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Introduction: General remarks

Early developments in data analysis in Russia, and in the Soviet Union in general have been well separated by

the rather tight iron curtain through all of the covered period. However, they generally followed the

international developments, because some monographs were translated into Russian, best journals reached a

few libraries with a lag of one-two years, and a few Soviet scientists did attend some conferences: the

international framework distinguishing between factor analysis, pattern recognition and clustering prevailed.

Yet there have been a number of indigenous developments of which by far the most popular has become the

structural risk minimization by V. Vapnik and Chervonenkis (Vapnik and Chervonenkis 1974) along with the

concept of VC-complexity and the method of generalized portrait (Vapnik and Lerner1963) later, in 90-es,

extended to the renowned Support Vector Machine (SVM) with nonlinear kernels – the latter was proposed as

a tool for supervised and unsupervised learning by Bashkirov, Braverman and Muchnik (1964) under the

name of “potential functions”; for further developments, mostly extending the perceptron framework, see

Aizerman, Braverman, and Rozonoer (1970). Much less known are the following contributions:

- M. Bongard proposed logic predicate data analysis involving invented by him benchmark examples

(Bongard 1967) that have become known as Bongard problems in cognitive psychology (see, for example,

Linhares (2000));

- S. Chesnokov developed his determinacy analysis based on conditional probabilities to anticipate the

analysis of associations in data mining (Chesnokov 1982);

- V. Fain proposed using techniques of the continuous group theory for describing image geometry changes

(Fain 1970);
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- V. Finn proposed the JSM (John Stuart Mille) method involving the concept of similarity between two

complex objects as the set of all subsets (substructures) in the objects’ overlap (Finn 1983);

- G. Lbov proposed using logic decision functions for mixed scale data in main problems of data analysis

(Lbov 1979);

- B. Mirkin proposed using the partition metric space as a tool to address main problems in categorical data

analysis (Mirkin 1969) later extended to the case of mixed scale data (Mirkin 1985);

- B. Mirkin and I. Muchnik developed, in a friendly competition, an approach for approximating large

networks with smaller graphs (Mirkin (1974, 1976, 1981), Muchnik (1974), Muchnik and Oslon (1980),

Braverman and Muchnik (1983));

- J. Mullat and I. Muchnik proposed an original class of easily optimized order-structure “quasi-convex” set

functions for finding representative layered subsets (“monotone systems” of Mullat (1976), Kuznetsov and

Muchnik (1983));

- A. Orlov proposed a probabilistic framework for non-numeric data (Orlov 1979);

- L. Rastrigin and R. Ehrenstein proposed using ensembles of classification algorithms for achieving better

accuracy (Rastrigin and Ehrenstein 1978);

- N. Zagoruiko and E.Vitiaev proposed a formal logic framework compatible with deriving regularities from

empirical data (Zagoruiko 1979);

- Y. Zhuravlev proposed a framework of numerical characteristics of minimal sets in binary data tables, the

so-called “deadlock tests” (Zhuravlev, Yunusov 1971), later extended to an algebra-based formalism

(Zhuravlev 1978), and many more.

Each of the mentioned directions attracted a following and generated many papers, several dozen in

some cases, mostly published in obscure typographically poor or very poor collections and conference

proceedings comprising much wider subjects such as “science and technology” or “automating the national

economy”, though some journals did publish papers on data analysis, most notably “Automation and Remote

Control” (Institute of Control Problems, Moscow) – in its division titled “Modelling intelligence and

behaviour”
3
. Regular seminars led by S. Aivazian (CEMI Moscow), M. Aizerman (IPU Moscow) and N.

Zagoruiko (IM Novosibirsk) helped in developing some common themes and approaches. General meetings

were rather random and rare (for example, E. Braverman and I. Muchnik organized Meeting on supervised

and unsupervised learning (1970, Kalinin – currently Tver) and B. Mirkin organized a couple of seminars on

data analysis in sociology (1977, Cheliabinsk; 1979, Ulan-Udeh)), with two notable exceptions: A. Aivazian

(Moscow) organized bi-annual conferences on “Applied Statistics” held alternatingly in Estonia (Tartu, local

organiser M.-A.Tiits) and Armenia (Tsakhkadzor, local organiser V. Mkhitarian), starting from 1977, and N.

Zagoruiko (Novosibirsk) organized tri-annual meetings on “Machine Discovery of Regularities” held in

different places starting from 1976.

