Let f : Rn → [0,+∞[ be convex and verifying (1.5), then for every bounded

measurable set E, and every ω ∈ (L1(E))n verifying f(ω) ∈ L1(E) there exists tω,E ∈
]1,+∞[ such that f(tω,Eω) ∈ L1(E).

Proof. Let E, ω be as above, and extend ω to the whole Rn by setting ω(x) = 0 for
every x ∈ Rn \ E.

Since E is bounded, we can find x1, . . . , xm ∈ Rn such that the cubes x1+]0, 1[n, . . . ,
xm+]0, 1[n are pairwise disjoint and Ln(E \ ∪m

j=1(xj+]0, 1[n)) = 0, consequently set ω1 =

ω(· + x1), . . . , ωm = ω(· + xm), let tω1 , . . . , tωm ∈]1,+∞[ be given by (1.5), and define
tω,E = min{tω1 , . . . , tωm}.
By the convexity of f it follows that

∫

E

f(tω,Eω)dx ≤
∫

∪m
j=1(xj+]0,1[n)

f(tω,Eω)dx =
m
∑

j=1

∫

xj+]0,1[n
f(tω,Eω)dx =

=
m
∑

j=1

∫

]0,1[n
f(tω,Eωj)dx =

m
∑

j=1

∫

]0,1[n
f

(

tω,E
tωj

tωj
ωj + (1− tω,E

tωj

)0

)

dx ≤

≤
m
∑

j=1

(

tω,E
tωj

∫

]0,1[n
f(tωj

ωj)dx+ (1− tω,E
tωj

)f(0)

)

< +∞,

from which the thesis follows.

3. The example

In the present section we show by an example that, provided n ≥ 3, for some p ∈
]

n−1
2
, n− 1

[

, q ∈
]

(n−1)p
n−1−p

,+∞
[

, some bounded open set with Lipschitz boundary Ω, some

convex function f : Rn → [0,+∞[, and ϕ0 ∈ L1(∂Ω) the Lavrentieff phenomenon may

occur for the functional F (Ω, ϕ0, ·) in (1.2), W 1,p(Ω) andW 1,p(Ω)∩Lq
loc(Ω). More precisely

that

min{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω)} < inf{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω) ∩ Lq
loc(Ω)} = +∞.
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By virtue of this we will deduce that the same phenomenon may occur for F (Ω, ϕ0, ·),
BV (Ω) and BV (Ω) ∩ Lq

loc(Ω), for F (Ω, ϕ0, ·), W 1,p(Ω) and W 1,p(Ω) ∩ C∞(Ω), and for
F (Ω, ϕ0, ·), BV (Ω) and BV ∩ C∞(Ω).

Example 3.1. Let n ≥ 3, Ω =] − 1, 1[n, p ∈
]

n−1
2
, n− 1

[

, then 0 < n−1−p
p

< 1 and

(n−1)p
n−1−p

> n− 1, therefore, taken q ∈
]

(n−1)p
n−1−p

,+∞
[

, it results that q > n− 1 and 0 < n−1
q

<

n−1−p
p

< 1.

Let α ∈
[

n−1
q
, n−1−p

p

[

, and set

f : (z1, . . . , zn) ∈ Rn 7→ |z1|q + |z2|p + . . .+ |zn|p,

ϕ0 : (x1, . . . , xn) ∈ ∂(]− 1, 1[n) \ {(1, 0, . . . , 0), (−1, 0, . . . , 0)} 7→ (x2
2 + . . .+ x2

n)
−α

2 ,

u0 : (x1, . . . , xn) ∈ Rn \ (R× {(0, . . . , 0)}) 7→ (x2
2 + . . .+ x2

n)
−α

2 ,

then ϕ0 ∈ L1(∂Ω) and u0 ∈ W 1,p
loc (R

n). Moreover, being p > 1, it results that
f∞(z1, . . . , zn) = 0 if (z1, . . . , zn) = (0, . . . , 0), f∞(z1, . . . , zn) = +∞ if (z1, . . . , zn) 6=
(0, . . . , 0).

Obviously we have that

min{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω)} ≤ F (Ω, ϕ0, u0) =

∫

Ω

f(∇u0)dx < +∞. (3.1)

We now want to show that

inf
{

F (Ω, ϕ0, u) : u ∈ W 1,p(Ω) ∩ Lq
loc(Ω)

}

= +∞. (3.2)

On the contrary, let us assume that there exists v ∈ W 1,p(Ω) ∩ Lq
loc(Ω) such that

∫

Ω

f(∇v)dx+

∫

∂Ω

f∞((ϕ0 − γΩ(v))n)dHn−1 < +∞, (3.3)

then clearly γΩ(v) = ϕ0.

Let us fix a ∈]0, 1[ and set P = {1} × [−a, a]n−1, K = [−a, a]n, then it is easy to prove
that

ϕ0(1, x2, . . . , xn) = v(x1, x2, . . . , xn) +

∫ 1

x1

∇1v(t, x2, . . . , xn)dt

for every x1 ∈]− a, a[ and Ln−1-a.e. (x2, . . . , xn) ∈]− 1, 1[n−1,

from which, by Holder inequality, we deduce that

|ϕ0(1, x2, . . . , xn)|q ≤

≤ 2q−1|v(x1, x2, . . . , xn)|q + 2q−1(1− x1)
q−1

∫ 1

−1

|∇1v(t, x2, . . . , xn)|qdt

for every x1 ∈]− a, a[ and Ln−1-a.e. (x2, . . . , xn) ∈]− 1, 1[n−1. (3.4)
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We integrate both sides of (3.4) with respect to x1 in [−a, a] getting

