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Resumé

Nous offrons des démonstrations et des commentaires sur certaines sections du papier de Bruno de Finetti

sur les corrélations (”A proposito di correlazione”). En particulier nous nous concentrons sur son théorème

sur les angles, qu’il a énoncé sans démonstration et qui est d’une simplicité et d’une puissance telle qu’elle

méritrait d’être inséré dans les livres de texte de base sur la statistique multivariée. Nous établissons un lien

entre le théorème sur les angles de de Finetti et la recherche contemporaine sur la frontière de l’ensemble

convexe formée par les matrices de corrélation. Nous mettons en évidence, basé sur une section de l’article

de de Finetti, qu’il a découvert les corrélations des rangs en même temps ou avant Kendall.

Abstract

We provide proofs and commentary on parts of Bruno De Finetti’s paper ”About Correlation”. In particular

we focus on De Finetti’s angle theorem, which he stated without proof and whose striking simplicity and

power would seem to make it a natural candidate for any multivariate statistics text. We establish a connection

between de Finetti’s angle theorem and ongoing research on the boundary of the convex set of correlation

matrices. We also provide evidence from this article that de Finetti discovered rank correlation before or at

the same time as Kendall.
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I. Introduction
I.1. Historical Context.

Due to the low regard with which Italian mathematicians held mathematics devoted to
finance and insurance, the part of Bruno de Finetti’s work devoted to this subject did not
appear in his published collected works. This omission on the Italian side is reminiscent
of that of Bachelier in France and for similar reasons. Recently, part of Bruno de Finetti’s
work in insurance has been rediscovered when it was mentioned by Claudio Albanese to
Mark Rubinstein. Subsequently, one of us (L. B.), translated the paper by Bruno de Finetti
and it was discovered that de Finetti had anticipated a good part of Markowitz’s Nobel prize
winning work on mean-variance portfolio selection by 12 years.

Bruno de Finetti (1906-1985) was an outstanding mathematician, statistician, philoso-
pher and economist. Mark Rubinstein (2006) has recently written that “among de Finetti’s
papers is a treasure-trove of results in economics and finance written well before the work
of the scholars that are traditionally credited with these ideas ... but perhaps most astound-
ing is de Finetti’s 1940 paper anticipating much of mean-variance portfolio theory later
developed by Harry Markowitz in a series of three works (1952), (1956) and (1959) and
A.D. Roy (1952). With the advantage of hindsight, we can see that Markowitz’s work
sparked the development of modern finance theory and practice. Yet, twelve years earlier,
de Finetti had already quietly laid these foundations. de Finetti modelled portfolio variance
as a sum of covariances, developed the concept of mean-variance efficiency, justified this
criterion based on the normality of returns, considered the implications of fat tails, dis-
cussed bounds on negative correlation coefficients, and even worked out an early version
of the critical line algorithm, the numerical method used to solve the portfolio selection
problem.” Bruno de Finetti’s merits have been acknowledged by the Nobel prize laureate
Harry Markowitz [13] in an article significantly titled “de Finetti Scoops Markowitz”. In
his 1940 article (“The Problem of Full-Risk Insurances”), Bruno de Finetti had claimed the
originality of his ideas: “The extension, that seems so obvious to me, of the previous con-
siderations on risk to the case of correlated events is almost never discussed in the research
on this subject (to be more precise, I remember having seen it only in a paper by Dubois ...
who however didn’t face the problem of full-risk insurances)”. Three years earlier, in 1937,
de Finetti had published an article whose title is “About Correlations” and whose annotated
translation, by two of us (L.B. and P.L.) is presented in this same volume. In “About Corre-
lations”, Bruno de Finetti set out a method to represent geometrically n correlated random
variables. He stated that “it is always possible to represent n random variables by n vectors
having a modulus equal to their standard deviations and whose pairwise correlations are
given by the cosines of the angles between them”. In particular, he pointed out that “n
vectors can surely be orthogonal among each other (no-correlation case), or can form acute
angles (positive correlation), but it is impossible that they form angles which are all obtuse
(over a certain angle limit). For example, given three arbitrary vectors, the angle between
any two of them cannot exceed 120 degrees. Then he claimed that the maximum negative
correlation coefficient that we can simultaneously observe among n random variables is
−1
n−1