Authors of this paper already have had an opportunity of reviewing the Russian developments in data analysis

(Mirkin and Muchnik 1996) – there is no need to replicate the review here. Instead, this paper concentrates on

several topics of current interest in clustering and highlights the relevant Russian developments in the period

1960-1985. The topics reflect the authors’ research interests and are as follows:

• Comparing clusterings

• Consensus clustering

• One cluster clustering

• Biclustering

• Network structuring

3
Two relevant Russian journals have had English versions: (i) “Cybernetics” (Kiev) translated as “Cybernetics and Systems

Analysis” (Plenum, New York), and (ii) “Computational Mathematics and Mathematical Physics” (Moscow).
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1. Comparing clusterings

This subject received much attention in Russia in that period. Motivated by the axiomatic introduction

of a distance measure in the set of all rankings on a finite set by Kemeny and Snell (1962), Mirkin and Cherny

(1970) proposed similar axioms to introduce a distance between partitions as the Hamming distance between

matrices of their equivalence relations. Consider a set I comprising N elements and a partition S={S1, S2, …,

SK} consisting of K non-overlapping classes Sk that cover all of I. Let us define an N×N binary matrices s=(sij)

for the equivalence relation of “being in the same class of S”, by sij =1 if (i,j)∈S, and sij =0, otherwise. The

distance between partitions R and S is defined then as the squared Euclidean or just city-block
4

distance

between the matrices, d(R,S)= Σi,j∈I |rij - sij|. This distance is expressed through R and S cross-classification by

Mirkin and Cherny (1970) in a currently well known way, which is the complement to the popular Rand

coeffiient (Rand 1971) to unity. We are going to elaborate on this by citing a result from Mirkin (1976) that

was not described in English before. There are two characteristic properties:

(i) Independence of the distance on coinciding parts of R and S, and

(ii) Additive property, d(S,T)=d(S,R)+d(R,T), with respect to each partition R being between S and

T, that is, satisfying inequalities min(sij, tij)≤ rij ≤ max(sij, tij) for all i, j∈I.

It is proven in Mirkin (1976, p. 45-48) that these two define a broad class of distance measures if

supplemented by a calibrating property demanding that the distance between two trivial partitions, O

consisting of N singletons and U consisting of one class with all elements, U={I}, can be expressed through a

monotone increasing function ϕ(N) on integers, such that ϕ(N)>Nϕ(1) for all N, as follows:

(iii) Calibrating: d(O,U)=ϕ(N)-Nϕ(1)

Specifically, a symmetric function d(S,R) satisfies properties (i), (ii) and (iii) if and only if
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The notation in (1) refers to S={S1, S2, …, SK}, R={R1, R2, …, RL} with the number of elements in Sk, R1 and

Sk ∩R1 denoted by N.k, Nl. and Nkl, respectively (k=1,…, K, l=1,..,L).

With ϕ(N)=N
2
, d(S,R) in (1) is the double Mirkin-Cherny distance, and with ϕ(N)=Nlog(N), d(R,S) in (1) is

the information distance recently derived by Meila (2007).

Even more impressive measure – of the degree of independence between partitions that are possibly

incomplete, was derived by Plotkin (1980); this is a cubic function of the contingency table entries;

unfortunately no further analysis followed.

Rauschenbach (1982) characterized the currently popular Jackard distance between subsets. For any non-

empty S, T ⊂ I, Jackard index is defined as cj=|S∩T|/|S∪T|, the number of elements in the overlap of S and T

related to the number of elements in their union, and Jackard distance is dj=1-cj. It appears, the following

three properties of a measure d(S,T) held for all nonempty subsets S and T:

(a) if S is part of T, then d(S,T)=cT|T-S| where cT is a constant depending on T only;

(b) d(S,T)≤1; and if S and T do not overlap, then d(S,T)=1;

(c) d(S,T)=d(S,S∪T)+d(S∪T,T);

make d to coincide with dj; this was extended to the case of fuzzy subsets as well (Rauschenbach, 1982).

