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Doing “history of mathematics” about Probability Theory is an undertaking
doomed to failure from the outset, hardly less absurd than doing history
of physics from a mathematician’s viewpoint, neglecting all of experimental
physics. We can never say often enough, Probability Theory is first of all the
art of calculating probabilities, for pleasure and for probabilists to be sure,
but also for a large public of users: statisticians, geneticists, epidemiologists,
actuaries, economists. . . . The progress accomplished in fifty years responds
to the increasing role of probability in scientific thought in general, and finds
its justification in more powerful methods of calculation, which allow us for
example to consider the measure associated with a stochastic process as a
whole instead of considering only individual distributions of isolated random
variables.

It must be acknowledged from the beginning that the “history” below,
written by a mathematician, not only ignores the work accomplished by
non-mathematicians and published in specialized journals, but also the work
accomplished by mathematicians deepening classical problems – sums of in-
dependent variables, maxima and minima, fluctuations, the central limit the-
orem – by classical methods, because daily practice continues to require that
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these old results be improved, the same way the internal combustion engine
continues to be improved to build cars.

Probability has developed many branches in fifty years. The schematic
description found here concerns only stochastic processes, understood in the
restricted sense of random evolutions governed by time (continuous or dis-
crete time). Moreover, we must leave aside (for lack of competence) the study
of classes of special processes.

I have presented the parts of probability that I myself came in contact
with, and their development as it appeared to me, trying at most to verify
certain points by bibliographical research. In particular, saying that an ar-
ticle or an author is “important” signifies that they have aroused a certain
enthusiasm among my colleagues (or in me), that they were the source of
some other work, that they enlightened me on this or that subject. I feel
especially uncomfortable presenting work that appeared in the East (Japan
being part of the West on this occasion). In fact, not only was communica-
tion slow between the two political blocs, but probabilists worked in slightly
different mindsets, with certain mental as well as linguistic barriers. Even
in the West, we can distinguish smaller universes, each with its traditions,
tastes and aversions. The balance between pure and applied probability,
for example, was very different in the Anglo-Saxon countries, endowed with
powerful schools of statisticians, than in France or Japan. The text that
follows should therefore be considered as expressing personal opinions, not
value judgments.

Probability around 1950
This initial date may be less arbitrary in probability than elsewhere. In fact,
it is marked by two works that have reached a broad public, the first one
summarizing two centuries of ingenuity, the second one providing tools for fu-
ture development. First Feller’s book An Introduction to Probability Theory
and Its Applications, without a doubt one of the most beautiful mathematics
book ever written, with technical tools barely exceeding the level of high
school. Next Halmos’ Measure Theory, the first presentation of measure the-
ory, in the West, free of unnecessary subtleties, and well adapted to the teach-
ing of probability according to Kolmogorov’s axioms (until Loève (1960), for
many years the standard reference). In fact, discussions on the foundations of
probability, which had embroiled the previous generation, were over. Math-
ematicians had made a definitive choice of their axiomatic model, leaving it
to the philosophers to discuss the relation between it and “reality”. This did
not happen without resistance, and a majority of probabilists (particularly
in the United States) long considered the teaching of the Lebesgue integral
not only waste of time, but also an offense to “probabilistic intuition”.
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Early developments. Note, just before the period at hand, a few math-
ematical events that seeded future developments. The first article published
by Itô on the stochastic integral dates back to 1944. Doob worked on the
theory of martingales from 1940 to 1950, and it was also in a 1945 article by
Doob that the strong Markov property was clearly enunciated for the first
time, and proven for a very special case. The theorem giving strongly continu-
ous semigroups of operators their structure, which greatly influenced Markov
process theory, was proven independently by Hille (1948) and Yosida (1948).
Great progress in potential theory, which was also destined to influence prob-
ability, was achieved by H. Cartan in 1945 and 1946, and by Deny in 1950. In
1944, Kakutani published two brief notes on the relations between Brownian
motion and harmonic functions, which became the source of Doob’s work on
this question and grew into a wide area of research. In 1949 Kac, inspired
by the Feynman integral, presented the “Feynman-Kac formula”, which re-
mained a theme of constant study in various forms – we use this occasion
to recall this extraordinary lecturer, originator of spontaneous ideas rather
than author of completed articles. Finally, in 1948 Paul Lévy published
an extremely important book, Stochastic Processes and Brownian Motion, a
book that marshals the entire menagerie of stochastic processes known at
the time. Like all of Lévy’s work, it is written in the style of explanation
rather than proof, and rewriting it in the rigorous language of measure the-
ory was an extremely fruitful exercise for the best probabilists of the time
(Itô, Doob). Another example of the depth probabilists reached working with
their bare hands was the famous work of Dvoretzky, Erdős and Kakutani on
the multiple points of Brownian motion in Rn (1950 and 1957). It took a
long time to notice that although the result was perfectly correct, the proof
itself was incomplete!

“Stochastic processes”. Doob’s book, Stochastic Processes, published in
1953, became the Bible of the new probability, and it deserves an analy-
sis. Doob’s special status (aside the abundance of his own discoveries) lies
in his familiarity with measure theory, which he adopts as the foundation
of probability without any backward glance or mental reservation. But the
theory of continuous-time processes poses difficult measure theoretical prob-
lems: if a particle is subject to random evolution, to show that its trajectory is
continuous, or bounded, requires that all time values be considered, whereas
classical measure theory can only handle a countable infinity of time values.
Thus, not only does probability depend on measure theory, but it also re-
quires more of measure theory than the rest of analysis. Doob’s book begins
with an abrupt chapter and finishes with a dry supplement - between the two
it adheres to a pure austerity accentuated by a typography that recalls of the
great era of le Monde, but made pleasing by a style that is free of pedantry.
From Doob on, probability, even in the eyes of Bourbaki, will be one of the
respectable disciplines.
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It is informative to enumerate the subjects covered in Doob’s book: he
starts with a discussion of the principles of the theory of processes, and
in particular of the solution to the difficulty mentioned above (Doob intro-
duces on this occasion the “separability” of processes); a brief exposition
on sums of independent variables; martingale theory, in discrete and con-
tinuous time (work by Doob that was still fresh), with many applications;
processes with independent increments; Markov processes (Markov chains,
resuming Doob’s 1945 work, and diffusions, presenting Itô’s stochastic inte-
gral with an important addition for further work, and stochastic differential
equations). It all appears prophetic now. On the other hand, three sub-
jects are weakly addressed in Doob’s book: Gaussian processes, stationary
processes, and prediction theory for second order processes. Each of these
branches is being called on to detach itself from the common trunk of process
theory and to grow in an autonomous fashion – and we will not talk about
them here.