, otherwise the standard deviation of the sum would be imaginary. In this paper, we
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prove de Finetti’s “ angle theorem ” and relate it to ongoing research on extreme correla-
tion matrices. De Finetti was not the first to take a geometric view of correlation. This can
be traced back as far as the pioneering paper by Fisher [9]. However we have no found
no other prior source than de Finetti for the specific uses he makes of this tool, the angle
theorem and restrictions on extreme correlation matrices.

In the last section we show that de Finetti discovered a form of rank correlation, ahead
of or certainly, at the same time as Kendall.

It should also be noted that Fréchet in his 1957 paper [10] opened a new debate about
correlations and laid the foundation for the modern theory of copulas, which has become
very important in many applications of statistics in the applied sciences and in mathematical
finance.

I.2. Contents of this contribution.
A striking feature of de Finetti’s paper on correlation is his angle theorem. Given two
random variables, discrete or continuous, X and Y , define the angle between two random
variables by

α(X, Y ) = arccos(ρ(X, Y )),

where ρ(X, Y ) is the correlation coefficient betweenX and Y . Then de Finetti proves that
this angle shares very much the same properties as those of an angle between vectors in
the plane. These properties are expressed by Theorem 1. below. If we define the scalar
product of two random vectors by X · Y = E[(X − E[X])(Y − E[Y ]], then using the
Cauchy-Schwarz inequality, it immediately follows that

X · Y ≤
√
X ·X

√
Y · Y(1)

so that
|X · Y |√

X ·X
√
Y · Y

≤ |ρ(X, Y )| ≤ 1,

therefore, it has been mentioned by many authors that ρ(X, Y ) is analogous to the cosine of
the angle between two vectors in the plane. However, until discovering de Finetti’s paper,
we have not seen this analogy developed to its full potential. In addition, de Finetti does
not provide a proof of his main theorem in the cited paper. Nor have we been able to locate
the proof of this theorem elsewhere in the literature. We fill this gap in the present paper
and we describe some interesting connections between de Finetti’s theorem and research
on extreme correlation matrices.

II. RESULTS AND DISCUSSION

II.1. de Finetti’s angle theorem.

Definition 1. Let X and Y be random variables and ρ(X, Y ) be their correlation . Define
an angle α(X, Y ) by

α(X, Y ) = arccos(ρ(X, Y )),
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where arccos : [−1, 1] �→ [0, π] is the inverse of the cosine function.

Then we have

Theorem 1. (de Finetti’s angle theorem) Let X, Y, Z be three random variables. Then
we have

(2) α(X, Y ) ≤ α(X,Z) + α(Y, Z) ≤ 2π − α(X, Y ).

Moreover,

• Equality holds in the lower inequality if and only if Z = aX + bY where a, b ≥ 0.
• Equality holds in the upper inequality if and only if Z = − (aX + bY ) where
a, b ≥ 0.

Proof. Since subtracting a constant from the three random variables X, Y, Z does not alter
their correlation, we may assume that the three random variables have mean zero.

Note that in the probability space Ω,F , P the three random variables, with zero mean,
generate a three dimensional Hilbert space for the inner product < X, Y >= EP [XY ].
Since any finite dimensional Hilbert space is isometrically isomorphic to R

3 equipped with
the standard inner product, results established for vectors in three dimensional space with
the standard inner product carry over mutando-mutandis to this three dimensional Hilbert
space.

Next observe that normalizing the three random vectors to have variance one, also does
not change their correlation. Thus, to establish the lower bound, using the isometric iso-
morphism, it suffices to establish the result for three unit vectors in R

3. Let x, y, z denote
the points on the surface unit sphere in R

3, that correspond to the tips of the three vectors
X, Y, Z.