2a|ϕ0(1, x2, . . . , xn)|q ≤

≤ 2q−1

∫ a

−a

|v(x1, x2, . . . , xn)|qdx1 + 2q−1

∫ a

−a

(1− x1)
q−1

∫ 1

−1

|∇1v(t, x2, . . . , xn)|qdtdx1 ≤

≤ 2q−1

∫ a

−a

|v(x1, x2, . . . , xn)|qdx1 + 22q−1a

∫ 1

−1

|∇1v(t, x2, . . . , xn)|qdt

for Ln−1-a.e. (x2, . . . , xn) ∈]− 1, 1[n−1,

from which, by performing an integration over [−a, a]n−1, we infer

2a

∫

P

|ϕ0|qdHn−1 ≤ 2q−1

∫

K

|v|qdx+ 22q−1a

∫

Ω

|∇1v|qdx ≤

≤ 2q−1

∫

K

|v|qdx+ 22q−1a

∫

Ω

f(∇v)dx. (3.5)

By (3.5) and (3.3), being v ∈ Lq(K), we deduce that ϕ0 ∈ Lq
loc(P ), contrary to the fact

that, being α ≥ n−1
q
, ϕ0 cannot be in Lq

loc(P ).

By virtue of this (3.2) holds.

In conclusion both (3.1) and (3.2) are fulfilled, and the described Lavrentieff phenomenon
actually occurs.

Remark 3.2. It is clear that if in Example 3.1 we would take q smaller than the Sobolev

exponent of p, namely q ∈
[

1, np
n−p

]

, then, by Sobolev Embedding Theorem, there would

not be any Lavrentieff phenomenon for F (Ω, ϕ0, ·), W 1,p(Ω) and W 1,p(Ω)∩Lq(Ω). On the
contrary the example shows that the phenomenon occurs if q is greater than the Sobolev

exponent of p but in the space dimension n− 1, namely q ∈
]

(n−1)p
n−1−p

,+∞
[

.

Example 3.3. Let n, Ω, p, q, f , ϕ0 be as in Example 3.1, and F (Ω, ϕ0, ·) be given by
(1.2), then, once observed that, by using Poincaré-Wirtinger inequality, it is not difficult

to prove that min{F (Ω, ϕ0, u) : u ∈ BV (Ω)} = min{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω)}, and that

inf{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω) ∩ Lq
loc(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ Lq

loc(Ω)}, by
Example 3.1 we conclude that

min{F (Ω, ϕ0, u) : u ∈ BV (Ω)} = min{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω)} <

< inf{F (Ω, ϕ0, u) : u ∈ W 1,p(Ω) ∩ Lq
loc(Ω)} =

= inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ Lq
loc(Ω)} = +∞,

and hence that the Lavrentieff phenomenon occurs also for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω)
∩ Lq

loc(Ω).

Example 3.4. Let n, Ω, p, q, f , ϕ0 be as in Example 3.1, and F (Ω, ϕ0, ·) be given by

(1.2), then, once observed that C1(Ω) ⊆ Lq
loc(Ω), by Example 3.3 we deduce that the

Lavrentieff phenomenon occurs also for F (Ω, ϕ0, ·), W 1,p(Ω) and W 1,p(Ω) ∩ C1(Ω), and

for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ C1(Ω).
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4. Conditions for the non occurrence of Lavrentieff phenomenon

Let f : Rn → [0,+∞[ be convex, Ω be a bounded open set with Lipschitz boundary,

ϕ0 ∈ L1(∂Ω), and let F (Ω, ϕ0, ·) be the functional defined in (1.2).

In the present section we study some conditions in order to forestall Lavrentieff phe-
nomenon for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ C∞(Ω).

We start by recalling that the L1(Ω)-lower semicontinuous envelope F (Ω, ϕ0, ·) of the
functional in (1.7) is also given by

F (Ω, ϕ0, ·) : u ∈ L1(Ω) 7→

inf

{

lim inf
h→+∞

F (Ω, ϕ0, uh) : {uh} ⊆ BV (Ω) ∩ C∞(Ω), uh → u in L1(Ω)

}

. (4.1)

Consequently, by Proposition 2.4, we deduce that

F (Ω, ϕ0, u) ≤ F (Ω, ϕ0, u) for every u ∈ BV (Ω). (4.2)

Remark 4.1. If f : Rn → [0,+∞[ is convex, Ω is a bounded open set with Lipschitz

boundary, ϕ0 ∈ L1(∂Ω), F (Ω, ϕ0, ·) is defined in (1.2) and F (Ω, ϕ0, ·) by (4.1), then it is
clear that

F (Ω, ϕ0, u) = F (Ω, ϕ0, u) = +∞ for every u ∈ BV (Ω)

if and only if (1.4) holds. Moreover

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} = +∞

if and only if (1.4) holds.

In order to treat the remaining case, in which F (Ω, ϕ0, ·) is not identically +∞, by using
the relaxation arguments exposed in the introduction, we will first introduce a general
framework in which there is no Lavrentieff phenomenon for F (Ω, ϕ0, ·), BV (Ω) ∩ Lp

loc(Ω)
and BV (Ω)∩C∞(Ω) for some p ∈ [1,+∞], and then we will give some conditions in order
to prove the same result for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ Lp

loc(Ω).

Also in this case we will furnish a characterization of the non occurrence of the Lavrentieff
phenomenon for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ C∞(Ω).