4
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2. Consensus clustering
Consensus clustering is an activity of summarising a set of clusterings into a single clustering that represents

all of them in a best way, which is utilized currently in the analysis of gene expression data (see, for example,

Swift et al. 2004, Xiao and Pan 2007). This problem, for the case of clusterings being partitions was first

analyzed by B. Mirkin both by means of axiomatic analysis (see a review in Day and McMorris 2003) and

approximation analysis (Mirkin 1974). In the latter the problem was considered as follows: given n partitions

S1,…, Sn on I, find such a partition R that minimizes Σtd(R,St) where summation goes over all t from 1 to n. It

appears, this problem can be reformulated in terms of the consensus matrix M of similarities between

elements of I: denote mij the number of partitions St in which elements i,j∈I belong to the same class and take

threshold λ=n/2. Then the optimal partition R maximizes the summary within cluster similarities short of λ
(Mirkin 1974)

f(R, λ) = ΣkΣij∈Rk(mij− λ) = ΣkΣij∈Rk mij − λΣk|Sk|
2

(2)

The threshold makes it desirable to put i and j together if mij>λ, to increase f(R, λ), and separately if mij<λ,

though this may be affected by contradicting preferences on related elements. Criterion (2) has been utilized,

with λ=n/2 and no references, in the literature, see, for example, Swift et al. (2004).

Back then the current authors analyzed a test benchmark example that criterion (2) fails (Mirkin 1976). The

test assumes a proper clustering, R={R k} of K classes, k=1,2,…, K, to be pre-specified on I. Now take n=K

and define Sk as a two cluster partition consisting of two clusters, R k and I-R k (k=1,…, K). Intuitively, it is the

pre-specified R that should maximize (2), which is true indeed, but only at K ≤ 4; at K>4 the optimal solution

is always the universal U consisting of the only cluster I of all elements (Mirkin 1976). Therefore, the concept

was extended to solve the issue, by assuming that each of the partitions St has a positive weight, wt, so that the

consensus partition R must be accompanied with a weight, w, too, either pre-specified or to be found by

minimizing the accordingly updated criterion Σtd(wR,wtSt) in which distance d is extended to be the sum of

squared differences between the weighted equivalence matrices corresponding to the partitions (Kupershtokh

et al. 1976). Either pre-specified w=2(K-1)/K or optimal w in the benchmark example will solve the issue so

that the original R is (weighted) consensus for any K.

This approximation approach was further extended by Mirkin and Muchnik (1981) with a more conventional

representation of partitions using the corresponding incidence matrices rather than the square equivalence

relation matrices. Given a partition S={S1, S2, …, SK}, the binary N×K incidence matrix X=(xik) where xik=1 if

i∈Sk and xik=0, otherwise, defines, first, a linear space, its span L(X) as the set of vectors Xa for all K-

dimensional as, and, second, the orthogonal projection PX = X(X
T
X)

-1
X onto L(X). Matrix PX is of dimension

N×N and can be considered a similarity matrix on set I; moreover, its elements pij=0 if i and j belong to

different classes of S, and pij =1/|Sk| if i,j∈Sk. Mirkin and Muchnik (1981) introduce two consensus partition

concepts. Given n partitions S1,…, Sn on I, with their incidence matrices X1,…, Xn, find such a partition R, with

its incidence matrix Z, that minimizes

Σt||Xt− PZXt||
2

or Σt||Z− P XtZ||
2

over all possible partition incidence matrices Z, where ||D||
2

is the squared conventional Euclidean norm, that

is, the sum of all D entries squared. The first criterion leads to what can be referred to as the source consensus

partition whereas the second corresponds to the target consensus.

Mirkin and Muchnik (1981) reformulate these criteria in terms of both entities and features. It appears the

former criterion is equivalent to the conventional clustering square-error criterion in the space of dummy
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variables represented by columns of matrices Xt, whereas its reformulation in terms of similarities leads to

another conventional criterion: maximize the total weighted within cluster similarities

g(R) = Σk(Σij∈Rk bij)/|Rk| (3)

where R={R1, R2,…, RK} is the sought consensus partition and bij is the sum of (i,j)-th elements of the

projection matrices onto all spaces L(Xk), k=1,…, K.

Criterion (3) was fitting into a tradition:

(i) this criterion, for arbitrary similarities, had been experimentally chosen from a number of

candidate criteria by Braverman et al. (1971), and

(ii) the similarity bij, defined as the sum of inverse frequencies of the features on which i and j

coincide, had been advocated as early as in 1930s by entomologist E.S. Smirnov (1898-1972),

Head of the Entomology Department at the Moscow State University from 1940-72, one of the

early enthusiasts of the numerical taxonomy, of which he managed at last to publish a monograph

(Smirnov 1969).