Great arcs are geodesics on the surface of the unit sphere. Given two points on the unit
sphere we can always join them with the shortest such geodesic (a fortiori the shortest such
curve), whose length is less than or equal to π and equals π if and only if the two points
are antipodal. The surface of the unit sphere equipped with this notion of distance between
points becomes a metric space. Therefore the triangle inequality holds and says

d(x, z) ≤ d(x, y) + d(y, z)

But, as we have seen d(x, y) = αx,y the angle between the vectors X and Y measured in
radians. This completes the proof.

de Finetti’s upper inequality
In order to establish the upper inequality for three random variables X, Y, Z, we note

that, applying the lower inequality to the triplet (X, Y,−Z), we have

α(X, Y ) ≤ α(X,−Z) + α(Y,−Z).(3)
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So
α(X, Y ) ≤ π − α(X,Z) + π − α(Y, Z)

α(X, Y ) + α(X,Z) + α(Z, Y ) ≤ 2π

Equality is achieved when Z = −(aX + bY ), a, b > 0, because, in this case, as we saw
in the proof of the lower inequality, equality is achieved in the inequality (3) above. �

II.2. Higher dimensional version of de Finetti’s inequality.
On page 9 of [6] de Finetti, referring to his inequalities, says “analogous constraints subsist
for four or more random variables,” and adds “... and it can be interesting to extend the
previous research to the case of several random variables with equal pairwise correlations”.
Concerning the first part of his sentence, a straightforward extension of the lower bound is
the following:

Theorem 2. Let X1, · · · , Xn be random variables. Then, for any 3 ≤ k ≤ n and 1 ≤ i1 <

i2 < · · · < ik ≤ n, we have

α(Xi1, Xik) ≤
k−1
�

p=1

α(Xip, Xip+1
).(4)

In particular, when k = n the inequality reads
α(X1, Xn) ≤ α(X1, X2) + α(X1, X3) + · · ·+ α(Xn−1, Xn).

Proof. The result is true for k = 3, so by induction, assume it is true for k − 1. Then we
have

α(Xi1, Xik) ≤ α(Xi1, Xik−1
) + α(Xik−1

, Xik) ≤
k−2
�

p=1

α(Xip, Xip+1
) + α(Xik−1

, Xik)

�

Question : What is the appropriate generalization of the upper inequality to n random
variables, where n > 3?

Did de Finetti have something specific in mind when he mentions “analogous con-
straints”? Interestingly, on the bottom of page 9, as well as on page 10 he then specializes
the discussion to the case where all correlations are equal. On the other hand the gener-
alization we established above of the lower inequality, contains no such restriction. So, in
our opinion, the following problem is interesting and to our knowledge open.

Problem: What is the optimal inequality or family of inequalities, that takes the place
of the upper inequality when n > 3?

In the special case where all angles are equal, de Finetti establishes the following theorem:

Theorem 3. Given n random variables, with pairwise equal correlations ρ, the maximum
angle the n variables can make with one another is

arccos

�

1

1 − n

�

.
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He gives two arguments to support his claim. The first, beginning at the bottom of page
9, is an argument that identifies the minimum value of the correlation. Although this result
is known to some experts (see for instance the work of Laurent and Gregory [3]) it does not
appear to be as well known as it deserves. The first proof we are alluding to, along the way,
establishes the equally interesting result, which is the natural analogue of the fact that two
random variables with correlation −1 and the same means and variance, must be opposites
of each other

X1 = −X2

or equivalentlyX1 + X2 = 0. In the case of n random variables, de Finetti proves that :

Theorem 4. If X1, · · · , Xn are n random variables that have pairwise equal correlation
ρ, then the minimum value of this correlation is the value given by ρ = 1

1−n
, for which the

following identity holds

X1 + X2 + · · ·+ Xn = 0 .