We must comment on one aspect of Doob’s book, crucial for the future.
Kolmogorov’s mathematical model represents the events of the real world

by elements of the sigma-algebra F of a probability space (Ω,F ,P). Intu-
itively speaking, the set Ω is a giant “urn” from which we pull out a “ball”
ω, and the elements of F describe the various questions that one can ask
about ω. Paul Lévy protested against this model, criticizing it for evoking
only one random draw, whereas chance evidently enters at every moment
in a random evolution. Doob resolved this difficulty in the following way:
There is a single random draw, but it is “revealed” progressively. Time t (dis-
crete or continuous) is introduced in the form of an increasing family (Ft) of
sigma-algebras – what is currently called a filtration. The sigma-algebra Ft

represents “what is known of ω up to time t”. Let’s then call T the moment
where for the first time the random evolution shows a certain property – for
the insurance company, the first fire of the year 1998, for example. It is a
random quantity such that, to know if T ≤ t, there is no need to look at the
evolution beyond t – in mathematical language, the event T ≤ t belongs to
Ft – in fact, to know if there was a fire in January 1998, there is no need
to wait until the month of March. Compare this definition to that of the
last fire of the year 1997: to know if it occurred in November, you need to
know that a fire occurred in November, and also that no fire occurred in De-
cember. These “non-anticipatory” random variables are called today stopping
times. The idea of non-anticipatory knowledge is implicit in French, where
(normally) the declension of a word only depends on words coming before it,
but not in German, where the whole meaning of the sentence depends on the
final particle. The importance of the notion of stopping times comes surely
from the work of Doob and of his disciple Snell (1952), but it must have a
prior history, because it penetrates for example Wald’s sequential statistical
analysis.
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Principal themes: 1950-1965
Markov processes. The efforts of probabilists of the first half of the cen-
tury had been mostly dedicated (the problem of foundations aside), to the
study of independence: sums of independent random variables, and corre-
sponding limit distributions. After independence, the simplest type of ran-
dom evolution is Markovian dependence (named after A. A. Markov, 1906).
An example of it is given by the successive states of a deck of cards that
is being shuffled. For predicting the order of cards after shuffling, all useful
information is included in (complete) knowledge of the current state of the
deck; if this is known, knowledge of previous states does not bring more in-
formation about the accuracy of the prediction. Most examples of random
evolution given by nature are Markovian, or become Markovian by a suitable
interpretation of the words “current state” and “complete knowledge”. The
theory of Markov processes divides into sub-theories, depending on whether
time is discrete or continuous, or whether the set of possible states is finite
or countably infinite (we speak then of Markov chains1), or continuous. On
the other hand, the classical theory of sums of independent random variables
can be generalized into a branch of Markov process theory where a group
structure replaces addition: in discrete time this is called random walks, and
in continuous time processes with independent increments, the most notable
of which is Brownian motion.

>From a probabilistic point of view, a Markov process is determined by
its initial law and its transition function Ps,t(x,A), which gives, if we ob-
served the process in state x at time s, the probability that we find it at a
later time t in a set A (if we exclude the case of chains, the probability of find-
ing it exactly in a given state y is null in general). The transition function is
a simple analytical object – and in particular, when it is stationary, meaning
it only depends on the difference r = t− s, we obtain a function Pr(x,A) to
which the analytical theory of semigroups, in full flower since Hille-Yosida’s
theorem, applies. Hence the interest in Markov processes around the 1950s.

The main question we ask ourselves about these processes is that of their
long term evolution. For example, the evolution of animal or human popu-
lations can be described by Markovian models assuming three types of limit
behavior: extinction, equilibrium, or explosion – the latter one, impossible
in the real world, nevertheless constitutes a useful mathematical model for
a very large population. The study of various states of equilibrium where a
stationary regimen is established is related to statistical mechanics.

Continuous-time and finite-state space Markov chains, well known for
years, represent a model of perfectly regular random evolution, which stays
in a state for a certain period of time (of known law) then jumps into an-
other state drawn at random according to a known law, and so on and so

1Some authors call a Markov process in discrete time with any state space a Markov
chain.
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forth indefinitely. But as soon as the number of states becomes infinite, ex-
traordinary phenomena can happen: it could be that jumps accumulate in a
finite period of time (and afterwards the process becomes indescribably com-
plicated), even worse, it could be that from the start each state is occupied
according to a “fractal” set. The problem is of elementary nature, very easy
to raise and not easy at all to resolve. This is why Markov chains have played
the role of a testing ground for every later development, in the hands of the
English school (Kingman, Reuter, Williams. . . ) and of K. L. Chung, whose
insistence on a probabilistic rather than analytic attack on the problems has
had a considerable influence.

The other area of Markov process theory which was in full expansion
was diffusion theory. In contrast to Markov chains, which (in simple cases)
progress only by jumps separated by an interval of constant length, diffusions
are Markov processes (real, or with values in Rn or a manifold) whose trajec-
tories are continuous. We knew from Kolmogorov that the transition function
is, in the most interesting cases, a solution to a parabolic partial differential
equation, the Fokker-Planck equation (in fact of two equations, depending
on whether we move time forward or backward). During the 1950s, we were
willing to construct diffusions with values in the manifolds by semigroup
methods, but the work that stood out is Feller’s analysis of the structure of
diffusions in one dimension. One of the themes of the following years would
be the analogous problem in higher dimensions, where substantial, but not
definitive, results would be obtained.

The ideas introduced by Doob (increasing families of sigma-algebras, stop-
ping times) made it possible to give a precise meaning to what we call the
strong Markov property : Given a Markov process whose transition function
is known (for simplicity let us say stationary), the process considered from a
random time T is again a Markov process with the same transition function,
provided T is a stopping time. This had been used (well before the notion
of stopping time was formulated) in heuristic arguments such as D. André’s
“reflection principle”2 – and also in false heuristic arguments (in which T is
not really a stopping time). In fact, the first case where the strong Markov
property was rigorously stated and proved is found, it seems, in Doob’s 1945
article on Markov chains, but Doob himself hides the question under a smoke
screen in his great article of 1954. In the case of Brownian motion, the first
modern and complete statement is due to Hunt (1956) in the West, while
the Moscow school reached in parallel a greater generalization.

Development of Soviet probability. While probability was a marginal
branch of mathematics in Western countries, it had always been among the
strongest points of Russian mathematics, and it had grown with Soviet math-
ematics. Two generations of extraordinary quality would make of Moscow,
then Kiev, Leningrad, Vilnius, probabilistic centers among the most im-

2Which allows the calculation of the distribution of the maximum of a Brownian motion.
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portant of the world – before the post-Stalin wave of persecution (mostly
antisemitic) brought this boom to a halt, and forced many major figures
into internal or external exile (Dynkin himself left in 1976 for the United
States). It would take a specialist to tell the whole story. In any case we
can discern two dates, those of 1952 when Dynkin published his first arti-
cle on Markov processes, and of 1956, the birth date of the journal Teoriia
Veroiatnostei, which published in its first issue two still classic articles, by
Prokhorov and Skorokhod, on narrow convergence3 of measures on metric
spaces (Skorokhod’s classic book on processes, which extended this work,
appeared in 1961).

Concerning the theory of Markov processes, which for many years was one
of the principal themes (but not the only theme) of Soviet probability, the
history of connections between the Russian school and “Western” probabil-
ity (including the rich Japanese school!) is partly one of misunderstanding.
This is probably due to the lack of structured research in the West, and to
the systematic character, in contrast, of the publications of Dynkin’s semi-
nar, supporting each other, using a rather abstract common language, and
giving prominence to Markov processes with nonstationary transition func-
tions. The fact is that the main results on the regularity of trajectories and
the strong Markov property have been proven twice: by Dynkin, Yushkevich,
and by Hunt and Blumenthal. The situation was repeated much later, when
many important Soviet works (on excursions, on “Kuznetsov measures”) were
understood late in the West, after being partially rediscovered.

After these generalities, we can examine various streams of ideas.

The great topics of the years 1950–1965
Classical potential theory and probability. In 1954, developing an idea
of Kakutani’s, dating from 1944 and taken up again in 1949, Doob published
an article on the connection between classical potential theory in Rn and
continuous-time martingale theory. The main idea is the link between the
solution of Dirichlet’s problem in an open set, and the behavior of Brownian
motion starting from a point x of this open set: The first moment when
a trajectory ω of Brownian motion meets the boundary depends on ω, it is
therefore a “random variable”. Let us call it T (ω); let X(ω) be the position of
the trajectory at that moment. It is clear that it is a point on the boundary;
so if f is a boundary function, f(X) is a random quantity whose expected
value (the integral) depends on the initial point x. Let us call it then F (x):
this function on the open set solves Dirichlet’s problem on the open set with
boundary condition f.