First of all we recall that, being f∞ 1-homogeneous, it results that

∫

Ω

f∞(∇s(tu))d|Ds(tu)| = t

∫

Ω

f∞(∇su)d|Dsu|

for every u ∈ BV (Ω), t ∈ [0,+∞[. (4.3)

Lemma 4.2. Let f : Rn → [0,+∞[ be convex, p ∈ [1,+∞], and assume that, if p < +∞,
(1.8) holds. Then for every bounded open set with Lipschitz boundary Ω, u ∈ BV (Ω) ∩
Lp
loc(Ω) there exists {uh} ⊆ BV (Ω) ∩ C∞(Ω) such that uh → u in L1(Ω), γΩ(uh) = γΩ(u)

for every h ∈ N, and

lim
h→+∞

∫

Ω

f(∇uh)dx ≤ lim
t→1+

∫

Ω

f(t∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|.
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Proof. Let Ω, u be as above, and let us preliminarly observe that we can clearly assume
that there exists η0 ∈]0,+∞[ such that

∫

Ω

f((1 + η)∇u)dx+

∫

Ω

f∞(∇su)d|Dsu| < +∞ for every η ∈]0, η0[. (4.4)

For every η > 0 let fη = f + η| · |, and set f∞
η = (fη)

∞.

Let η ∈]0, η0[ and, by virtue of (4.4), for every j ∈ N∪{0} let Aj be an open set such that

Aj ⊂⊂ Aj+1 ⊂⊂ Ω, ∪∞
j=0Aj = Ω, dist(Aj, ∂Ω) ≥ dist(A0,∂Ω)

j+1
, Ln(∂Aj) = |Du|(∂Aj) = 0,

and

∫

Ω

fη((1 + η)∇u)dx+ (1 + η)

∫

Ω

f∞
η (∇su)d|Dsu| − η

2j+2
≤

≤
∫

Aj

fη((1 + η)∇u)dx+ (1 + η)

∫

Aj

f∞
η (∇su)d|Dsu|. (4.5)

Let us also consider a partition of unity {ψj}j∈N∪{0} relative to the covering {Aj+1 \
Aj−1}j∈N∪{0}, (where we have set A−1 = ∅), i.e. for every j ∈ N ∪ {0} a function ψj ∈
C∞

0 (Aj+1 \ Aj−1) with 0 ≤ ψj ≤ 1 in Ω and
∑∞

j=0 ψj = 1 in Ω.

Let {εh} be a decreasing sequence of positive numbers such that limh→+∞ εh = 0, and let,
for every h ∈ N, ρεh ∗ u be the regularization of u defined in section 2.

Let us fix j ∈ N ∪ {0}, then

ρεh ∗ u → u in Lp(Aj) and Ln-a.e. in Aj. (4.6)

By the properties of Aj, Lemma 2.6 and (4.3) we get

lim sup
h→+∞

∫

Aj

fη((1 + η)∇(ρεh ∗ u))dx = lim sup
h→+∞

∫

Aj

fη(∇(ρεh ∗ ((1 + η)u)))dx ≤

≤
∫

Aj

fη((1 + η)∇u)dx+ (1 + η)

∫

Aj

f∞
η (∇su)d|Dsu|. (4.7)

In addition, by Proposition 2.3 and (4.3), we have that

∫

Aj

fη((1 + η)∇u)dx+ (1 + η)

∫

Aj

f∞
η (∇su)d|Dsu| ≤

≤ lim inf
h→+∞

∫

Aj

fη((1 + η)∇(ρεh ∗ u))dx. (4.8)

By (4.6) we deduce the existence of h1(η, j) ∈ N such that εh1(η,j) < dist(Aj+1, ∂Ω) and

∫

Aj+1\Aj−1

|(ρεh ∗ u)− u|dx ≤ η

2j
for every h ≥ h1(η, j). (4.9)
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By (4.7) we deduce the existence of h2(η, j) ∈ N such that εh2(η,j) < dist(Aj+1, ∂Ω) and

∫

Aj+1

fη((1 + η)∇(ρεh ∗ u))dx ≤

≤
∫

Aj+1

fη((1 + η)∇u)dx+ (1 + η)

∫

Aj+1

f∞
η (∇su)d|Dsu|+ η

2j

for every h ≥ h2(η, j). (4.10)

By (4.8) we deduce the existence of h3(η, j) ∈ N such that εh3(η,j) < dist(Aj−1, ∂Ω) and

∫

Aj−1

fη((1 + η)∇(ρεh ∗ u))dx ≥

≥
∫

Aj−1

fη((1 + η)∇u)dx+ (1 + η)

∫

Aj−1

f∞
η (∇su)d|Dsu| − η

2j+1

for every h ≥ h3(η, j), (4.11)

moreover, by collecting together (4.11) and (4.5), we obtain

∫

Aj−1

fη((1 + η)∇(ρεh ∗ u))dx ≥

≥
∫

Ω

fη((1 + η)∇u)dx+ (1 + η)

∫

Ω

f∞
η (∇su)d|Dsu| − η

2j

for every h ≥ h3(η, j). (4.12)

Let us observe now that, if j 6= 0, it results
∑∞

i=0 ψi = ψj−1 + ψj = 1 in Aj \ Aj−1,
consequently

∇ψj−1 +∇ψj = 0 in Aj \ Aj−1. (4.13)

Let us prove that

lim
(h,k)→(+∞,+∞)

∫

Aj\Aj−1

fη

(

1 + η

η
[(ρεh ∗ u)∇ψj−1 + (ρεk ∗ u)∇ψj]

)

dx =

= f(0)Ln(Aj \ Aj−1). (4.14)

On the contrary there would exist ε > 0 and two increasing sequences {hi}, {ki} ⊆ N
such that

∣

∣

∣

∣

∣

∫

Aj\Aj−1

fη

(

1 + η

η

[

(ρεhi ∗ u)∇ψj−1 + (ρεki ∗ u)∇ψj

]

)

dx− f(0)Ln(Aj \ Aj−1)

∣

∣

∣

∣

∣

≥ ε

for every i ∈ N,
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contrary to the fact that by (4.6), (4.13) and Lemma 2.7 if p = +∞, or by (4.6), (4.13)
and Lebesgue Dominated Convergence Theorem if p < +∞, it would result

lim
i→+∞

∫

Aj\Aj−1

fη

(

1 + η

η

[

(ρεhi ∗ u)∇ψj−1 + (ρεki ∗ u)∇ψj

]

)

dx = f(0)Ln(Aj \ Aj−1).