This theorem is established using an argument by contradiction, that however seems to
heavily rely on the correlations all being equal. But, de Finetti offers a second argument,
at the bottom of page 10, without proof: “n vectors of Sn, in order to form two by two the
same angle (as great as possible), must have the same direction of the rays as an equilateral
simplex that connects the center to its vertices. The angle α of two of these vectors is given
by α = arccos

�

1
1−n

�

.” This second proof will be discussed below, see Theorem 5 below,
which is in some sense a generalization of de Finetti’s remark, but may not be the only one.

Remark 1. Perhaps the appropriate generation of de Finetti’s angle theorem to higher di-
mensional case is through the cosines of the angles, that is, going back to the correlation
coefficients themselves. Motivated by the desire to generalize the famous Fermat-Torricelli
theorem for triangles to n simplices Abu-Saymeh and Hajja establish several interesting
inequalities in [1]. The following is a direct consequence of Abu-Saymeh and Hajja [1]
(Corollary 2, page 374) and partially explains why the cosines of the angles might corre-
spond to the sought for generalization:

Theorem 5. Let X1, X2, · · · , Xn be n random variables with mean zero and variance one.
Let ρij be the correlation coefficient between Xi and Xj, i.e., ρij = E[XiXj] = cos(αij)
for 1 ≤ i, j ≤ n. Then the ρij’s satisfy, for any 2 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n,

�

1≤a<b≤k

ρiaib ≥ −k

2
.

In particular, when k = n, we have ρ12 + ρ13 + · · ·+ ρ(n−1)n ≥ −n
2

.

Note that the bound is attained by taking ρij = 1
1−n

for all i �= j. In this case, the angles
αij are all the same and have the value arccos

�

1
1−n

�

as in de Finetti’s example and their
sums satisfy, for any 2 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n,

�

1≤a<b≤k αiaib =
k(k−1)

2
arccos

�

1
1−k

�

. Note that when n = 3, n(n−1)
2

arccos
�

1
1−n

�

= 3 · arccos
�

−1
2

�

= 2π
which recovers the upper bound in de Finetti’s angle theorem. For the case n = 4, the
angles have the common value arccos

�

−1
3

�

which is exactly the value of the angle between
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any two of the radial lines of a standard tetrahedron in R
3. Therefore the vertices of the

vector representations of the random variables coincide with the vertices of a tetrahedron
as shown in Figure 1.

α = 
O

X

X

XX
1

2

3

 4

arcosine(−1/3)

FIGURE 1. Tetrahedron and angle of radial lines in tetrahedron when n = 4.

III. EXTREME CORRELATION MATRICES

III.1.
Spotting matrices that are not correlation matrices.
Suppose we are given an n×n matrix A. We wish to check that this matrix is a correlation
matrix. In order for it to be a correlation matrix we need

• A is symmetric
• A has 1’s along the diagonal
• A is positive semidefinite.

All of the above are trivial to check except for the last one. As an illustration, let us consider
the following numerical 3 × 3 example.

A =





1 ρ1,2 ρ1,3

ρ1,2 1 ρ2,3

ρ1,3 ρ2,3 1



 =





1 .866 .61
.866 1 .9397
.61 .9397 1



 .

We have

α(X1, X3) = arccos(.61) = 52.4◦

> arccos(X1, X2) + arccos(X2, X3)

= arccos(.866) + arccos(.9397) = 30◦ + 20◦ = 50◦,

contradicting de Finetti’s lower bound α(X1, X3) ≤ α(X1, X2) + α(X2, X3). In fact we
find that

Eigenvalues





1 .866 .61
.866 1 .9397
.61 .9397 1



 =





2.6335
0.3687
−0.0022
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so the matrix is not positive definite. But recall that arccos(ρ1,2) = 30◦, arccos(ρ2,3) = 20◦.
Therefore the threshhold for the value of ρ1,3 is cos(50◦) = .6428. So let’s replace ρ1,3 by
.6428 and see what happens?