All of this had been known for a long time in the case of simple open sets
like balls. But for arbitrary domains Doob had to resolve (relying on potential

3Narrow convergence is associated with the integration of bounded continuous func-
tions.
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theory) delicate problems of measurability, and most of all, he established a
link between the harmonic and superharmonic functions of potential theory,
and martingale theory: if we compose a harmonic or superharmonic func-
tion with Brownian motion, we obtain a martingale or supermartingale with
continuous trajectories. Let us emphasize this continuity: superharmonic
functions are not in general continuous functions, but Brownian trajectories
“do not see” their irregularities. Doob uses this result, along with the theory
of martingales, to study the behavior of positive harmonic or superharmonic
functions at the boundary of an open set, a subject to which he will devote
several articles.

Maybe the most striking result of this probabilistic version of potential
theory is the intuitive interpretation of the notion (relatively technical) of the
thinness of a set, introduced in the study of Dirichlet’s problem in an open
set. We can always “solve” Dirichlet’s problem in a bounded open set with a
continuous boundary condition f , but we get a generalized solution that does
not necessarily have f as limiting value everywhere, or have it (where it does
have it) in the sense of the ordinary topology. There are bad points, and even
at the good points one should not approach the boundary too quickly. The
notion of thinness makes these two notions precise: “regular” points of the
boundary, for example, are those where the complement of the open set is not
thin. Now, the probabilistic interpretation of thinness is very intuitive: to
say that a set A is thin at the point x means that a Brownian particle placed
at the point x will take (with probability 1) a certain time before returning
to the set A. (we say returning to A rather than finding A, because, if
the point x itself belongs to A, this encounter with A at moment 0 does
not count). A certain number of delicate properties of thinness immediately
become evident.

Even though it is not our subject, it is worth pointing out that this
immediate post-war period, particularly fruitful in the area of probability,
was also a fruitful one for potential theory. The very abundant and interesting
production (never assembled) of mathematicians like M. Brelot and J. Deny
bore fruit not only in potential theory and probability; few people know
that distribution theory, for example, was born from a question posed to L.
Schwartz on polyharmonic functions.

Theory of martingales. We will not give here the definition of martin-
gales, even though it is simple, but only the underlying idea. The archetype of
martingales is the capital of a player during a fair game: on average, this cap-
ital stays constant, but in detail it can fluctuate considerably; significant but
rare gains can compensate for accumulations of small losses (or conversely).
The notion of supermartingale corresponds as well to an unfavorable game
(the “super” expressing the point of view of the casino). In continuous time,
Brownian motion, meaning the mathematical model describing the motion
of a pollen particle in water seen in a microscope, is also a pure fluctuation:
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on average, the particle does not move: the two dimensional Brownian mo-
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allowing us to limit its fluctuation on characteristics we can observe. We will
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(by a proof that is a real masterpiece) that any potential theory satisfying
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4Brownian motion happens to be simultaneously a martingale and a Markov process,
but these two notions are not related.

5Ville’s remarkable book, which introduced the name martingale, by the way, became
known in the USA only after the war.

6Of which the core is the elementary solution of the heat equation, that is, the Brownian
transition function itself.
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to Lesbegue measure. In this case, we can build a much richer potential
theory, but (provisionally) duality remains devoid of probabilistic interpre-
tation: folklore sees it as a kind of time reversal, but this interpretation is
rigorous only in particular cases.

A second aspect of probabilistic potential theory concerns the study of
the Martin boundary. This is a concept introduced in 1941 in a (magnifi-
cent) article by R. S. Martin, a mathematician who died shortly afterwards.
On one hand, he interpreted the Poisson representation of positive harmonic
functions as an integral representation by means of extreme positive har-
monic functions; on the other hand, he indicated a method for constructing
these functions in any open set: He “normalized” Green’s function G(x, y)
by dividing it by a fixed function G(x0, y), then compactified the open set so
that all these quotients are extended by continuity; all the extreme harmonic
functions then are among these limit functions. This idea was picked up again
and developed by Brelot (1948, 1956), and it was partly the origin of Cho-
quet’s research on integral representation in convex cones. It was again Doob
who, in 1957, discovered the probabilistic meaning of these quotients of har-
monic or superharmonic functions. A series of subsequent articles was meant
to extend all of this to general Markov processes, by showing that “Martin’s
boundary” was a good replacement for the “boundaries” introduced earlier to
capture the asymptotic behavior of Markov processes. Yet the most decisive
step was to be accomplished by Hunt (1960) in a brief and schematic article
– his last publication in this area – that introduced a new way to “reverse
time” for Markov processes starting from certain random times, and so gave
a very useful probabilistic interpretation of Martin’s theory. Hunt’s article,
which concerned only discrete chains, was extended to continuous time by
Nagasawa (1964), and by Kunita and T. Watanabe (1965). The result of this
work is a rigorous probabilistic interpretation of the duality between Markov
semigroups.

In two dimensions, Brownian motion is said to be recurrent : its trajecto-
ries, instead of tending to infinity, come back infinitely often to an arbitrary
neighborhood of any point of the plane. It gives rise to the special theory of
logarithmic potential. There exists a whole class of Markov processes of the
same kind, whose study is related rather to ergodic theory. This is an op-
portunity to mention Spitzer’s 1964 book on recurrent random walks, which
has had a considerable influence. It opened an important line of research,
linking probability, harmonic analysis and group theory (discrete groups and
Lie groups). It merits a special study, which surpasses my own competence.

Work a little remote from this, which deserves to be cited because it con-
cludes years of research on the regularity of trajectories of Markov processes,
is an article of D. Ray from 1959. This article shows (using methods close to
those of Hunt) that it is in part an artificial problem. Any Markov process
can be rendered strongly Markovian and right-continuous by compactifying
its state space by adding “fictitious states”. Ray’s article contained an error,
corrected by Knight, but it is in fact a very fruitful method, also fated to
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rejoin Martin’s theory of compactification. On this subject there was again
a development parallel to the work of the Russian school, but the results are
not directly comparable.

The classic book presenting Hunt’s theory and it development (with the
exception of Martin’s boundary) is the 1968 book of Blumenthal and Getoor.
Since we will return very infrequently to probabilistic potential theory, let us
mention nevertheless that the subject has remained active up to the present
time, mainly in the United States (Getoor, Sharpe). For modern presenta-
tions, see the books of Sharpe (1988) and of Bliedtner and Hansen (1986).
For interactions between classical potential theory and Brownian motion, the
reference is Doob’s monumental treatise (1984). Yet the most active branch
currently is that of Dirichlet spaces, which we will say a word about later on.

Special Markov processes. Hunt’s general theory of Markov processes
is only one of the branches of Markov process theory. The 1960s marked
an extraordinary activity in the study of special processes. First, the very
meticulous study of the trajectories of classical processes – Hausdorff dimen-
sions, etc., what we would call today their fractal structure. Let us cite
for example, other than the works of Dvoretzky-Erdős-Kakutani, those of
S. J. Taylor. Then the study of Markov chains with little regularity, which
provides an inexhaustible source of examples and counterexamples (Chung;
Neveu (1962) – the latter according to Williams (1979) “the finest paper ever
written on chains”). Finally a very rich production in the study of diffusions,
which will find its Bible in the (too long awaited) book of Itô and McKean
(1965). The main problem of concern here is the structure of diffusions in
several dimensions, and in particular the possible behavior, at the bound-
ary of an open set, of a diffusion whose infinitesimal generator is known in
the interior. For example, take a problem dealt with by Itô and McKean
in 1963: find all strongly Markovian processes with continuous trajectories
on the positive closed half-line, which are Brownian motions in the open
half-line – but of course the problem in several dimensions (studied by the
Japanese school; we cite for example Motoo 1964) is much more difficult. It
is a matter of making precise the following idea: the diffusion is formed from
an interior process, describing the first trip to the boundary, then the subse-
quent excursions starting and ending on the boundary. An infinite number of
small excursions happen in a finite amount of time, and we must manage to
describe them and piece them back together. It is a difficult and fascinating
problem.