By (4.14) we deduce the existence of h4(η, j) ∈ N such that εh4(η,j) < dist(Aj, ∂Ω) and

∫

Aj\Aj−1

fη

(

1 + η

η
[(ρεh ∗ u)∇ψj−1 + (ρεk ∗ u)∇ψj]

)

dx ≤

≤ f(0)Ln(Aj \ Aj−1) +
η

2j
for every h, k ≥ h4(η, j). (4.15)

Finally, for every j ∈ N∪{0}, let h(η, j) ∈ N be such that h(η, j) ≥ max{h1(η, j), h2(η, j),
h3(η, j), h4(η, j + 1)} and h(η, j + 1) ≥ h(η, j), and define

wη =
∞
∑

j=0

ψj(ρεh(η,j) ∗ u). (4.16)

Since εh(η,j) < dist(Aj+1, ∂Ω) for every j ∈ N ∪ {0}, and for every x ∈ Ω the series in

(4.16) has at most a finite number of non zero terms, it turns out that wη ∈ C∞(Ω).

By using the properties of {ψj} and (4.9), we have

‖wη − u‖L1(Ω) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

j=0

ψj(ρεh(η,j) ∗ u)−
∞
∑

j=0

ψju

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1(Ω)

≤

≤
∞
∑

j=0

∫

Aj+1\Aj−1

|(ρεh(η,j) ∗ u)− u|dx ≤ 2η, (4.17)

from which we conclude that wη ∈ L1(Ω).

By the convexity of fη we obtain

∫

Ω

fη(∇wη)dx =

=

∫

Ω

fη

(

1

1 + η

∞
∑

j=0

(1 + η)ψj∇(ρεh(η,j) ∗ u) +
η

1 + η

∞
∑

j=0

1 + η

η
(ρεh(η,j) ∗ u)∇ψj

)

dx ≤

≤ 1

1 + η

∫

Ω

fη

(

∞
∑

j=0

ψj(1 + η)∇(ρεh(η,j) ∗ u)

)

dx+

+
η

1 + η

∫

Ω

fη

(

1 + η

η

+∞
∑

j=0

(ρεh(η,j) ∗ u)∇ψj

)

dx ≤
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≤ 1

1 + η

∫

Ω

+∞
∑

j=0

ψjfη((1 + η)∇(ρεh(η,j) ∗ u))dx+

+
η

1 + η

∫

Ω

fη

(

1 + η

η

+∞
∑

j=0

(ρεh(η,j) ∗ u)∇ψj

)

dx ≤

≤ 1

1 + η

∫

A1

fη((1 + η)∇(ρεh(η,0) ∗ u))dx+

+
1

1 + η

∞
∑

j=1

∫

Aj+1\Aj−1

fη((1 + η)∇(ρεh(η,j) ∗ u))dx+

+
η

1 + η

∫

Ω

fη

(

1 + η

η

+∞
∑

j=0

(ρεh(η,j) ∗ u)∇ψj

)

dx. (4.18)

Let us observe that, for all j ∈ N ∪ {0}, we have ∇ψj = 0 in A0,
∑+∞

i=1 (ρεh(η,i) ∗ u)∇ψi =

(ρεh(η,j−1)
∗ u)∇ψj−1 + (ρεh(η,j) ∗ u)∇ψj in Aj \ Aj−1. Consequently

∫

Ω

fη

(

1 + η

η

+∞
∑

j=0

(ρεh(η,j) ∗ u)∇ψj

)

dx =

= f(0)Ln(A0) +
∞
∑

j=1

∫

Aj\Aj−1

fη

(

1 + η

η

[

(ρεh(η,j−1)
∗ u)∇ψj−1 + (ρεh(η,j) ∗ u)∇ψj

]

)

dx.

(4.19)

By (4.18), (4.4), (4.10), (4.12), (4.19), and (4.15) we get

∫

Ω

fη(∇wη)dx ≤

≤
∫

Ω

fη((1 + η)∇u)dx+ (1 + η)

∫

Ω

f∞
η (∇su)d|Dsu|+ η+

+
∞
∑

j=1

[∫

Ω

fη((1 + η)∇u)dx+ (1 + η)

∫

Ω

f∞
η (∇su)d|Dsu|+ η

2j
−

−
∫

Ω

fη((1 + η)∇u)dx− (1 + η)

∫

Ω

f∞
η (∇su)d|Dsu|+ η

2j

]

+

+
η

1 + η

{

f(0)Ln(Ω) +
∞
∑

j=1

[

f(0)Ln(Aj \Aj−1) +
η

2j

]

}

=

=

∫

Ω

f((1 + η)∇u)dx+ (1 + η)

∫

Ω

f∞(∇su)d|Dsu|+

+ η(1 + η)|Du|(Ω) + 4η +
η

1 + η
f(0) {Ln(Ω) + Ln(Ω− A0)} < +∞. (4.20)
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Therefore by (4.20), (4.4), and the first part of Lemma 2.8 we conclude that
∫