The target consensus criterion reformulated in terms of similarities has the format of criterion (2), though with

different similarities and threshold (Mirkin and Muchnik 1981).

It should be noted that there are two different frameworks for consensus partitioning: one is of

partitions St produced by different versions of the same (or different) clustering algorithms on the same data,

the other of categorical features t such that classes of partitions St correspond to their different categories

(t=1,2,…,n). Intuitively, one may think that criterion (2) suits the former whereas criterion (3) is good for the

latter. Yet no explicitly stated theoretical framework has been proposed, and the two criteria hang on

anticipating the demarcation.

3. One cluster clustering
The currently popular idea that the entity set may not necessarily be meaningfully partitioned into

clusters but rather just one or two clusters would suffice, while leaving the other entities unassigned, was very

prominent from the very beginning of cluster analysis, manifesting itself, for example, in the concept of B-

cluster (Harman and Holzinger, 1941). It was prominent in the Russian research, too. We are going to present

five different approaches: defined cluster (Apresian, 1966), moving cluster (Elkina and Zagoruiko 1966),

approximate cluster (Mirkin, 1976), layered cluster (monotone system) (Mullat 1976, Kuznetsov, Muchnik,

1983), and logic taxon (Lbov and Pestunova, 1985).

3.1. Apresian’s cluster

Given a dissimilarity matrix (d(i,j)), i,j∈I, a subset S is referred to as an A-cluster if for any three different

i,j,k ∈I such that i,j ∈S and k∉S, d(i,j)≤d(i,k) (Apresian 1966). As is currently well-known, the set of A-

clusters forms a hierarchy, that is, if two A-clusters overlap, then one must be part of the other. For the time

being, this has been well extended by changing the cluster definition, of which probably the most popular is

the concept of weak cluster in which d(i,j) ≤max(d(i,k), d(j,k)) (Bandelt and Dress 1989).

3.2. Forel: moving cluster

Given a pre-processed data matrix Y=(yiv), where i∈I are entities and v∈V are variables, pre-specify a “cluster

radius distance” D>0 and define tentative cluster S as the set of entities that are closer to the data grand mean

than D, that is, S={i : d(i,g)<D}, where d(i,g) is Euclidean distance between row i∈I and grand mean g. Now

iterate the following: calculate the center of gravity in S, gs, and redefine S to be “around” the new center,

S={i : d(i,gs)<D} – until convergence. If needed, one may find more clusters by repeating the procedure after

removing the found cluster(s). The radius D can be chosen as “most suitable” of several trials. This algorithm

is referred to as Forel, an abbreviation of the title, “Formal element” (Elkina and Zagoruiko 1966). Forel

leaves many entities out of a few big clusters which was considered back then a weakness, but nowadays,

with the one cluster perspective having received good footing, this seems more like an advantage.
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3.3. Approximate cluster

Given an entity-to-entity similarity matrix B=(bij), specify cluster S to be found with two items, the binary

membership vector s=(si) in which si =1 if i∈S, and si =0, otherwise, and intensity weight λ, typically

positive, and find it in such a way that the total squared difference L(S)= Σi,j∈I(bij - λsisj)
2

is minimized

(Mirkin 1976, Mirkin 1985). A local optimization method from these publications, in two versions related to

the case of pre-specified and optimized λ, ADDI and ADDI-S, respectively, has been described in English by

Mirkin (1996). Its advantage is a proven tightness of the resulting S: for every i∈S, its average similarity to S

is greater than λ/2, and for every i∉S, its average similarity to S is less than λ/2 (Mirkin 1976). A part of

ADDI, related to the use of soft threshold π=λ/2, was proposed (with no references to the previous work) by

Ben-Dor et al. (1999) as algorithm CAST which became popular in bioinformatics.

3.4. Layered cluster (monotone system)

A rather original approach, using element-to-subset linkages rather than just element-to-element similarities,

was proposed by Mullat (1976) and further developed by Muchnik and his collaborators (Kuznetsov,

Muchnik, 1983, Aaremaa 1985 and many more). Consider a linkage function f(i,S) between all elements i∈I

and subsets S⊂ I as the input data. Typically, such a function can be meaningfully defined over any type of

raw data, be to digital image or text. For example, given a non-negative similarity (weighted graph) matrix