Links between Markov processes and martingales. It is natural that
martingales should be applied to Markov processes. Conversely, methods
developed for the study of Markov processes have had an impact on the
theory of martingales.

Probabilistic potential theory developed for a stationary transition func-
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tion, i.e. for a semigroup of transition operators (Pt); the latter operates on
positive functions, and functions that generalize superharmonic functions,
here called excessive functions, are measurable positive functions f such that
Ptf ≤ f for every t (and a minor technical condition). In classical potential
theory, it is known how to describe these functions, which decompose into
a sum of a positive harmonic function, and a Green potential of a positive
measure µ. On the other hand, we can associate a Markov process (Xt) with
the transition function, and the excessive functions are those for which the
process (f(Xt)) is a supermartingale. In probabilistic theory, there are no
measure potentials available, but Dynkin had stated the problem of repre-
senting an excessive function f as the potential of an additive functional :
without getting into technical details, such a functional is given by a family
of random variables (At) representing the “mass of the measure µ which is
seen by the trajectory of the process between times 0 and t”, and the connec-
tion between At and the function f is as follows: for a process starting from
the point x, the expected value of A∞ is equal to f(x). The Russian school
(Volkonskii 1960, Shur 1961) had obtained very interesting partial results. In
the West, Meyer (who was working with Doob) was able to improve (1962)
Shur’s result by giving a necessary and sufficient condition for an excessive
function to be representable in this way (a condition Doob formulated earlier
in potential theory) and to study the uniqueness of the representation.

A little later, we noticed (Meyer 1962) that the methods that had just
been used in the theory of Markov processes transposed without change to
the theory of martingales, to solve an old problem raised by Doob: the de-
composition of a supermartingale into a difference of a martingale and a
process with increasing trajectories – an obvious result in discrete time. We
knew that conditions were needed (Ornstein had shown an example where
the decomposition did not exist), and the notion of “class (D)” answered the
question precisely. From that moment on, methods that had succeeded with
Markov processes would be grafted onto the general theory of processes, giv-
ing numerous results. In particular, capacitary methods would make their
entry into the theory of processes. This is quite hard to imagine in an en-
vironment that was still balking at the Lebesgue integral ten years earlier!
Whence a certain bad mood, quite noticeable particularly in the United
States.

Before resuming the main flow of thought, a few remarks about a very
important particular case of the problem of decomposition. The one dimen-
sional Brownian motion does not admit positive superharmonic functions,
but on the other hand plenty of positive subharmonic functions (the convex
positive functions) were found, and the corresponding problem of represen-
tation had been solved by hand. One of the marvels of Lévy’s work had been
the discovery and study of the local time of Brownian motion at a point,
which measures in a certain sense the time spent “at that point” (in all rigor,
this time is zero, but the time spent in a small neighborhood, properly nor-
malized, admits a nontrivial limit). Trotter had made a thorough study of
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it in 1958. In 1963, Tanaka made the link between local time and Doob’s
decomposition of the absolute value of Brownian motion, thus establishing
what was henceforth called “Tanaka’s formula”. The construction of local
times for various types of processes (Markovian, Gaussian. . . ) has remained
a favorite theme of probabilists. On local times one may consult the collec-
tion of Azéma-Yor (1978).

The problem of decomposition has had other important extensions. An
article by Itô and Watanabe (1965), devoted originally to a Markovian prob-
lem, introduced the very useful notion of local martingale,7 which allows us
to treat the problem of decomposition without any restriction. On the other
hand, an article by Fisk (1965), developing Orey’s work, introduces the no-
tion of quasi-martingale, corresponding somewhat to the notion of a function
of bounded variation in analysis.

We could choose as the symbolic date to close this period the year 1966,
during which the second volume of Feller’s book appeared. Like the first
one, it addresses the vast audience of probability users, and remains as con-
crete and elementary as possible. Like the first, it assembles and unifies an
enormous mass of practical knowledge, but this time it uses measure the-
ory. Moreover, the period preceding 1966 had been a time of synthesis and
perfection, during which Dynkin’s second book on Markov processes (1963),
Itô-McKean’s book on diffusions (1965), and the synthesis of recent works
on the general theory of processes by Meyer (1966) were published.

The 1965–1980 period
The stochastic integral. Doob’s book pointed out already that Itô’s
stochastic integral theory was not essentially tied to Brownian motion, but
could be extended to some square-integrable martingales. As soon as the de-
composition of the submartingale square of a martingale was known, this pos-
sibility was opened in complete generality (Meyer 1963). Thus, two branches
of probability were brought back together. We have already talked about
martingales; we must go back to talk about the stochastic integral.

A stochastic process X can be considered a function of two variables
X(t, ω) or Xt(ω), where t is time, and ω is “chance”, a parameter drawn
randomly from a giant “urn” Ω. The trajectories of the process are functions
of time t −→ Xt(ω). In general they are irregular functions, and we cannot
define by the methods of analysis an “integral”

´ t

0
f(s)dXs(ω) for reasonable

functions of time, which would be limits of “Riemann sums” on the interval
(0, t)



i

f(si) (Xti+1 −Xti),

7Technical definition weakening the integrability condition for martingales.
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where si would be an arbitrary point in the interval (ti, ti+1). This is all the
more impossible if the function f(s, ω) itself depends on chance. Yet Itô had
studied since 1944 the case where X is Brownian motion, and f a process
such that at each instant t, f(t, w) does not depend on the behavior of the
Brownian motion after the instant t, and where si is the left endpoint of the
interval (ti, ti+1). In this case, we can show that the Riemann sums converge
– not for each ω, but as random variables on Ω – to a quantity that is called
the stochastic integral, and that has all the properties desired for an integral.

All this could seem artificial, but the discrete analog shows that it is not.
The sums considered in this case are of the form

Sn =
n

i=1

fi (Xi+1 −Xi).

Set Xi+1−Xi = xi, and think of Sn as the capital (positive or negative!) of a
gambler passing his time in a casino, just after the nth game. In this capital,
fi represents the stake, whereas xi is a normalized quantity representing the
gain of a gambler who stakes 1 franc at the ith game. That fi only depends
on the past then signifies that the gambler is not a prophet. Instead of using
the language of games of chance, we can use that of financial mathematics,
in which the normalized quantities Xt represent prices, of stocks for exam-
ple – and we know this is how Brownian motion made its appearance in
mathematics (Bachelier 1900).

Another question of great practical importance involving the stochastic
integral is the modeling of the noise that disturbs the evolution of a me-
chanical system. Here we should mention a stream parallel to the purely
probabilistic developments: the efforts devoted to this problem by applied
mathematicians close to engineers, and we should cite the name of McShane,
who has devoted numerous works to diverse aspects of the stochastic integral.
The only one of these aspects that has a properly mathematical importance
is Stratonovich’s integral (1966), which possesses the remarkable property of
being the limit of deterministic integrals when we approach Brownian motion
by differentiable curves. Whence in particular a general principle of extension
from ordinary differential geometry to stochastic differential geometry.

Itô’s most important contribution is not to have defined stochastic inte-
grals – N. Wiener had prepared the way for him – but to have developed
their calculus (this is the famous “Itô’s formula”, which expresses how this
integral differs from the ordinary integral) and especially to have used them
to develop a very complete theory of stochastic differential equations – in a
style so luminous by the way that these old articles have not aged.

There is still a lot to say about Itô’s differential equations properly speak-
ing, and we will mention them again in connection with stochastic geometry.
Here, we will talk about generalizations of this theory.

The theory of the stochastic integral with respect to a square-integrable
martingale is the subject of the still famous article by Kunita and Watanabe
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(1967), oriented by the way to applications to Markov processes: it is related
to an article by Watanabe (1964) that gives a general form to the notion
of Lévy system, which governs the jumps of a Markov process, and to an
article of Motoo-Watanabe (1965). Kunita-Watanabe’s work was taken up
again by Meyer (1967) who added complementary ideas, such as the square
bracket of a martingale (adapted from a notion introduced by Austin in dis-
crete time), the precise form of dependence only on the past of the integrated
process (what are now called predictable processes), and finally a still imper-
fect form of the notion of a semimartingale (see below).

This theory would very quickly extend to martingales that are not nec-
essarily square-integrable, on one hand by means of the notion of a local
martingale (Itô-Watanabe 1965), which leads to the final notion of semi-
martingale (Doléans-Meyer), and on the other hand by means of new mar-
tingale inequalities, which will be discussed later (Millar 1968). It would be
useless to go into details. Let us consider instead the general ideas.

From a concrete point of view, a semimartingale is a process obtained by
superposing a signal – that is to say, a process with regular trajectories, say
of bounded variation, satisfying the technical condition of being predictable
– and a noise, that is, a meaningless process, a pure fluctuation, modeled
by a local martingale. The decomposition theorem, in its final form, says
that under minimal integrability conditions (absence of very big jumps), the
decomposition of the process into the sum of a signal and a noise is unique:
knowing the law of probability we can filter the noise and recover the signal
in a unique manner. Yet this reading of the signal depends not only on the
process, but also on the underlying filtration, which represents the knowledge
of the observer.

We can extend to all semimartingales the fundamental properties of Itô’s
stochastic integral, and most of all develop a unified theory of stochastic
differential equations with regard to semimartingales. This was accomplished
by Doléans (1970) for the exponential equation, which plays a big role in
the statistics of processes, and by Doléans (1976) and Protter (1977) for
general equations (Kazamaki 1977 opened the way for the case of continuous
trajectories). The study of stability (with respect to all parameters at the
same time) was carried out in 1978 by Emery and by Protter. We can equally
extend to these general equations a big part of the theory of stochastic flows,
which developed after the “Malliavin calculus”.

The theory of stochastic differential equations therefore ends up being in
complete parallelism with that of ordinary differential equations. Like the
latter theory, it can be approached by two types of methods: for the variants
of the Lipschitzian case, Picard’s method leading to results of existence and
uniqueness, and for existence without uniqueness, methods of compactness
of Cauchy’s type. However, there is a distinction specific to the probabilistic
case, the distinction between uniqueness of trajectories and uniqueness in
law. We limit ourselves here to mentioning the work of Yamada and Watan-
abe (1971).
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The possibility of bringing several distinct driving semimartingales, in
other words several different “times”, into a stochastic differential equation
in several dimensions makes them resemble equations with total differen-
tials more than ordinary differential equations, with geometric considerations
(properties of Lie algebras) that enter in Stroock-Varadhan’s article (1970)
before reaching their full development in the “Malliavin calculus”.

Let us come back for a moment to Itô’s integral. We can say that it is not
a “true” integral, trajectory by trajectory, but it is one in the sense of vector
measures. M. Métivier was one of the rare probabilists to know the world of
vector measures, and he devoted (with J. Pellaumail) part of his activity to
the study of the stochastic integral as a vector measure with values in L2,
then in Lp, then in the non-locally convex vector space L0 (finite random
variables with convergence in measure). Métivier and Pellaumail suspected
that semimartingales were characterized by the property of admitting a good
theory of integration (see Métivier-Pellaumail 1977). This result was estab-
lished independently by Dellacherie and Mokobodzki (1979) and by Bichteler
(1979), who started from the other end, that of vector measures.

It is impossible to take account here of the abundance and the variety of
the work related to semimartingales. It is indeed a class of processes large
enough to contain most of the usual processes, and possessing very good
properties of stability. In particular, if we replace a law on the space Ω by
an equivalent law8 without changing the filtration, the semimartingales for
the two laws are the same (whereas their decompositions into “signal plus
noise” change). This remarkable theorem is due, in its final form, to Jacod
and Mémin (1976), but it has a long history (which relates it in particular
to Girsanov’s theorem (1960) in the particular case of Brownian motion).
It opens the way to a general form of the statistics of stochastic processes.
Indeed, statistics seeks to determine the law of a random phenomenon from
observations, and we do not know a priori what this law is. The search for
properties of processes that are invariant under changes in the law is therefore
very important. See for example Jacod-Shiryaev (1987).

The rapid evolution of ideas in probability resulted – this a general phe-
nomenon in mathematics – in the multiplication of informal publications,
such as the volumes of the Brelot-Choquet-Deny seminar on potential the-
ory. The birth of Springer’s Lecture Notes series led to the international
distribution of publications of this type, which were at first “in house”. In
probability, we find the series Séminaires de Probabilités (1967), then the
lecture notes of l’Ecole d’Eté de St Flour (1970), and finally the Seminar on
Stochastic Processes in the United States (1981).

Markov processes. During this whole period, the general theory of Markov
processes remained extremely active, but it was no longer the dominant sub-
ject in probability as it had been in the preceding period.

8Two laws are said to be equivalent if they have the same sets of null measure.
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We can distinguish a few themes particularly studied.
In the beginning of the theory of Markov processes, various classes of

processes had been introduced axiomatically: Dynkin’s “standard processes”,
and “Hunt” processes, which allowed them to develop probabilistic potential
theory. An article by C. T. Shih (1970) is at the origin of a movement of ideas
that identified a class of Markov processes, the right processes, that possess
remarkable stability properties. We will limit ourselves here to mentioning
the essential role of Ray’s compactification in these questions, and to referring
to two books of synthesis: Getoor (1975) and Sharpe (1988).

A second important theme is the duality of Markov processes with respect
to a measure. Here we start not from a given pair of Markov semigroups in
duality with respect to a measure, but rather from a single semigroup, for
which we want to build a dual semigroup. The most important article on
this question is that of Chung and Walsh (1969).

For the understanding of duality, Mitro’s articles (1979) had a great im-
pact. They give a construction for adjoining the forward trajectories of one
of the Markov processes with the backward trajectories of its dual process, in
order to make it into a stationary process arising at a random moment (pos-
sibly −∞) and disappearing at a random moment (possibly +∞). In fact,
all of this had already been discovered, and under a more general form, in
two articles by Dynkin (1973) and Kuznetsov (1974), whose discovery (after
Dynkin’s arrival in the USA!) generated a good number of papers. The im-
portance of these results for potential theory (excessive measures) has been
progressively recognized (Fitzsimmons-Maisonneuve 1986, see the 1990 book
of Getoor). The connection with the strange processes constructed by Hunt
(1960), completing the understanding of this article, was given by Fitzsim-
mons (1988).

It is impossible to do more here than name other important subjects:
“Lévy systems” of general Markov processes; local times of Markov processes;
the various transformations preserving the Markov property (which consti-
tuted an essential element of Dynkin’s program from the beginning). It is
better to devote a little time to a particularly fascinating theme, excursion
theory.

The fundamental idea of excursion theory is to study the behavior of a
Markov process “around” a fixed state a. The simplest example is that of
discrete time Markov chains; there the process’s successive passage times in
a state constitute what is called a renewal process, and the structure of these
processes (which have countless applications) has long been known. Between
successive passages through a, the chain makes “excursions”, which (in the
most interesting case where the chain returns to a an infinite number of times)
are independent and have the same law. In continuous time, the situation is
much more complicated. The model is Lévy’s in-depth study of the passages
of Brownian motion at 0. The set of these passages is a perfect set of null
measure, riddled with small holes during which Brownian motion makes its
excursions. How to enumerate them, how to compare them with one another,
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in what sense to consider them as independent and equally distributed? The
problem arises in fact for all Markov processes (and it is especially interesting
for continuous-time Markov chains that are not regular, a case studied by
Chung). It is even more difficult to describe when the Markov process is not
studied in the neighborhood of a point, but in the neighborhood of a whole
“boundary”, because then the impact point moves on the boundary, and we
must describe how.

Concerning the encounters with a single state, the axiomatic characteriza-
tion of the random sets that can be interpreted as the moments of a Markov
process’s return to a fixed state was the work (after the preliminary studies
of Kingman) of Krylov and Yushkevich (1965), in a difficult article, taken up
and greatly simplified by Hoffman-Jørgensen (1969). On excursions them-
selves, the new idea that clarified the problem came from Itô (1971), certainly
one of the big conceptual achievements of probability, because the excursion,
which is a trajectory, is treated like a point, and the succession of excursions
is treated like a new random process that has a simple description. Finally,
on boundary problems, we must limit ourselves to citing a remarkable article
by Dynkin (1971), which has been read too little in the West (but see El
Karoui-Reinhard 1975), and Maisonneuve’s work (1974).

We must finally mention an important development for the future: the
construction of reversible Markov processes (also called symmetric) by the
Hilbertian method of Dirichlet forms. Introduced in potential theory by
Beurling and Deny (1959), this method came into probability with Silver-
stein (1974) and Fukushima (1975 for the Japanese edition of his book). It
has become one of the most powerful tools for building Markov processes in
infinite dimensions, a subject very much alive because of its possible appli-
cations to physics.

General theory of processes. The “general theory of processes” is the
development of one of the subjects initiated by Doob’s book, that of families
of increasing sigma-algebras (called today filtrations) and of stopping times.
This development took place in constant interaction with Markov process
theory on one hand, martingale theory on the other hand, and the division
is therefore somewhat artificial.

The beginnings of the general theory of processes are dominated by the
notion of stopping times, and in particular by the numerous results proven
around the strong Markov property, and around the “slightly less strong”
variants discovered in Markov chain theory by Chung. Numerous results on
filtrations are given as lemmas in articles on Markov processes, Dynkin’s in
particular. One of the first articles dedicated entirely to the general theory
is that of Chung and Doob (1965), and the first – or only – book completely
dedicated to it is that of Dellacherie (1972), which introduces the notion of
the dual projection of an increasing process, particularly useful for applica-
tions. Another motivation for the study of the general theory of processes is
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provided by the study of transformations of Markov processes.
A chapter of the general theory of processes that deserves mention, be-

cause it is particularly attractive from the viewpoint of the philosophy of
probability, is that of enlargement of filtrations, whose starting point is a
theorem proven independently, in 1978, by Barlow and by Yor, and whose
strongest results are due to Jeulin (1980). It can be presented as follows.
Doob’s fundamental idea in martingale theory had been to express mathe-
matically the fact that players are not prophets, using the notion of filtration.
Can we also describe mathematically what a prophet is? – needless to say, we
are concerned with a mathematical abstraction, analogous to conditioning by
the value of a random variable, which does not suppose that we really know
this value. We describe “the universe plus the prophet” by a second filtration,
bigger than the first since we have more knowledge at every moment. The
theorems that we establish take therefore the following form: martingales of
the small filtration (or only a few of them) become semimartingales in the
big filtration, which we know how to decompose into “signal plus noise”.

The set of all these topics – martingale inequalities, general theory, stochas-
tic integral, enlargement – constitute what we call Stochastic Calculus. But
the tree carries yet more branches; let us mention some. The use of martin-
gale methods to deal with problems of narrow convergence of process laws,
a subject illustrated by Aldous’ long article (1978), published only in part
and followed by numerous authors; the generalization of martingale conver-
gence theorems in the form of asymptotic martingales or amarts, in discrete
or continuous time (the reader wishing to pursue this question can consult
Edgar-Sucheston 1992); the extension of known results on martingales to
certain multidimensional time processes (Cairoli 1970, Cairoli-Walsh 1975).
Finally, let us note the development of a “prediction theory” by F. Knight
(1979, 1992), which shows the tight links uniting the most general possible
theory of processes with Markov processes.

Stochastic calculus, despite its relatively abstract character, rapidly found
applications. The first ones came from electrical engineering laboratories
(transmissions of signals in the presence of noise). But the most recent and
widest ones concern “financial mathematics”, thus going back to the very
sources of Brownian motion theory (Bachelier 1900). These mathematical
problems even resuscitated, in the 1990s, branches of stochastic calculus that
seemed asleep since 1970.

Inequalities of martingales and analysis. I do not pretend to deal here
with all the relations between probability and analysis (harmonic analysis,
Banach spaces, fractals. . . ), a subject on which I lack competence.

Relations between martingales and analysis were already present in the
work of Doob, who applied martingale convergence theorems to derivation
theory on one hand, and to the behavior of harmonic functions at the bound-
ary on the other. This subject remains partly open, by the way, especially
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with respect to its extensions to multivariable complex functions. But the
most fruitful interactions start with the discovery of Burkholder’s inequalities
(1964, 1966). These inequalities establish a norm equivalency in Lp, for p > 1,
between two random variables associated with the martingale: one is the ab-
solute upper bound of the trajectory, and the other a quantity of Hilbertian
type (the square root of a sum of squares), easy to define in discrete time,
more delicate in continuous time. These equivalencies of norms have been
extended by Burkholder and Gundy (1970) to spaces other than Lp, and by
Davis to L1 norms, thus initiating the theory of the H1 space of martingales.
For a synthesis of various types of inequalities, see Lenglart-Lépingle-Pratelli
(1980).

On the other hand, the period around 1970 was marked in analysis by
a return to direct methods of real variables – rather than abstract methods
of functional analysis, or classical methods of complex analysis (inherently
limited to the plane). The theory of singular integrals and the theory of
Hp(Rn) spaces were developing very fast. Equivalencies between a “maxi-
mum” norm and various “quadratic” norms played an important role in these
theories. In 1970 Stein’s treatise appeared, followed by a small volume on
Littlewood-Paley’s theory, which called directly for martingale methods. The
development of H1 space theory (Fefferman-Stein 1972), Hp spaces for p > 1,
the duality between H1 and BMO (John-Nirenberg 1961, Fefferman 1971),
the “atomic” approach to Hp theories (Coifman 1974), all this would have
consequences and parallels in probability, under the form of Hp spaces of
martingales imported by Herz in discrete time, then extended to continuous
time. The H1 space in particular took on great importance in stochastic
integral theory.

Another aspect, that of Littlewood-Paley theory: under its classical form,
it concerns harmonic or holomorphic functions in the unit disc, but it is also
used in the half-space R× R+, then extends to Rn × R+, and at last (Stein
made the step) to E × R+, where E is an abstract space with a Markovian
semigroup (Pt). We can therefore introduce martingale methods (Meyer
1976, Varopoulos 1980). These probabilistic methods have applications in
group theory (Varopoulos), and to analysis of semigroups in infinite dimen-
sion, where they allow us to define notions which in Riemannian geometry
(where the semigroup is that of Brownian motion) correspond to Ricci’s cur-
vature. This is a large subject, which we cannot take up here, but for which
we will direct the reader to the bibliography of Bakry’s lectures (1994).