Ω

|∇wη|dx ≤ 1

η

∫

Ω

fη(∇wη)dx < +∞,

i.e. wη ∈ BV (Ω) ∩ C∞(Ω), and that

lim sup
η→0

∫

Ω

f(∇wη)dx ≤ lim sup
η→0

∫

Ω

fη(∇wη)dx ≤ lim
t→1+

∫

Ω

f(t∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|,

from which the thesis will follow once we prove that γΩ(wη) = γΩ(u) for every η ∈]0, η0[.
To do this let us take η ∈]0, η0[, and observe that, since u, wη ∈ BV (Ω), by (2.2) it follows
that

lim
r→0

1

rn

∫

Ω∩Br(x0)

|u− γΩ(u)(x0)|dx = lim
r→0

1

rn

∫

Ω∩Br(x0)

|wη − γΩ(wη)(x0)|dx = 0

for Hn−1-a.e. x0 ∈ ∂Ω,

from which we deduce that

|γΩ(wη)(x0)− γΩ(u)(x0)| ≤ lim
r→0

1

Ln(Ω ∩Br(x0))

∫

Ω∩Br(x0)

|wη − u|dx

for Hn−1-a.e. x0 ∈ ∂Ω.

Therefore, to complete the proof, it suffices prove that

lim
r→0

1

Ln(Ω ∩Br(x0))

∫

Ω∩Br(x0)

|wη − u|dx = 0 for every x0 ∈ ∂Ω. (4.21)

Let x0 ∈ ∂Ω. For every r > 0 let us set j(r) = min{j ∈ N : Aj ∩ Br(x0) 6= ∅}, then, by
the properties of {Aj}j∈N∪{0}, it follows that r > dist(Aj(r), ∂Ω) ≥ dist(A0,∂Ω)

j(r)+1
and therefore

that j(r) > dist(A0,∂Ω)
r

− 1. By arguing as in (4.17) and by using (4.9), we have that

∫

Ω∩Br(x0)

|wη − u|dx ≤
∞
∑

j=j(r)

∫

(Aj+1\Aj−1)∩Br(x0)

|(ρεh(η,j) ∗ u)− u|dx ≤

≤ η

2j(r)−1
≤ η

2
dist(A0,∂Ω)

r
−2

, (4.22)

therefore, once recalled that Ω has Lipschitz boundary and hence that there exists CΩ > 0
such that Ln(Ω ∩ Br(x0)) ≥ CΩr

n for every r small enough, by (4.22) we deduce (4.21)
and the thesis.

Lemma 4.3. Let f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈ [1,+∞], and
assume that, if p < +∞, (1.8) holds. Then for every bounded open set with Lipschitz
boundary Ω, u ∈ BV (Ω)∩Lp

loc(Ω) there exists {uh} ⊆ BV (Ω)∩C∞(Ω) such that uh → u

in L1(Ω), γΩ(uh) = γΩ(u) for every h ∈ N and

lim
h→+∞

∫

Ω

f(∇uh)dx =

∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|.



288 R. De Arcangelis, C. Trombetti / On the Lavrentieff Phenomenon

Proof. Follows by Lemma 4.2, (1.5), Lemma 2.9, Lemma 2.8, and Proposition 2.3.

Proposition 4.4. Let f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈ [1,+∞], and
assume that, if p < +∞, (1.8) holds. Let Ω be a bounded open set with Lipschitz boundary,

ϕ0 ∈ L1(∂Ω), F (Ω, ϕ0, ·) and F (Ω, ϕ0, ·) be defined by (1.2) and (4.1), then

F (Ω, ϕ0, u) = F (Ω, ϕ0, u) for every u ∈ BV (Ω) ∩ Lp
loc(Ω).

Proof. Follows immediately by (4.2), and Lemma 4.3.

In the sequel we will make use of the following assumption.

inf{F (Ω, ϕ0, v) : v ∈ W 1,1(Ω) ∩ Lp
loc(Ω)} < +∞. (4.23)

Lemma 4.5. Let f : Rn → [0,+∞[ be convex, p ∈ [1,+∞], Ω be a bounded open set with

Lipschitz boundary, ϕ0 ∈ L1(∂Ω), and F (Ω, ϕ0, ·) be defined by (1.2). Let us assume that
(4.23) holds, then for every u ∈ BV (Ω) there exists {wh} ⊆ BV (Ω) ∩ Lp

loc(Ω) such that

wh → u in L1(Ω) and

lim
h→+∞

F (Ω, ϕ0, wh) = F (Ω, ϕ0, u).

Proof. Let u ∈ BV (Ω), ε > 0.

If A ⊂⊂ Ω we have by Lemma 2.5 that

lim sup
ε→0

∫

A

f(∇(ρε ∗ u))dx ≤
∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|. (4.24)

By (4.23) let v ∈ W 1,1(Ω) ∩ Lp
loc(Ω) be such that

∫

Ω

f(∇v)dx+

∫

∂Ω

f∞((ϕ0 − γΩ(v))n)dHn−1 < +∞, (4.25)

and let us set, for every h ∈ N, wε,h = max{min{ρε∗u, v+h}, v−h}, wh = max{min{u, v+
h}, v− h}. It result that wh ∈ BV (Ω)∩Lp

loc(Ω) for every h ∈ N, wε,h → wh in L1(A) and



R. De Arcangelis, C. Trombetti / On the Lavrentieff Phenomenon 289

Ln-a.e. in A, therefore by Proposition 2.3 and (4.24) we have

∫

A

f(∇wh)dx+

∫

A

f∞(∇swh)d|Dswh| ≤

≤ lim inf
ε→0

∫

A

f(∇wε,h)dx ≤

≤ lim sup
ε→0

∫

A

f(∇(ρε ∗ u))dx+

+ lim sup
ε→0

∫

{y∈A:(ρε∗u)(y)>v(y)+h}
f(∇v)dx+

+ lim sup
ε→0

∫

{y∈A:(ρε∗u)(y)<v(y)−h}
f(∇v)dx ≤

≤
∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|+

+

∫

{y∈Ω:u(y)≥v(y)+h}
f(∇v)dx+

∫

{y∈Ω:u(y)≤v(y)−h}
f(∇v)dx

for every h ∈ N,

from which, taking into account also (4.25), we deduce that

lim sup
h→+∞

{∫

Ω

f(∇wh)dx+

∫

Ω

f∞(∇swh)d|Dswh|
}

≤

≤
∫

Ω

f(∇u)dx+

∫

Ω

f∞(∇su)d|Dsu|. (4.26)