A=(aij), one could define f(i,S) as Σi∈S aij or mini∈S aij or in many other ways so that f is monotone over S, that

is, (i) f(i,S) ≤ f(i,S∪T) for all S and T, in the former case, or (ii) f(i,S) ≥ f(i,S∪T) for all S and T, in the latter

case. A monotone linkage function f(i,S), in the case (i) for certainty, leads to a set function F(S)=mini∈S f(i,S)

characterizing the “weakest link” in S. Any weakest link function F(S) can be maximized in a greedy-wise

manner, leading to a string of greedy choices of individual entities, which not only specifies the maximally

dense set S as a suffix of the string but also its less dense “shells” being longer suffixes. The weakest link

functions are, in fact, those and only those that satisfy the condition of quasi-convexity, F(S∪T) ≥
min(F(S),F(T)), for all S, T ⊂ I. An indicator of a subset T ⊂ I, function G defined by the rule that G(S)=0 for

all S that differ from T and G(T)=1, satisfies this condition too, but the problem of its maximization is NP-

complete, which seems at odds with the above. In fact, it is not – because the corresponding linkage function

g(i, S) provides a great deal of information of G, which is not conventionally available. There is a deep

underlying order structure in the weakest link functions (Mirkin and Muchnik 2002) and the concept fits well

into specifics of organizational control (Kuznetsov, Muchnik, 1983) – this is why we think that this approach

has potential for further development.

3.5. Logic taxon.

Any predicate comprised of features, say “y1=3 and y2/y3 >5”, corresponds to the subset S of entities

satisfying it. (Note: no restriction on feature scales is imposed here!) The proportion of S in I is the observed

frequency f. On the other hand, predicates related to the individual statements, “y1=3” and “y2/y3 >5” in our

example, have their frequencies on the data too, say f1 and f2. From these individual frequencies, one can

easily derive the expected frequency of the combined predicate ef, according to the probability rules for

Boolean operations (in our example, ef is just the product f1*f2). The greater the difference f – ef, the better S

is. This criterion, as well as a heuristic for optimizing it, was proposed by Lbov and Pestunova (1985)

reflecting earlier work by G. Lbov. A similar, and somewhat more straightforward criterion, maximizing the

ratio P(y1, y2,…, yn)/(P(y1)P(y2)…P(yn)), was later utilised by the founders of Megaputer Intelligence, one of a

very few successful science intensive international companies launched by Russians after the collapse of the

USSR (Kiselev et al 1999).
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2
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is. This criterion, as well as a heuristic for optimizing it, was proposed by Lbov and Pestunova (1985)

reflecting earlier work by G. Lbov. A similar, and somewhat more straightforward criterion, maximizing the
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4. Biclustering

4.1. Bicluster

Biclustering is a concept related to methods that cluster rows and columns of a data table simultaneously (the

term coined by Mirkin 1996). This currently is the domain given almost exclusively to single biclusters (see,

for example, for a recent review Prelic et al. (2006) ). Mirkin and Rostovtsev (1978) define a bicluster over a

similarity table B=(bij) for which set of rows, I={i}, and set of columns, J={j}, are considered different, as a

pair of row set V⊂I and column set W⊂J characterized by an intensity matrix A=(aij) such that aij = α for

(i,j)∈ V×W and aij = β, otherwise. A pair (V,W) is referred to as associated if the summary squared difference

between B and A is minimum. Rostovtsev (1982) proposed a series of normalized and non-normalized criteria

for determining the number of biclusters to be found in the same similarity matrix – all based on relating the

values of the criterion optimized to those found at randomly generated data and/or starting points.

4.2. Bipartition and block structure

Given a data matrix Y=(yiv), i∈ I and v∈V, a bipartition is formed by two partitions, S ={S1, S2, …, SK} on I

and T={T1, T2, …, TL}on V, in such a way that each block (Sk, Tl) is a bicluster (k=1,…, K and l=1,…, L). This

structure is frequently considered at binary or contingency data (see, for example, Nadif, G. Govaert 2005).