This subject is related to hypercontractivity, for which on the contrary
it is probability that has influenced analysis: the starting point is Nelson’s
(1973) probabilistic proof (through Wiener chaos), motivated by quantum
field theory. Gross’ famous article (1976) gave the problem its definitive
status, and it is still a subject very much alive.
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Martingale problems. The universality of martingales during the period
we are studying translates into a new notion, that of martingale problems,
introduced in diffusion theory by Stroock and Varadhan (1969), then used
in many other areas, like that of point processes (see Jacod 1979).

Stroock and Varadhan’s idea consists in characterizing the law of a stochas-
tic process by a family of processes that we require to be martingales (even-
tually local martingales). In the case of diffusions (or more generally Markov
processes), these processes are constructed in a simple manner from the in-
finitesimal generator. The unknown of the martingale problem is therefore a
probability law, for which we must discuss existence and uniqueness – and for
existence, it is quite natural to use a method of narrow convergence. Stroock
and Varadhan used this method to handle the problem of diffusions with
coefficients that are assumed only to be continuous, which seems to resist
functional analysis methods.

The research undertaken in order to apply the method is even more im-
portant than the method itself: these tools are narrow compactness criteria
using “local characteristics” of semimartingales, problems of constructing all
martingales from a given family of martingales by means of stochastic inte-
grals. Here again, space is insufficient to develop these themes, which have a
considerable practical importance. Let us only mention articles by Jacod-Yor
(1977) and Yor (1978).

“Stochastic mechanics”. This stream of ideas has been relatively narrow
in volume of publication, but constant up to the present time. Since the
beginning of Quantum Mechanics, the Copenhagen interpretation has en-
countered opponents, some of whom were determinists, while others sought
a classical probabilistic interpretation. We can trace the latter tendency to
Schrödinger himself. The majority of physicists have ignored these moods,
but Nelson (1967) made a fascinating presentation of them to probabilists:
To any wave function ψ(t, x) of quantum mechanics, a solution of a clas-
sical Schrödinger equation, Nelson associates a natural diffusion admitting
at each moment the probability density |ψ(t, x)|2, predicted by the Copen-
hagen interpretation. Loosely speaking, the wave function, which is complex
and satisfies a linear equation, “codes” two transition functions, one forward,
the other backward, which satisfy two coupled nonlinear equations. Naga-
sawa (1980) managed to present Nelson’s equations, no longer as another
interpretation of quantum mechanics, but as general model of equilibrium of
“populations” of similar individuals, in which each individual interacts with
the population density, that is with its own probability of presence. Thus
it was becoming possible to be interested in these equations without tak-
ing sides in a theological quarrel. On the other hand, Nelson’s book was
incomplete from a mathematical point of view: in Nelson’s two diffusions
generators, the first order term explodes on “the nodal set” where the wave
function becomes null, and Nelson could treat rigorously only the case where
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this set is empty. It is only in the works of Nelson (1985), Zheng (1985)
and especially Carlen (1984) that this difficulty was resolved in a satisfying
manner. Since then, the publication of books on these questions has never
ceased, and we will not carry out an inventory.

Relations to physics. Yet Nelson’s book had a completely different legacy,
in the direction of “orthodox” quantum physics. This is a matter of Euclidian
field theory, which we can try to describe this way: Despite its extraordinary
practical successes, relativistic quantum field theory found itself in a state of
intellectual confusion. One of the procedures considered for remedying this
consisted of constructing “models” of nontrivial quantum fields satisfying a
certain number of axioms that are natural from a physical point of view. Nel-
son (1973) showed how, by an analytic continuation, these constructions can
be reduced to that of probability measures on a space of distributions S (Rn)
having a Euclidian invariance (rather than relativistic invariance) property,
and a form of the Markov property. The is a subject on which we will say
very little (by pure ignorance) except:

1) The method succeeds perfectly in dimension 2, where it has stimulated
in an extraordinary way the meticulous study of planar Brownian motion,
and especially the study of multiple points of the Brownian curve. Let us
mention in passing that this is one of the subjects to which Dynkin devoted
himself after his departure from Russia in 1976.

2) The problems related to quantum field theory have also motivated
much research on measure construction in infinite dimensions.

Let us mention books by Simon (19749, 1979), and by Glimm and Jaffe
(1981).

After 1980
As with Markov processes, stochastic calculus also began to fade, following
the same scheme: the trunk does not continue to develop, a few branches
stay very alive. For stochastic calculus in particular, we see it descend from
the sky after 1980, reflect itself in remarkable textbooks, become a concrete
working tool that allows us to continue the work of Paul Lévy and calculate
countless laws of processes. The general direction being less clear, I will try
to cite a few important directions, in which I myself became more or less
seriously interested.

The “Malliavin calculus”. The probabilistic theory of diffusions has al-
ways appealed to theorems borrowed from the theory of partial differential
equations, which permit us to assert that the transition function of a diffusion

9The introduction of this book contains one of the most beautiful tributes paid to
probability by a non-probabilist.
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seriously interested.

The “Malliavin calculus”. The probabilistic theory of diffusions has al-
ways appealed to theorems borrowed from the theory of partial differential
equations, which permit us to assert that the transition function of a diffusion

9The introduction of this book contains one of the most beautiful tributes paid to
probability by a non-probabilist.
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with a given generator has a sufficiently regular density. This was known in
the case of elliptic generators, and also in some degenerate cases (hypoellip-
tic), thanks to a famous theorem of Hörmander. This did not lack concrete
applications, in the study of stochastic control problems for example.

In 1976, P. Malliavin presented at a conference in Kyoto a purely proba-
bilistic method to establish the existence of very regular densities for solutions
of some stochastic differential equations with coefficients C∞. This work was
of extraordinary originality, and it took probabilists many years to under-
stand it. Before talking about its content, we must say a word about the
“tradition” in which this article appeared, at the junction of many streams
about which we have said nothing so far.

Malliavin was known foremost as an analyst and a geometer, but in prob-
ability he was self-taught, educated by reading Itô’s and Doob’s books. He
became interested in problems of vanishing cohomology – i.e., the nonexis-
tence of nontrivial harmonic functions of certain degrees on certain compact
manifolds. Now the nonexistence of nontrivial harmonic functions is related
to the asymptotic behavior of Brownian motion on the manifold. Can we
do the same for forms? This question had been taken up by Bochner and
Yano. From a probabilistic point of view, the problem is related to two oth-
ers: the construction of Brownian motion (i.e., construction of the diffusion
whose generator is the Laplace-Beltrami operator), and how we can “follow”
a differential form along Brownian motion trajectories. This takes us into
the vast field of stochastic differential geometry.

Starting in 1963, Itô had studied the parallel transport of vectors along
Brownian motion trajectories, a problem taken up again by Dynkin (1968).
The generator of this operation on forms is nevertheless not the most inter-
esting Laplacian (de Rham), but another Laplacian called horizontal, which
differs from the former by a first-order term. After Itô and Dynkin, we
can mention the works of the English school (Eells, Elworthy), then those
of Malliavin himself. One of the results of these efforts was a probabilis-
tic construction of Brownian motion on Riemannian manifolds by stochastic
differential equations, without recollement, by lifting to the frame bundle.
Malliavin had all these techniques, unknown to the majority of probabilists.

Second ingredient, the stochastic “calculus of variations”, that is the vari-
ation of solutions of the equation as a function of the initial conditions.
Here again, on this widely studied question, Malliavin brought a new tool
(although it is found in part in a little known 1961 article of Blagoveschenskii-
Freidlin): an Itô stochastic differential equation with C∞ coefficients on Rn

defines a “flow of C∞ diffeomorphisms” on Rn. That was sure to generate
plenty of work on stochastic flows.

Third ingredient, Wiener’s (1938), or rather Itô’s (1951) use of chaos
expansion to introduce a Laplacian in infinite dimensions, the Ornstein-
Uhlenbeck Laplacian, which is a self-adjoint operator relative to Wiener mea-
sure, and according to which Malliavin defines Sobolev spaces in infinite di-
mensions, his principal tool being an integration by parts formula for Wiener

23



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.5, n°1. Juin/June 2009

measure. Here again, he had forerunners: the L2 space of the Brownian mea-
sure is isomorphic, when we use the chaos expansion, to the physicists’ Fock
space (Segal 1956), one of the basic objects of quantum field theory, and the
idea of defining weakly differentiable functions and Sobolev spaces on Fock
space had been widely studied outside of probability (on this subject, there
were rich works by P. Krée in particular). But this had all remained rather
abstract, whereas Malliavin made a very efficient tool out of it. As to the
way Malliavin put these various elements together to establish Hörmander’s
theorem, it was simultaneously a mathematical tour de force and, for the
probabilistic public, a shower of novelties to assimilate.

In these conditions, it is fair to mention the work of Stroock (1981),
who (aside from his own original contributions) put all this within reach of
probabilists. The 1980 Durham colloquium with its introduction by Williams
also played a big role in the diffusion of the “Malliavin calculus”.

Among developments that followed, we will mention only (for lack of
space) the work of Bismut (1981), who modified and completed Malliavin’s
tools, established the complete form of Hörmander’s theorem, extended it
to diffusions with boundary conditions, carried out a fusion of Malliavin’s
calculus and large deviations methods – and especially, found a new outlet
for them with his probabilistic proof of the Atiyah-Singer index theorem. But
the strongest influence of the “Malliavin calculus” on probability properly
speaking probably comes from a relatively secondary aspect of his technique:
the use of Wiener chaos and the Ornstein-Uhlenbeck process on Wiener space.
That has produced wide interest in analysis in infinite dimensions, coming
back to certain concerns of theoretical physics.

Perhaps we should also mention an entirely different probabilistic ap-
proach to the existence of densities: that of Krylov (1973). Here there are
deep results that remain isolated.

Stochastic differential geometry. This subject is prior to the “Malliavin
calculus”, but it profited from its growth. Here is a sample of problems dealt
with during this period: how can we read the local geometry of a Riemannian
manifold from the behavior of its Brownian motion over short periods of
time? Or conversely, its global behavior from the asymptotic behavior of the
Brownian? What is the behavior of trajectories of a process whose generator
is the sum of a first-order term and a small second-order term? (This problem
is related to the quasi-classical approximation of quantum mechanics when
Planck’s constant “approaches zero”, and to large deviation problems.)

Another aspect of stochastic geometry, the study of semimartingales on
manifolds, inaugurated by L. Schwartz (1980), and resting on the fact that
the class of semimartingales is invariant under class C2 applications. It is
possible in particular to define continuous martingales with values in the
manifolds (and of which the Brownian motion of a Riemannian manifold is an
example). Here again, we meet an extension of the relation between Brownian
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motion and harmonic functions, in which the Brownian motion takes place in
a curved space, and the harmonic functions become harmonic maps between
Riemannian manifolds. For lack of space, let us refer to Emery’s book (1989).

Distributions and white noise. The popularity of the “Malliavin calcu-
lus” brought into mainstream probability a subject that had diverged from it
quite early. This is the subject of distributions in infinite dimensions, whose
history will force us to go back.

First, there are the ideas of Gelfand (1955) and Minlos (1958) on random
distributions, according to which the most natural way to consider the tra-
jectories of a stochastic process is to regard them as distributions. The law of
the stochastic process is then a measure on a space of distributions – and the
main spaces of distributions being nuclear, they possess excellent properties
from a measure theoretical point of view. We go from there to the study of
a particularly interesting random distribution, that of white noise, which is
the derivative of Brownian motion in the sense of distributions, developed
starting in 1967 by Hida (see his 1980 book). Here the essential point is
the expansion of functionals of Brownian motion into Wiener chaos, and the
definition of classes of generalized functionals by non-convergent expansions.
Hida’s distributions are of interest to physicists, because they provide a rig-
orous way to understand the analogies between Brownian motion and the
Feynman integral, the latter appearing as a distribution on Wiener space.
All this has produced a stream of sustained publication, but a little on the
fringe of the main streams of probability.

The “Malliavin calculus” renewed interest in these problems by introduc-
ing a whole family of Sobolev spaces of differentiable functionals, whose duals
are quite naturally distribution spaces. This point of view is due primarily to
Ikeda and Watanabe. We will not go into details here, but “Wiener analysis”
is currently a flourishing branch.

Large deviations. I will do nothing but cite Shilder (1966) and the fun-
damental work of Donsker-Varadhan (1976). This subject deserves to be
treated separately.

Noncommutative probability. The axioms of Quantum Mechanics de-
veloped by von Neumann in 1932 (thus two years before Kolmogorov’s ax-
ioms!) were in fact – if we exclude the problem of quantification of classi-
cal mechanics – probability axioms, where random variables are called self-
adjoint operators, probability laws are called positive self-adjoint operators
of unit trace, etc. Later, there appeared the possibility of addressing prob-
ability in a more general setting, C∗-algebras for example. Quite naturally,
one sought to develop a noncommutative measure theory, at least in the rel-
atively simple case of a tracial law (Segal 1953, Nelson 1974). Again quite
naturally, one posed problems of probabilistic nature, like the validity of
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the martingale convergence theorem in von Neumann algebras. But the ab-
sence of interesting examples, and the impossibility of defining conditioning
in sufficient generality, left this stream of research marginal for a long time –
among probabilists, because physicists needed models of quantum noise. It
is just that mathematicians are hardly interested in anything but fundamen-
tal physics, whereas here it is rather a matter of applied physics (quantum
optics), and so the fields of research remained nearly disjoint. We can point
to Cushen and Hudson’s (1971) definition of a noncommutative Brownian
motion, and to Accardi, Frigero and Lewis’ (1982) article on the general def-
inition of noncommutative stochastic processes. A good reference for this
period is Davies’ book (1976).

Yet the situation changed completely with the development of a noncom-
mutative form of stochastic calculus, with Streater’s and Barnett-Streater-
Wilde’s (1983) articles on fermionic Brownian motion and the corresponding
theory of the stochastic integral, and especially Hudson and Parthasarathy’s
(1984) article on bosonic Brownian motion. Independently of the value of
this article, the reason it had so much impact is that it is accessible: unlike
the others, it does not require a heavy background in functional analysis,
and it connects much more directly to the classical Itô calculus and to the
theory of Wiener chaos.

We will not comment further on this recent trend, except to mention
that it had “repercussions” in classical probability, by raising beautiful prob-
lems about martingales that give rise to a chaotic representation (“Azema’s
martingales” for example). A good reference is Parthasarathy’s (1992) book.

Omissions. The theory of stochastic processes is not all of probability, and
I am far from having taken up all aspects of stochastic process theory, or even
Markov process theory or martingale theory. I had to omit not only works
on which I was poorly informed, but also works I know well and I admire. I
hope the reader has taken pleasure in the preceding account, and I ask him
to be indulgent.

References
The citations are limited to the minimum needed to locate them: the name
of the author (without initials if there is no risk of confusion), the name of
the journal, the year and the volume (without pages). The titles are some-
times shortened, and the following abbreviations are used: MP, PM (Markov
process); MB, BM (Brownian motion); SG (semigroup); SP (stochastic pro-
cess); EDS, SDE (stochastic differential equation), PDE (partial differential
equation). For the journals:10 LN (Lecture Notes in Math.), SP (Sémi-
naire de Probabilités), ZW (Zeitschrift für W-Theorie) and its successor PT

10There are a few exceptions, for typographical reasons.
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