In order to treat the boundary integrals
∫

∂Ω
f∞((ϕ0 − γΩ(wh))n)dHn−1, let us set, for

every h ∈ N, Ah = {x ∈ ∂Ω : γΩ(u)(x) ≥ γΩ(v)(x) + h}, Bh = {x ∈ ∂Ω : γΩ(u)(x) ≤
γΩ(v)(x)− h}, and observe that by Proposition 2.2 we have

ϕ0(x)− γΩ(wh)(x) =











ϕ0(x)− γΩ(u)(x) if x ∈ ∂Ω \ (Ah ∪Bh)

ϕ0(x)− γΩ(v)(x)− h if x ∈ Ah

ϕ0(x)− γΩ(v)(x) + h if x ∈ Bh

for every h ∈ N and Hn−1-a.e. x ∈ ∂Ω,

therefore

∫

∂Ω

f∞((ϕ0 − γΩ(wh))n)dHn−1 =

=

∫

Ah

f∞((ϕ0 − (γΩ(v) + h))n)dHn−1 +

∫

Bh

f∞((ϕ0 − (γΩ(v)− h))n)dHn−1+

+

∫

∂Ω\(Ah∪Bh)

f∞((ϕ0 − γΩ(u))n)dHn−1 for every h ∈ N. (4.27)
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Let us estimate the first term in the right-hand side of (4.27). By the 1-homogeneity of
f∞ we have

∫

Ah

f∞((ϕ0 − (γΩ(v) + h))n)dHn−1 =

=

∫

Ah∩{y∈∂Ω:ϕ0(y)≥γΩ(v)(y)+h}
f∞((ϕ0 − (γΩ(v) + h))n)dHn−1+

+

∫

Ah∩{y∈∂Ω:ϕ0(y)<γΩ(v)(y)+h}
f∞((ϕ0 − (γΩ(v) + h))n)dHn−1 =

=

∫

Ah∩{y∈∂Ω:ϕ0(y)≥γΩ(v)(y)+h}

ϕ0 − (γΩ(v) + h)

ϕ0 − γΩ(v)
f∞((ϕ0 − γΩ(v))n)dHn−1+

+

∫

Ah∩{y∈∂Ω:ϕ0(y)<γΩ(v)(y)+h}

ϕ0 − (γΩ(v) + h)

ϕ0 − γΩ(u)
f∞((ϕ0 − γΩ(u))n)dHn−1 ≤

≤
∫

Ah

f∞((ϕ0 − γΩ(v))n)dHn−1 +

∫

Ah

f∞((ϕ0 − γΩ(u))n)dHn−1

for every h ∈ N. (4.28)

Analogously we also have

∫

Bh

f∞((ϕ0 − (γΩ(v)− h))n)dHn−1 ≤

≤
∫

Bh

f∞((ϕ0 − γΩ(v))n)dHn−1 +

∫

Bh

f∞((ϕ0 − γΩ(u))n)dHn−1 for every h ∈ N.

(4.29)

Therefore, by (4.27)–(4.29), it follows that

∫

∂Ω

f∞((ϕ0 − γΩ(wh))n)dHn−1 ≤
∫

∂Ω

f∞((ϕ0 − γΩ(u))n)dHn−1+

+

∫

Ah

f∞((ϕ0 − γΩ(v))n)dHn−1 +

∫

Bh

f∞((ϕ0 − γΩ(v))n)dHn−1

for every h ∈ N. (4.30)

By (4.30) and (4.25) we conclude, as h diverges, that

lim sup
h→+∞

∫

∂Ω

f∞((ϕ0 − γΩ(wh))n)dHn−1 ≤
∫

∂Ω

f∞((ϕ0 − γΩ(u))n)dHn−1. (4.31)

Finally, by (4.26), (4.31), and Proposition 2.4 the thesis follows.

The following result yields conditions in order to fulfil (4.23).
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Lemma 4.6. Let f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈ [1,+∞], and
assume that, if p < +∞, (1.8) holds. Let Ω be a bounded open set with Lipschitz boundary,

ϕ0 ∈ L1(∂Ω), and let us assume that (1.9) is fulfilled, then (4.23) holds.

Proof. Follows directly by Lemma 4.3.

We can prove now the main results of this section.

Theorem 4.7. Let f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈ [1,+∞], and
assume that, if p < +∞, (1.8) holds. Let Ω be a bounded open set with Lipschitz boundary,

ϕ0 ∈ L1(∂Ω), F (Ω, ϕ0, ·) and F (Ω, ϕ0, ·) be defined by (1.2) and (4.1), then both the
conditions

F (Ω, ϕ0, u) = F (Ω, ϕ0, u) for every u ∈ BV (Ω) (4.32)

and F (Ω, ϕ0, ·) is not identically +∞ hold if and only if (1.9) is fulfilled.

Proof. Let us assume that (1.9) is fulfilled then clearly F (Ω, ϕ0, ·) is not identically +∞.