Braverman and Muchnik have come up with a somewhat amended cluster structure, which is suitable for

entity-to-feature data type, in which features (elements of V) are partitioned according to T={T1, T2, …, TL}on

V, but partitioning of rows is done not once, but L times, for each of the classes T independently, so that such

a block structure is represented by partition T on V and a set of partitions S
l
={S

l
1, S

l
2, …, S

l
K} on I, each S

l

within a “strip” corresponding to feature subset Tl (l=1,…, L). The originality of the approach is in that

criterion for finding such a block structure involves not just entries of data matrix Y but rather the first

principal components of the feature subsets Tl - this allows for much greater flexibility, thus interpretability,

of the principal component analysis because the L principal components here need not be mutually orthogonal

(see, for instance, Braverman et al. 1974, Braverman and Muchnik 1983). One of the most practical of

Braverman and Muchnik’s methods for finding the block-structure is a two stage procedure. On the first

stage, a partition T of the feature set V is sought to minimize the squared within-group differences between

the first principal component of feature set Tl and each of the features in Tl. On the second stage, a K-cluster

partition of the entity set is sought for each l=1,…, L over a single variable, the first principal component

found at the first stage. As an instructive application of the method, let us describe a block structure found on

a set of 85 countries over 30 features. The features were partitioned in L=2 clusters, one corresponding to the

income per capita and related features, the other – to the extent of capitalization of the economy, and the

overlap of two found clusterings of the set of countries was consistent with the optimal dynamics in a two-

sector model of economy: to reach the maximum consumption over a period requires a policy of

overwhelming investment in the beginning and, only after that, a switch to the consumption (Braverman et al.

1974). The authors also considered a least modules analogue to the method, which led to interesting

extensions of the centroid method in factor analysis. Rostovtsev (1982) extended his biclustering research to

a similar block structure analysis of a similarity matrix, at which he successfully utilized the criterion of

maximum difference between results found on the real and random data to automate the choice of both L and

K.

5. Network structuring methods
The problem of aggregation of a weighted graph into a small graph to reflect the network flow rather than just

its separate or core parts should be of increasing interest currently as giant networks, such as those in the

world wide web, are emerging. Meanwhile, the early interest in graph theoretic representations of social
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networks (Wasserman and Faust 1994), with the current transition to the analysis of co-citation networks

seems fading while the use of factor analysis and multidimensional scaling as visualization tools is on the rise

(see, for example, Gest et al. 2007). Yet the power of visualization and generalization provided by graph

structures is difficult to match. This is why we think that a presentation of algorithmic developments in this

field can be of interest both in the historic perspective and for further work. For a given weighted graph, or

the similarity or interaction N×N matrix B between graph vertices, Mirkin (1974) and Muchnik (1974)

proposed methods to aggregate B into a smaller graph (S,τ) where S is set of K<<N vertices, each

corresponding to a subset Sk⊂I of the original vertices (k=1,…, K), and τ set of arcs representing the arcs of

the original graph. Muchnik (1974) assumed that the structure τ is pre-specified but subsets Sk may overlap. In

contrast, Mirkin (1974) assumed the structure τ unknown, but subsets Sk not overlapping. Denoting by s=(sik)

the matrix of incidence of sets Sk, and t=(tkl) the matrix of aggregate structure τ, the goodness-of-fit function

of the structure was defined by both as the square difference between the original matrix B and the structure

recovered matrix sts
T
. In the follow-up work, Muchnik and his collaborators further relaxed the output

structures, allowing S be fuzzy or even probabilistic and structure τ weighted (for a review, see Braverman

and Muchnik 1983). Mirkin and his collaborators extended the original model to be able to determine its

parameters automatically. First, Kupershtokh and Trofimov (1975) proved that the optimal graph structure τ
for a given partition S is defined by positive Akl=Σ i∈SkΣj∈Sl(bij - λ), k=1,…, K; l=1,…, L; where λ is a

threshold akin to that in (2), so that there is an equivalent optimality criterion, maximization of ΣkΣl|Akl|, that

does not depend on τ, which brings forward all the conventional clustering schemes such as agglomeration or

exchange to be utilized if adjusted to the criterion. Further relaxation of the need to pre-specify K was

achieved by Mirkin (1981) with a proposal that both parts, S and τ, should independently contribute to the

data recovery criterion, which leads to two independent thresholds subtracted from B and no monotone

dependence of the criterion on K.

6. Conclusion

In our previous review (Mirkin, Muchnik 1996) we made a claim of rather bleak international perspectives of

the Soviet developments in data analysis: “The Soviet influence has been negligible; researchers were not

included in the international community, … - Soviet science has become as inconvertible as Soviet currency,

and for similar reasons.” We still think so. However, having put some effort during past decade to revitalise

some of those developments, we can see that – that way or the other – worthy ideas do find their way. We

hope that this paper can contribute to the process of revitalising, and it might attract attention of both

historians of the science and active researchers in the field.
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