ρ1,3 → .6428 (ie. replace ρ1,3)

Eigenvalues





1 .866 .6428
.866 1 .9397
.6428 .9397 1



 =





0.0000
0.3615
2.6385





so the boundary of positive definiteness is reached exactly when

arccos(ρ1,3) = arccos(ρ1,2) + arccos(ρ2,3),

i.e., exactly when there is equality in de Finetti’s lower bound.

To our knowledge, these kind of inequalities, (and the n entry generalization (4)) which
put restrictions on the relative sizes of entries in a correlation matrix, are new in that setting
since they do not (necessarily) involve directly the principle minors, but can be applied to
arbitrary sub-blocks. For instance, consider a 4 × 4 matrix given by









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









.

One of the de Finetti’s inequalities in (4) reads

arccos(a14) ≤ arccos(a13) + arccos(a34)

which does not involve directly any principle minors.

Consider next, de Finetti’s choice of an n× n correlation matrix, the matrix

Aρ =













1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...

...
... . . . ...

ρ ρ ρ . . . 1













(5)

with ρ = 1
1−n

. We would like to provide a direct proof that this matrix is on the boundary
of the set of correlation matrices by deriving a formula for the eigenvalues and eigenvectors
of such a matrix 4. Note that the complete set of eigenvalues of Aρ is

{1 − ρ, 1 − ρ, . . . , . . . , 1 − ρ, 1 + (n− 1)ρ} .
From this we see directly that the matrix Aρ ceases to be positive definite exactly when
ρ = − 1

n−1
. The eigenvectors associated to the above matrix do not depend on ρ. They are

given as follows

4 These formulas may well be in the literature, but we did not succeed in finding them.
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since they do not (necessarily) involve directly the principle minors, but can be applied to
arbitrary sub-blocks. For instance, consider a 4 × 4 matrix given by









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44









.

One of the de Finetti’s inequalities in (4) reads

arccos(a14) ≤ arccos(a13) + arccos(a34)

which does not involve directly any principle minors.

Consider next, de Finetti’s choice of an n× n correlation matrix, the matrix

Aρ =













1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...

...
... . . . ...

ρ ρ ρ . . . 1













(5)

with ρ = 1
1−n

. We would like to provide a direct proof that this matrix is on the boundary
of the set of correlation matrices by deriving a formula for the eigenvalues and eigenvectors
of such a matrix 4. Note that the complete set of eigenvalues of Aρ is

{1 − ρ, 1 − ρ, . . . , . . . , 1 − ρ, 1 + (n− 1)ρ} .
From this we see directly that the matrix Aρ ceases to be positive definite exactly when
ρ = − 1

n−1
. The eigenvectors associated to the above matrix do not depend on ρ. They are

given as follows

4 These formulas may well be in the literature, but we did not succeed in finding them.
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• The eigenvector associated to the eigenvalue 1 − ρ are of the form

[−1, 0, · · · , 0, · · · ,+1, · · · , 0]T , n− 1 ways to place a single “+ 1”.

• The eigenvector corresponding to the eigenvalue (1 + (n− 1)ρ) is of the form

[1, 1, · · · , 1]T .

Above, we have shown that the n × n correlation matrix with all off-diagonal values
equal to 1

1−n
is on the boundary of the convex set of correlation matrices. The set of all

correlation matrices is a convex set. This can be seen as follows: If C1 and C2 are positive
definite matrices, so are the convex combinations (1 − λ)C1 + λC2 of C1 and C2 for all
λ ∈ [0, 1] since

�x, (1 − λ)C1 + λC2)x� = (1 − λ)�x, C1x� + λ�x, C2x� ≥ 0 for all x ∈ R
n,

where �x, y� is the dot product for R
n. Second, if the diagonal entries of C1 and C2 are all

+1’s then this is also the case for (1− λ)C1 + λC2. A natural question to ask concerns the
structure of the boundary of the convex set of correlation matrices. What does this boundary
look like? This is still a topic of ongoing research. de Finetti’s example A

1

1−n and A1 are
examples of matrices which are boundary points of the set of correlation matrices, with
rank n − 1 and 1 respectively. Concerning the general structure of the latter here is an
example of what is known. We begin with a definition:

Definition 2. An element x in a convex set S is an extreme point if x = ty + (1 − t)z for
y, z ∈ S and 0 < t < 1 implies y = z = x, that is, if x can be a convex combination of
points of S in only trivial ways.