Let u ∈ BV (Ω), then by (1.9), Lemma 4.6, Lemma 4.5, Proposition 4.4, and the L1(Ω)-

lower semicontinuity of F (Ω, ϕ0, ·) we deduce the existence of {wh} ⊆ BV (Ω) ∩ Lp
loc(Ω)

such that wh → u in L1(Ω) and

F (Ω, ϕ0, u) = lim
h→+∞

F (Ω, ϕ0, wh) = lim
h→+∞

F (Ω, ϕ0, wh) ≥ F (Ω, ϕ0, u),

from which, together with (4.2), identity (4.32) follows.

Let us assume now that (4.32) holds and that F (Ω, ϕ0, ·) is not identically +∞, then
being C∞(Ω) ⊆ Lp

loc(Ω), it soon follows that (1.9) is fulfilled.

Theorem 4.8. Let f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈ [1,+∞], and
assume that, if p < +∞, (1.8) holds. Let Ω be a bounded open set with Lipschitz boundary,

ϕ0 ∈ L1(∂Ω), and F (Ω, ϕ0, ·) be defined by (1.2), then

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} < +∞

if and only if (1.9) holds.

Proof. Follows by Theorem 4.7.

By the previous result we deduce the following description of the circumstances in which
Lavrentieff phenomenon for F (Ω, ϕ0, ·), BV (Ω) and BV (Ω) ∩ C∞(Ω) occurs.

Theorem 4.9. Let f : Rn → [0,+∞[ be convex and verifying (1.5). Let Ω be a bounded

open set with Lipschitz boundary, ϕ0 ∈ L1(∂Ω), and F (Ω, ϕ0, ·) be defined by (1.2), then

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} < inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} (4.33)

if and only if

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} < +∞, inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = +∞.
(4.34)
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Proof. It is clear that (4.34) implies (4.33).

Conversely, if (4.33) holds, it must necessarily result inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} < +∞,
moreover, by Theorem 4.8 applied with p = +∞, inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)∩L∞

loc(Ω)} =
+∞ and consequently inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = +∞.

Remark 4.10. We emphasize that the function f in the examples of section 3 verifies
condition (1.5).

Remark 4.11. We remark that if f : Rn → [0,+∞[ is convex, p ∈ [1,+∞], Ω is a

bounded open set with Lipschitz boundary, ϕ0 ∈ L1(∂Ω), and F (Ω, ϕ0, ·) is defined by
(1.2), then it directly follows by Proposition 2.4 and Lemma 4.5 that if (4.23) holds, then
F (Ω, ϕ0, ·) is not identically +∞ and

F (Ω, ϕ0, u) = inf

{

lim inf
h→+∞

F (Ω, ϕ0, uh) : {uh} ⊆ BV (Ω) ∩ Lp
loc(Ω), uh → u in L1(Ω)

}

for every u ∈ BV (Ω).

Consequently

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ Lp
loc(Ω)} < +∞.

The following results yield sufficient conditions in order to fulfil (1.9).

Proposition 4.12. Let f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈ [1,+∞],
and assume that, if p < +∞, (1.8) holds. Let Ω be a bounded open set with Lipschitz

boundary, ϕ0 ∈ L1(∂Ω), F (Ω, ϕ0, ·) and F (Ω, ϕ0, ·) be defined by (1.2) and (4.1), and let
us assume that there exists v ∈ BV (Ω) ∩ Lp

loc(Ω) such that

γΩ(v) = ϕ0,

∫

Ω

f(∇v)dx+

∫

Ω

f∞(∇sv)d|Dsv| < +∞, (4.35)

then
F (Ω, ϕ0, u) = F (Ω, ϕ0, u) for every u ∈ BV (Ω)

and F (Ω, ϕ0, ·) is not identically +∞.

Proof. Follows by Theorem 4.7, once observed that the described assumptions imply
(1.9).

Proposition 4.13. Let n = 1, f : R → [0,+∞[ be convex and verifying (1.5). Let a, b,

α, β ∈ R with a < b, ϕ0 : x ∈ {a, b} 7→

{

α if x = a

β if x = b
, F (]a, b[, ϕ0, ·) and F (]a, b[, ϕ0, ·) be

defined by (1.2) and (4.1), then

F (]a, b[, ϕ0, u) = F (]a, b[, ϕ0, u) for every u ∈ BV (]a, b[)

and F (]a, b[, ϕ0, ·) is not identically +∞.

Proof. Follows by Proposition 4.12 applied with p = +∞, once observed that it is always
possible to find an affine function v verifying (4.35).
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Theorem 4.14. Let f : Rn → [0,+∞[ be convex and verifying (1.5). Let Ω be a bounded

open set with Lipschitz boundary, ϕ0 ∈ L∞(∂Ω), F (Ω, ϕ0, ·) and F (Ω, ϕ0, ·) be defined by
(1.2) and (4.1), then

F (Ω, ϕ0, u) = F (Ω, ϕ0, u) for every u ∈ BV (Ω).

Proof. By virtue of Remark 4.1 we have to treat only the case in which F (Ω, ϕ0, ·) is not
identically +∞.

Let v ∈ BV (Ω) be such that F (Ω, ϕ0, v) < +∞, take k ∈ [0,+∞[ with k > ‖ϕ0‖L∞(∂Ω),

and set vk = max{min{v, k},−k}, then by Proposition 2.1 we infer that vk ∈ BV (Ω) ∩
L∞(Ω).

We first observe that, by using Lemma 2.5 and Proposition 2.3, it is easy to prove that
∫

Ω
f(∇vk)dx+

∫

Ω
f∞(∇svk)d|Dsvk| ≤

∫

Ω
f(∇v)dx+

∫

Ω
f∞(∇sv)d|Dsv|+ f(0)|Ω| < +∞.

Let us now set Ak = {x ∈ ∂Ω : γΩ(v)(x) > k}, Bk = {x ∈ ∂Ω : γΩ(v)(x) < −k}, then by
Proposition 2.2 we have

γΩ(vk)(x) =











γΩ(v)(x) if x ∈ ∂Ω \ (Ak ∪Bk)

k if x ∈ Ak

−k if x ∈ Bk.

Moreover, by the 1-homogeneity of f∞, we also have that

∫

∂Ω

f∞((ϕ0 − γΩ(vk))n)dHn−1 =

∫

∂Ω\(Ak∪Bk)

f∞((ϕ0 − γΩ(v))n)dHn−1+

+

∫

Ak

f∞((ϕ0 − k))n)dHn−1 +

∫

Bk

f∞((ϕ0 + k)n)dHn−1 =

=

∫

∂Ω\(Ak∪Bk)

f∞((ϕ0 − γΩ(v))n)dHn−1+

+

∫

Ak

ϕ0 − k

ϕ0 − γΩ(v)
f∞((ϕ0 − γΩ(v))n)dHn−1+

+

∫

Bk

ϕ0 + k

ϕ0 − γΩ(v)
f∞((ϕ0 − γΩ(v))n)dHn−1 ≤

≤
∫

∂Ω

f∞((ϕ0 − γΩ(v))n)dHn−1 < +∞.

By such properties we conclude that F (Ω, ϕ0, vk) < +∞, i.e. that (1.9) with p = +∞
holds, and the thesis follows by Theorem 4.7 applied with p = +∞.

Proposition 4.15. Let n > 1, f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈
[

1, n
n−1

]

, and assume that (1.8) holds. Let Ω be a bounded open set with Lipschitz bound-

ary, ϕ0 ∈ L1(∂Ω), F (Ω, ϕ0, ·) and F (Ω, ϕ0, ·) be defined by (1.2) and (4.1), then

F (Ω, ϕ0, u) = F (Ω, ϕ0, u) for every u ∈ BV (Ω).
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Proof. As at the beginning of Proposition 4.7 it is not restrictive to assume that F (Ω, ϕ0, ·)
is not identically +∞.

By virtue of this, and by the embedding of BV (Ω) in Lp(Ω) we get that actually (1.9)
holds, and the thesis follows by Theorem 4.7.

Proposition 4.16. Let f : Rn → [0,+∞[ be convex, and assume that (1.8) holds with

p = 1. Let Ω be a bounded open set with Lipschitz boundary, ϕ0 ∈ L1(∂Ω), F (Ω, ϕ0, ·)
and F (Ω, ϕ0, ·) be defined by (1.2) and (4.1), then

F (Ω, ϕ0, u) = F (Ω, ϕ0, u) for every u ∈ BV (Ω)

and F (Ω, ϕ0, ·) is not identically +∞.

Proof. We observe that by using (1.8) with p = 1 it follows that (1.5) holds, moreover
(1.9) is fulfilled and the thesis follows by Theorem 4.7.

In the following theorems we apply the above results to the study of Lavrentieff phe-
nomenon.

Proposition 4.17. Let f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈ [1,+∞],
and assume that, if p < +∞, (1.8) holds. Let Ω be a bounded open set with Lipschitz

boundary, ϕ0 ∈ L1(∂Ω), F (Ω, ϕ0, ·) be defined by (1.2), and let us assume that there
exists v ∈ BV (Ω) ∩ Lp

loc(Ω) such that

γΩ(v) = ϕ0,

∫

Ω

f(∇v)dx+

∫

Ω

f∞(∇sv)d|Dsv| < +∞,

then

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} < +∞.

Proof. Follows by Proposition 4.12.

Proposition 4.18. Let n = 1, f : R → [0,+∞[ be convex and verifying (1.5). Let a, b,

α, β ∈ R with a < b, ϕ0 : x ∈ {a, b} 7→

{

α if x = a

β if x = b
, and F (]a, b[, ϕ0, ·) be defined by

(1.2), then

inf{F (]a, b[, ϕ0, u) : u ∈ BV (]a, b[) ∩ C∞(]a, b[)} =

= inf{F (]a, b[, ϕ0, u) : u ∈ BV (]a, b[)} < +∞.

Proof. Follows by Proposition 4.13.

Theorem 4.19. Let f : Rn → [0,+∞[ be convex and verifying (1.5). Let Ω be a bounded
open set with Lipschitz boundary, ϕ0 ∈ L∞(∂Ω), and F (Ω, ϕ0, ·) be defined by (1.2), then

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)}.

Proof. Follows by Theorem 4.14.
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Theorem 4.20. Let n > 1, f : Rn → [0,+∞[ be convex and verifying (1.5), p ∈
[

1, n
n−1

]

,

and assume that (1.8) holds. Let Ω be a bounded open set with Lipschitz boundary, ϕ0 ∈
L1(∂Ω), and F (Ω, ϕ0, ·) be defined by (1.2), then

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)}.

Proof. Follows by Theorem 4.8.

Proposition 4.21. Let f : Rn → [0,+∞[ be convex, and assume that (1.8) holds with

p = 1. Let Ω be a bounded open set with Lipschitz boundary, ϕ0 ∈ L1(∂Ω), and F (Ω, ϕ0, ·)
be defined by (1.2), then

inf{F (Ω, ϕ0, u) : u ∈ BV (Ω) ∩ C∞(Ω)} = inf{F (Ω, ϕ0, u) : u ∈ BV (Ω)} < +∞.

Proof. Follows by Proposition 4.16.
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[32] M. Giaquinta, G. Modica, J. Souček: Functionals with linear growth in the calculus of
variations, Comment. Math. Univ. Carolinae 20 (1979) 143–156.

[33] E. Giusti: Minimal Surfaces and Functions of Bounded Variation, Monogr. Math. 80,
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