Theorem 6. There exist extreme points of rank k in the set of correlation matrices if and
only if k2 + k ≤ 2n.

This theorem is proved, for instance in Li and Tam [12]. Therefore de Finetti’s choice of
correlation matrix A

1

1−n cannot be an extreme point if n > 3.

III.2. Faces and Vertices of set of correlation matrices.

• The convex set of the collection of all n × n correlation matrices is called the
elliptope. It is non polyhedral and has both smooth and non smooth boundaries.

• Vertices of set of correlation matrices are the extreme points of this set possessing
a full dimensional normal cone.

• Vertices have been fully characterized. They are the set of correlation matrices of
rank one of the form, for any 0 ≤ m ≤ n,

�

1m×m −1m×(n−m)

−1(n−m)×m 1(n−m)×(n−m)

�

,

where 1k×l is the k by l matrix with all the entries equal to 1.
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• (Not a vertex)
In particular, de Finetti’s





1 −1
2

−1
2

−1
2

1 −1
2

−1
2

−1
2

1





is not a vertex since in this case the vertices are




1 −1 −1
−1 1 1
−1 1 1



 ,





1 1 −1
1 1 −1
−1 −1 1



 ,





1 1 1
1 1 1
1 1 1



 .

Also note that in this example the de Finetti’s matrix is not a convex combination
of the above three vertices.

IV. DID DE FINETTI DISCOVER RANK CORRELATION?

At the end of his article, de Finetti says “One final remark is in order. Its purpose is to
clarify that a concordance index can have a sign different from that of r, and to suggest
what seems to me the simplest and most intrinsically meaningful index of concordance
(and one that has not yet been considered, as far as I know).” The date of the published
assertion “not yet considered, as far as I know ”, is 1937. The date of Kendall’s paper on
rank correlation [11] is 1938. This would appear to give de Finetti precedence.

IV.1. De Finetti’s definition.
De Finetti defines his notion of rank correlation as follows:

c =

�

D

dF (x, y)dF (ξ, η)dxdydξdη,(6)

where the pairs (x, y) and (ξ, η) are independently chosen and have the same joint distri-
butions F (x, y) and where D is the subset of R2n defined by x > ξ, y > η. De Finetti’s (6)
can clearly be written in the form

2

�

R4

1ξ<x1η<ydF (x, y)dF (ξ, η)dxdydξdη,

and, as is well known and easy to see, the latter can be written

RCDF = 2

�

R4

C(u, v)dC(u, v) ,

where C(u, v) is the copula associated to the joint distribution. Compare this with the
definition of rank correlation given by Kendall [11], see for instance [8]:

RCKen = 4

�

R4

C(u, v)dC(u, v)− 1

so we have

RCDF =
RCKen + 1

2
.
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Now the interesting thing is that de Finetti noticed that his definition of rank correlation has
the value 1 for comonotonic distributions. This is also the case for the Kendall rank cor-
relation. On the other hand, the Kendall rank correlation is equal to −1 for antimonotonic
random variables and in this case, as de Finetti points out, his rank correlation equals zero.

IV.2. An example of de Finetti.

We also would like to supply a little detail, backing up the illustration given, also on
page 19, by de Finetti, of a pair of random variables for which the correlation of (X, Y )
can be of different sign than the correlation of (ga(X), Y ) for an appropriately chosen,
monotonically increasing function f(X). The function de Finetti proposes is

ga(X) = X +
a− 1

2
X(X + 1).

The distribution of the pair (X, Y ) is as follows:

(X, Y ) =







(−1, 1) with probability 1
4
,

(0,−1) with probability 1
2
,

(a, 1) with probability 1
4
.

Note that
ga(−1) = −1, ga(0) = 0 and ga(a) =

a

2
(a2 + 1).

For each of the three values ga(·) either remains the same or increases when a ∈ (0,+∞).

E[ga(X)Y ] = −1

4
+
a3 + a

8
= ρ(ga(X), Y )σga(X)σY

but the latter changes sign for a = 1. So the one parameter family of pairs (ga(X), X)
constitutes an example of how the effect of applying a monotone function to one or more
of the two random variables X and Y can change not only the size but also the sign of the
correlation.
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Lyons, Sciences Mathématiques et Astrnonomie, Série A, 4, 13-31.

[11] KENDALL, M.G.A NEW MEASURE OF RANK CORRELATION, Biometrika, 30, pp 81-93, 1938.
[12] LI, C.K., TAM, B.S.A note on extreme correlation matrices, Siam Journal Matrix Analysis and its

applications, Vol 15, No. 3, pp 903-908, July 1994.
[13] MARKOWITZ, H. M., de Finetti ScoopsMarkowitz, Journal of Investment Management, “Special Issue:

A Literature Postscript”, Vol. 4, No. 3, pp. 3-18, 2006.
[14] RUBINSTEIN, M., Bruno de Finetti and Mean-Variance Portfolio Selection, Journal of Investment Man-

agement, “Special Issue: A Literature Postscript”, Vol. 4, No. 3, pp. 1-2, 2006.

Elie Cartan’s proof of the angle theorem in 3 -space
In Cartan’s treatment (page 30 [4]) the angle theorem emerges in the following context:

What are the conditions on the angles betwee three vectors e1, e2, e3 in order for them to
constitute a valid oblique coordinate system in R

3.

If we express the length of a vector V with respect to this coordinate system:

Xe1 + Y e2 + Ze3,(7)

and consider it’s length, we get that

|V |2 = X2 + Y 2 + Z2 + 2 cosλY Z + 2 cosµ(Z,X) + 2 cos νXY,

where cos λ = e2 · e3, cosµ = e1 · e3, cos ν = e1 · e2 are the cosines of the corresponding
angles between these unit vectors.

Since, V 2 ≥ 0, this leads to restrictions on the angles. Of course, from the point of view
of the angle theorem, �X = Xe1, �Y = Y e2, �Z = Ze3 are the vectors to which we apply the
angle theorem and then (7) is the quadratic form associated to the 3× 3 Grammian matrix,
corresponding to the three vectors X̄, Ȳ and Z̄.

Cartan’s approach now consists in re-expressing (7) as a sum of squares as follows:

(X + Y cos ν + Z cosµ)2 + (Y sin ν + Z
cos λ− cosµ cos ν

sin ν
)2 +(8)

sin2 µ sin2 ν − (cosλ− cosµ cos ν)2

sin2 ν
Z2

Thus we seek conditions on the angles that ensure that

(cosλ− cosµ cos ν)2 − sin2 µ sin2 ν < 0

This may be equivalently expressed as

[cos(µ + λ) − cosλ] [cosλ− cos(µ− λ)] > 0
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Cartan’s approach now consists in re-expressing (7) as a sum of squares as follows:

(X + Y cos ν + Z cosµ)2 + (Y sin ν + Z
cos λ− cosµ cos ν

sin ν
)2 +(8)

sin2 µ sin2 ν − (cosλ− cosµ cos ν)2

sin2 ν
Z2

Thus we seek conditions on the angles that ensure that

(cosλ− cosµ cos ν)2 − sin2 µ sin2 ν < 0

This may be equivalently expressed as

[cos(µ + λ) − cosλ] [cosλ− cos(µ− λ)] > 0

13

Now, without loss of generality assume λ is the largest of the three angles (since other-
wise we use an expression like (9) with the roles of the variables exchanged) and then the
second factor of this inequality is itself negative and the condition we seek is

cosλ > cos(µ + ν)

or, equivalently
λ < µ + ν < 2π − λ

�


