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Translator’s Introduction, by Glenn Shafer

In 1983, Hans Schleicher edited a special issue of Economie appliquée in
memory of Oscar Morgenstern, who had died in 1977. Jean André Ville,
who was living in retirement on the outskirts of the village of Langon, in
the Loir-et-Cher, contributed this article, recalling his own contributions to
game theory as a doctoral student in the 1930s and elaborating a personal
view of the role of duality in game theory and economics. The article is
interesting mainly for the autobiographical comments in its first few pages.
The mathematical appendix may seem, in fact, puzzlingly unsophisticated
and underdeveloped, only scratching the surface of a topic that was already
well developed, especially in France.
In order to understand Ville’s relationship with mathematical economics,

we need to understand the trajectory of his career. When he defended his
ground-breaking doctoral thesis on collectives and martingales at the Univer-
sity of Paris in 1939, he was teaching preparatory mathematics at the Lycée
Clemenceau in Nantes. His academic career was then interrupted by World
War II; he served as a lieutenant in the artillery in 1939–40 and spent the fol-
lowing year as a prisoner of the Germans. After being released in June 1941,
he resumed teaching at the lycée for a semester before being transferred to
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the Faculty of Sciences at Poitiers in January 1942 and to the Faculty of Sci-
ences at Lyon in November 1943. His research during this period was mainly
in probability and statistics, and he continually sought a university appoint-
ment in this field. But posts in probability and statistics hardly existed in the
French universities at the time, and his main teaching duties at Poitiers and
Lyon were in calculus and rational mechanics. Living in Paris and commut-
ing to Poitiers and Lyon, he became increasingly involved in consulting with
the Paris telecommunications laboratory of the manufacturer SACM (Société
alsacienne de constructions mécaniques), and by 1946 his research interests
were primarily in information and signal theory. After he was passed over for
the chair of rational mechanics at Lyon, he managed to extract an indefinite
leave of absence from the Ministry of Education, and he spent the following
ten years without an academic salary, working for SACM and also teaching
as an adjunct at the University of Paris’s statistical institute (ISUP) and
elsewhere.

During his ten years at the margins of French academics, Ville’s work
was impressive but applied. Most of his publications were in engineering
journals, especially Câbles et Transmissions. He played an important role
in SACM’s development of electronics and computing, and he was the in-
tellectual motor in their consulting for the French military. At ISUP, he
was part of a community that educated Paris students in the new fields of
applied mathematics that were not yet respectable in the university. Emile
Borel and others concerned with the narrowness of French university mathe-
matics had chartered ISUP in the 1920s; it offered courses independently of
the university and awarded certificates, not university degrees. It expanded
greatly under Georges Darmois, and in the 1950s it was the main source
of instruction in Paris not only in statistics but also in operations research,
game theory, and mathematical economics. Ville taught information theory,
matrix algebra, Boolean algebra, and demography at ISUP.

In 1956, Darmois and Joseph Pérès, dean of the Paris Faculty of Sci-
ences, decided to appoint Ville to their faculty. The University of Paris was
far behind in computing, not only relative to universities in other countries
but also relative to some provincial French universities that had their own
engineering schools. Ville could help in this field; he could teach the theory
of computing, and he could bring experts in the practical aspects of com-
puting to the university as adjuncts. But he had no academic standing in
computing. Instead, his main academic reputation stemmed from two arti-
cles in what we would now call mathematical economics: a celebrated article
on von Neumann’s minimax theorem in a book Borel had published in 1938,
and an article on utility theory, inspired by his teaching, that he had pub-
lished at Lyon in 1946. So his appointment was labeled économétrie. He was
appointed mâıtre de conférences d’économétrie in 1956 and awarded a newly
created chair in économétrie in 1959.

Today, “econometrics” refers principally to the study of statistical meth-
ods for economic time series. But in the 1950s, it could be used more broadly
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as a synonym for mathematical economics, as in the title of the journal
Econometrica. Ville was not, however, a professor of economics. In the
French system, economics belonged to the Faculty of Law. Ville was in the
Faculty of Sciences, where he was a professor of mathematics. Instead of
saying that he was a professor of économétrie, a term that must have been
confusing even then, he would sometimes explain that he was a professor of
mathématiques économiques – economic mathematics. He remained on the
faculty of the University of Paris from 1956 until his retirement in 1978. In
1971, the university was divided into a dozen universities. Most of the Fac-
ulty of Sciences became part of University VI, which was later named after
Pierre and Marie Curie. The Faculty of Law became part of University I. At
University VI, Ville continued to teach the theory of computing to under-
graduates and developed a masters program in mathematical economics in
cooperation with Claude Fourgeaud at University I. His small laboratory of
economic mathematics was part of mathematics until around the time of his
retirement, when it became associated with computer science (informatique
in French).

A glance at his list of publications in this issue of the Electronic Journal
for History of Probability and Statistics reveals that Ville was not very pro-
ductive intellectually after his return to the university in 1956. It seems fair
to say that his career as a consultant had left him without a real intellectual
agenda. He had little interest in the modern academic enterprise to which
the University of Paris rallied in the 1960s and 1970s, with its conferences,
seminars, and increasingly technical questions. The doctoral students he
hired as assistants participated in a seminar that he supposedly co-chaired
with Claude Fourgeaud, but he never attended its sessions.

In his retirement, Ville was isolated, living in awkward conditions in the
countryside with the strong-willed and increasingly eccentric wife to whom
he had always been devoted. This article is testimony, however, that he was
still thinking, in his 70s, about how to live up to his title as a distinguished
professor of economic mathematics.

Further information on Ville’s career and contributions is provided by
other articles and documents in this issue of the Electronic Journal for His-
tory of Probability and Statistics. The role of ISUP in operations research in
France in the 1950s is discussed by Bernard Roy in “Regard historique sur la
place de la RO-AD en France” in Cahier du LAMSADE 237, May 2006. The
importance of Ville’s 1946 article on utility theory is discussed by François
Gardes and Pierre Garrouste in “Jean Ville’s contribution to the integrabil-
ity debate: The mystery of a lost theorem” in History of Political Economy,
38(supplement):86–105, 2006. His role in the development of digital methods
at SACM is described by Gabriel Dureau in “Les techniques numériques et
l’informatique à la Société Alsacienne de Constructions Mécaniques et à la
Société ALCATEL” in Deuxième Colloque sur l’Histoire de l’Informatique
en France, edited by Philippe Chatelin and Pierre Mounier-Kuhn, vol. 2, pp.
129–146, Conservatoire National des Arts et Métiers, Paris, 1990.
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I am grateful to the many who have helped me with this translation
and with information about Ville’s career, especially Pierre Crépel, Richard
McLean, Ethier Stewart, Bernard Walliser, and two eminent and recently
deceased scholars, Georges Th. Guilbaud and Jean-Yves Jaffray. I also thank
the editor of Economie appliquée, Rolande Borelly, for permission to publish
the translation. I have silently corrected obvious typographical errors and
taken some liberties to make the English flow naturally.
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Game theory, duality, economic
growth

by Jean A. Ville

Not the least of Oscar Morgenstern’s achievements was to promote game
theory to the point where it became a respectable discipline. At a moment
when the theory is the subject of a colloquium at the College of France, it may
seem bizarre to raise the question of whether it is a respectable discipline. But
when I was a student, even probability theory was looked upon as an honor-
able pastime for celebrated mathematicians, who had already distinguished
themselves in other branches of pure, not to say genuine, mathematics, such
as analysis.

Other pastimes kept probability company. Among them one counted
Boolean algebra, the binary number system, François Divisia’s rational eco-
nomics,1 and mathematical logic, then called logistic.2 This attitude of con-
tempt was expressed by an almost complete absence of instruction in these
disciplines and a distrust of the young people attracted by them, who were
suspected of being interested in entertainment rather than serious research.

Emile Borel came out of the theory of functions and measure theory,
Maurice Fréchet out of the topology of abstract spaces, George Darmois out
of relativity. They had excelled sufficiently in these serious occupations to
have gained the right to amuse themselves.

As for game theory, the very topic made it yet more a matter of enter-
tainment. Analytical probability theory found some tolerance because of its
close connection at the time with the theory of heat. Kolmogorov’s axiom-
atization was accepted because it started with a “field.” I myself had been
interested in games only in the case where a player fought against chance
armed with a martingale.

Emile Borel gave a course on games of chance: gambler’s ruin, Pascal’s
problem of dividing the stakes. Borel had formalized games where players
chose certain acts (a card game in which there is bidding, for example), the
rest being random (the hands, for example). These were not games of “pure
chance”. The procedure used was that of “manuals.” Each player had a
library of instruction manuals. Each manual stated precisely what one should
do in every situation. The preparation of the manuals took the randomness
into account, but the instructions were not random. They were imperious
and without escape hatches (unambiguous). Everything was settled, at the
beginning of a match, by the choice of a manual. Player A having “A-
manuals” and Player B having “B-manuals,” we naturally want to establish
an ordering of the manuals, to distinguish the “good” ones from the “bad.”

1Translator’s note: The French economist François Divisia (1889–1964) published his
treatise Economique rationnelle in 1928.

2Translator’s note: In French, “la logistique.” This usage is still sanctioned by dictio-
naries in both French and English.
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A preorder is given by “this A-manual beats this B-manual.” But as simple
examples show, transitivity is not necessarily to be expected. It is possible
that manual A1 beats manual B1, which beats A2, which beats B2, which
beats A1. Here is the well known fact that you can defeat your adversary
more easily if you know what he is going to do. You can get around this
difficulty by introducing mixed strategies: you draw the manual you are
going to use at random, using appropriate probabilities. Skill is a matter of
choosing the probabilities well.

For two players in a zero-sum game, there arises for each a Maximin,
the minimum gain guaranteed by his own strategy, and a Minimax, which
the adversary can keep him from exceeding. The Maximin is obviously the
smaller of the two. In simple examples one finds that the two bounds are
equal, but is this the case in general? The question was important, because
the gap between the two was theoretically the last refuge of uncertainty. J.
von Neumann gave the response in his article in Mathematische Annalen:
there is no gap.

It was out of the question to present the proof in an elementary course.
I looked for a proof that would bring out the true reason for the equation
Minimax = Maximin. The starting point appeared in a simple drawing:
if two planes intersecting in a horizontal line form a gabled roof, the peak
corresponds to the Maximin. One can combine the two planes linearly by
balancing a horizontal plane on this peak; this is precisely the combination
(with positive coefficients) we seek. This horizontal plane through the peak
of the roof gives the Minimax. The generalization involves convex pyramids,
of as high a dimension as necessary; this shows the basic role of convexity.
No one had noticed that it was a matter of convexity, and this inspired a
certain amount of scorn, except on the part of John von Neumann himself,
who noted the situation in Econometrica with the best grace in the world.

This result remained a paragraph in the theory of games in the proper
sense of the term, say the sense of the Chevalier de Méré. The preoccupations
of the moment were different. One tried to imitate chance, or to show that
it could not be imitated, or to generalize Markov. Emile Borel asked if the
decimals of Pi were distributed at random, and one of his students asked
if one would get logarithmically distributed pseudo primes if Erastothenes’s
sieve were replaced with drawing at random. The strong law of large numbers
was also “on the docket.”

In Vienna, I had had the good fortune to be able to attend Karl Menger’s
seminar. In its organization, this seminar was a marvel. The program was
very loose, and people talked about every which thing. The result was that
every week gave birth to a new idea, small or large, but always attractive.
Back in Paris, I had started a seminar on probability theory. Wolfgang
Doeblin joined it, and Emile Borel adopted it. The most varied questions
were taken up there, like that of pseudo primes. But games were still only
games.

Then came the war, where, to the greatest grief of Probability, Wolfgang
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Doeblin was lost. When we came back, I heard nothing more about games.
I was alone in France, holding on to a subject that interested no one. Emile
Borel had even said to me: “It should be time you did some analysis.” I was
still too young to amuse myself with games.

This was the way it was, until operations research, linear programming,
and game theory applied to economics took off in the U.S.A. I heard about
it from Mr. Indjoudjian,3 returning from a mission. He told me about the
sensation created by the work of von Neumann and Morgenstern. Game
theory had acquired prestige, and I was cited over there before being cited
in France. Later Oskar Morgenstern talked to me about the quite difficult
research they did to rediscover what he called the missing link in game theory
– i.e., my work.

Game theory found its place. Thanks to the work of these two scholars,
it had acquired a general formalism. In the end – here is how daring their
thought was – coalitions and side payments, considered cheating in the game
theory of games, became objects of study in the game theory of economics.

Economics could adopt game theory without shame, just as it had
adopted matrices with positive elements, which had already distinguished
themselves in pure mathematics under Frobenius’s tutelage. Operations re-
search promoted programming, which reminded us of the basic role of duality.

It then emerged that duality was the connection between certain economic
concepts and certain aspects of game theory.

As for the Minimax theorem, its proof by duality is even simpler than its
proof by linear programming. It comes down to showing that there is a Nash
equilibrium and that the probabilities given the two players are dual.

Even with matrix games, even with mixed strategies, there remains the
irritating question of games with three players, or of non-zero sum games of
two players. We have to find a supplementary principle, an “ethical rule” to
choose among the Nash equilibria and rule out cheating.

In a symmetric zero-sum game, the ethical rule is the equality of gains.
In the elementary case where three players each lay down a coin, gambling
that the side they put up will be different from that of the other two players,
the rule requires each player to choose between the two sides of his coin with
probabilities 1/2 each. But when the game is not symmetric, we must impute
choices and show they are compatible with a Nash equilibrium. Coalitions
can then be useful, not to be implemented but to serve as a measure, to rank
the players by their strength of attraction. For example, we can impute to
each player the minimum he is guaranteed when playing against the coalition
of the others, for a fixed sum, the same for all. A game where this is com-
patible with a Nash equilibrium is symmetrizable. The situation is similar in

3Translator’s note: Concerning the career of Dikran Indjoudjian, a French industri-
alist who promoted operations research as a way to catch up with American industry,
see the interview by Bernard Colasse and Francis Pavé, “Parcours d’un Grand Banquier
d’Affaires,” in Annales des Mines, December 2000, pp. 4–15. Indjoudjian was one of Ville’s
fellow adjunct professors at ISUP.
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a non-zero sum game of two players, if we introduce a fictional third player,
who is passive but may enjoy certain rights under the ethical rules.

The probabilities in mixed strategies give weights for aggregating the
numbers in the payoff matrices. In the case of a matrix A of payoffs for two
players in a zero-sum game, in particular, a column of probabilities allows
us to calculate a weighted Cartesian distance between rows, which allows us
to group strategies using, for example, Benzécri’s correspondence analysis.
This is an aggregation. We might also be concerned with aggregation in a
technology matrix.

Indeed, consider the scalar PAQ, where A is a technology matrix, Q a
vector of amounts of the different goods (column vector), and P a vector
of prices for raw materials (row vector). Each column of A corresponds
to a good and gives the amounts of the raw materials together needed to
manufacture it. Each row of A corresponds to a raw material and shows how
much of one or another of the goods would have to be manufactured to use
up the supply of the raw material.4 The vector AQ is the vector of supplies.
The vector PA is the vector of costs of production. There is more duality.
The manufacturer wants to minimize PAQ (it is an expense). The supplier
of raw materials wants to maximize PAQ (it is revenue). But the entries
in P and Q are not probabilities. We must normalize them by multiplying
by weights. For P , the weights have to be quantities, giving a vector M of
sample quantities for the raw materials. For Q, the weights have to be prices,
giving a vector V of sample prices.

The condition V Q = 1 keeps the production from being zero. The condi-
tion PM = 1 keeps the supplier of the raw materials from setting exaggerated
prices. We are brought back to a game, but in the struggle some p and some
q will come out zero. This is catastrophe: manufacturers unemployed, sup-
pliers without sales. This catastrophe is what “failure of full employment”
of the manuals means in a real game. For an arbitrary matrix, there is
“unemployment” of certain “suicidal” manuals. The technology matrix A is
independent of our will. But M and V are dependent on it. Choosing them
is required, as it were. They cannot be just anything. Here is where the
duality between profit and full employment arises. Here is where the social
game is really played. The calculations become too complicated for a literary
exposition.

To summarize: Duality, a kind of dialectic. Imputation, a kind of ethics.

4Translator’s note: Readers unfamiliar with technology matrices may find a simple
example helpful. Suppose we manufacture only milk and bread, using only two raw ma-
terials, labor and land. It takes 10 hours of labor and 2 acres of land to produce a ton
of milk, 20 hours of labor and 1 acre of land to produce a ton of bread. Labor costs $5
an hour, and land rents for $50 an acre. Consumers demand 3 tons of milk and 4 tons of
bread. Then

P =

5 50


, A =


10 20
2 1


, Q =


3
4


.

The total cost, P AQ, will be $1050.
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Nash equilibrium, an incentive to work. Here is game theory’s contribution
to economics.

Mathematical appendix

The most elementary duality arises when we compare two products in-
volving a matrix a: its product with a column vector on its right and its
product with a row vector on its left.
For a system of linear equations

ax = b,

a and b being given, the non-existence of a column vector x is equivalent to
the existence of a row vector u such that

ua = 0 and ub = 0.

For the system of linear inequalities

ax ≤ b,

the non-existence of x is equivalent to the existence of u such that

u ≥ 0, ua = 0, and ub < 0.

These relationships can be interpreted as a sort of contest between a
player X who wins if he finds a solution x and a player U who wins if he
finds a solution u.
Now let us look at game theory, first of all the theory with two players

J1 and J2. These players can adopt attitudes x1 and x2, respectively. As a
result of their choices, they obtain gains

A1(x1, x2) and A2(x2, x1)

respectively.
Player J1 tries to choose x1 to maximize A1; player J2 tries to choose x2

to maximize A2. Formulated in this way, the problem does not make sense,
because two individuals are involved. Game theory’s purpose is not merely
to solve a well formulated problem but also to formulate a problem for which
one wants a solution. This second task is carried out by considering solutions
that one judges to be acceptable and looking for a formulation that leads to
them.
So far as J1 and J2 are concerned, they can seek safety, calculating

As
1 = max

x1
min
x2

A1(x1, x2) = A1(x
s
1, x

t
2)

As
2 = max

x2
min
x1

A2(x2, x1) = A2(x
s
2, x

t
1)
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Here xs1 and xs2 are J1 and J2’s safe positions, and xt1 and xt2 are the responses,
which hold the safe gains down to their minima.
Assuming there is no difficulty about the existence of these maximins and

the values that attain them, we see that we do not yet know what J1 and J2
will do. In general J1, for example, cannot simultaneously play xs1 and xt1,
and so J1 and J2’s gains will not be As

1 and As
2. If J1 and J2 play xs1 and xs2,

they will do better. Their gains will then be

A1(x
s
1, x

s
2) ≥ As

1 and A2(x
s
2, x

s
1) ≥ As

2.

If J1 and J2 give up on safety, they can simply look for their individual
maxima, without any other considerations. Let us call this the risky strategy.
Following it leads to

Ah
1 = max

x1
A1(x1, x2) andAh

2 = max
x2

A2(x2, x1).

To implement these strategies, J1 must choose x1 as a function of x2, say
x = f1(x2) such that

∀x1x2 : A1(x1, x2) ≤ A1[f1(x2), x2],

and J2 must do the same, with a function f2(x1). There will therefore be a
sort of pursuit, symbolized by

x1 = f1(x2), x2 = f2(x1).

A solution will be possible only if

∃x1 : x1 = f1[f2(x1)],

but uniqueness is not guaranteed. When we examine this risky solution,
we realize that we do not see the outcome, in terms of gains, very exactly.
Indeed, in reaction to an attitude on J2’s part that does not suit him, J1 can
ask, “are you playing to win or to make me lose?” If J2 chooses x2 = f2(x1),
he is exculpated from any suspicion of playing to hurt J1.
In the case of a matrix game, x1 and x2 run through finite sets, aij and

bij are the players’ gains when they choose strategies i and j (J1 choosing
i, J2 choosing j). The players think of choosing mixed strategies – i.e., J1
chooses a row vector p of probabilities pi, and J2 chooses a column vector q
of probabilities qj. Their respective gains are

paq =


piaijqj and pbq =


pibijqj.

When the matrix game is zero-sum, A1 + A2 = 0 or a + b = 0, we see
that the safe solution and the risky solution lead to the same result. So
Ah
1 = As

1 = W represents the “value of the game” for J1, and −W represents
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the value for J2. Each assures himself of a sure gain and seeks to maximize
his gain. No one has any reason to be ashamed.

The proof by duality brings in the inequalities involving the unknowns
pi, qj, and W :

∀j :


i

piaij ≥ W pi ≥ 0


i

pi = 1

∀i :


j

aijqj ≤ W qj ≥ 0


j

qj = 1.

Applying duality, we see that the non-existence of the p,Q,W is equiv-
alent to the existence of certain p, q,W solving the same system. So it is a
matter of self-duality, and each of the systems has a solution.

In the zero-sum game with three players, the gains A1, A2 and A3 of J1,
J2, and J3 are three functions such that

A1(x1, x2, x3) + A2(x2, x3, x1) + A3(x3, x1, x2) = 0,

where Jk chooses xk.
The coalition of J2 and J3 against J1 brings the latter to

As
1 = sup

x1

inf
x2x3

A1(x1, x2, x3).

This coalition can be denounced as cheating by J1, on the grounds that J2
and J3 must be conspiring behind a curtain, since each of them is failing
to try to maximize his own gain. But if J2 and J3 do each seek their own
maximum, and this is not inconsistent with the coalition, then J1 has no
argument. Another rule is needed.

Consider for example the game where each player lays down a coin, hiding
which side is up. When the coins are shown, there is no winner if all three
match; otherwise the player who puts his coin a different side up than the
other two gets all three coins.

If x1, x2, x3 are the probabilities for putting the coin heads up, we calcu-
late

A1(x1, x2, x3) = 2[x1(1− x2)(1− x1)x2x3]− [x2(1− x3) + x3(1− x2)]

and so on by circular permutation. Maximizing this gives

x1 =






1 if x2 + x3 < 1

indeterminate if x2 + x3 = 1

0 if x2 + x3 > 1

and so on.5

5Translator’s note: Ville writes x1 = {x2 + x3 < 1} + {x2 + x3 = 1}x1. I have
substituted an expression that may be clearer to today’s readers.
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This is not inconsistent with the truly “indecent” coalition of J2 and J3
against J1 that consists of setting x2 = 1 and x3 = 0, giving A1 = −1. A
second rule of “decency” is needed. The game being perfectly symmetric,
this rule of decency could be:

A1 = A2 = A3.

This, together with the rule of each individual seeking his maximum gain,
leads to

x1 = x2 = x3 =
1

2
.

In a non-symmetric zero-sum game, we can try to find a “decent” attri-
bution that respects the hierarchy among the players established by the rules
of the game. One might think of

Ad
1 = As

1 −
A1 + A2 + A3

3
.

But this leaves the question of whether this attribution is consistent with
each individual seeking his maximum gain.

Coming back to the zero-sum matrix game with two players where one
seeks

W = min
p
max
q

paq,

we see the formal analogy that assimilates p to prices, q to quantities, and a to
a technology matrix, where aij is the number of units of raw material number
i used in the manufacture of good number j. Such a matrix is associated
with a system of production. If we want to produce q (a row vector), we need
to acquire the vector aq. If the prices of the raw materials are represented
by p (a row vector), the cost of production is the vector pa. The product paq
is the total spent by the manufacturers of goods and collected by the sellers
of raw materials. We have a minimax problem, but how do we normalize p
and q so that they can be assimilated to probabilities? Normalizations such
that


pi = 1 and


qj = 1 are absurd. Given a price vector (for the goods)

P , we can adopt the normalization



j

Pjqj = 1,

giving normalized qj:
qj = Pjqj.

Prices of raw materials can be normalized by the dual procedure. We adopt
a vector Q of quantities of the raw materials, whence the normalization



i

piQo = 1; pi = piQi.

12
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The normalized aij are then

aij =
aij
QiPj

.

For the manufacturer, the “game” consists of choosing qj to minimize
paq. Calling the value of the game W , we have

∀i :


j

aijqj = W − i

or
∀i :



j

aijqj = QiW − iQi, i ≥ 0.

Similarly,

∀j :


i

piaij = PjW − wjPj, wj ≥ 0.

It follows that 

i

piaij > WPj =⇒ qj = 0.

If the cost of production for a good is greater, relatively, than the normal-
ization price, the good will not be manufactured; it is not profitable.
Inversely, 

j

aij < WQi =⇒ pi = 0.

If the quantity of a raw material used in manufacturing is less, relatively,
than the normalization quantity, the raw material is distributed free (this
increases the proceeds for the other raw materials).
The duality between maximum and minimum appears when we try to

study a repetitive program, reused in a closed economy.
Suppose q(t) is a vector at time t and a is a square technology matrix.

Divide q(t) between a part used to produce y(t) and a part z(t) kept for time
t+ 1. So what is available at time t+ 1 is

q(t+ 1) = y(t) + z(t)

q(t) = ay(t) + z(t).

Given an endowment q(0) and prices p(T ), we seek to maximize p(T )q(T ).
The horizon T is fixed by p(T ).
The theory of linear programming leads to a sequence of (dual) prices

such that
p(t)q(t) = constant

p(t+ 1) ≤ p(t)

p(t+ 1) ≤ p(t)a.

13
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The comparison with mechanics, where

dp

dt
= −δH

δq

dq

dt
=

δH

δp
,

leads us to look for a Hamiltonian.
We see the Hamiltonian divided in two, with

h[p(t), q(t+ 1)] = inf p(t)q(t)

H[p(t+ 1), q(t)] = sup p(t+ 1)q(t+ 1).

The first Hamiltonian corresponds to ambition to minimize the expense
p(t)q(t), where p(t) is given and q(t + 1) is wanted. The second is dual;
having q(t) and being able to sell q(t+ 1) at the price p(t+ 1) at time t+ 1,
we seek to maximize the proceeds.
With an appropriate definition of the derivatives, we then have

q(t) =
δh

δp
q(t+ 1) =

δH

δp

p(t) =
δH

δq
p(t+ 1) =

δh

δq

and of course
H = h.

We see that h serves to calculate the future price and the prior quantity, H
the prior price and the future quantity. The game is played between times t
and t+ 1.
The transition equations are simpler for the dual prices, because except

for the last step,
p(t+ 1) = inf{p(t), p(t)a}.

In the matrix case that concerns us, there exists in general a matrix A(t)
such that

q(t+ 1) = A−1(t)q(t) p(t+ 1) = p(t)A(t)

h = p(t)A(t)q(t+ 1)

H = p(t+ 1)A−1(t)q(t)

The duality between h and H is obvious.
We can present the situation simply in the case of a 2 × 2 technology

matrix. We assume a technology matrix

a =


a11 a12

a21 a22



with 2 eigenvalues λ and µ strictly between 0 and 1:

0 < µ < λ < 1.
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The evolution of q and p involves matrices a1 and a2:

a1 =


1 a12

0 a22


a2 =


a11 0

a21 1


,

with A being one these:

a1 or a or a2,

or a mixture of a1 and a : Θa+ (1−Θ)a1, 0 < Θ < 1,

or a mixture of a and a2.

If A is fixed, the evolution is bijective. Because

q(t+ 1) = A−1q(t)

p(t+ 1) = Ap(t),

we see, from the nature of the eigenvalues, that the prices converge and the
quantities diverge. And once a quantity is zero, there is a blockage. This
means that we are not certain to succeed in T steps when we choose p(1)
and q(1) at the outset. No evolution without blockage.

The phenomenon of blockage also appears in geometric progressions with
a matrix common ratio:

axt = bxt+1.

Starting with x1 (a vector), we are not sure that xt exists, unless we choose
x1 appropriately. If not, the progression is blocked.

Coming back to the problem of economic growth, we see that there is
very little latitude in the choice of the initial price p. Indeed, neither a1 nor
a2 nor a can be iterated infinitely many times without blockage unless q(t)
is an eigenvector. For a given horizon, if T is large, it is necessary that q(t)
be close to an eigenvector and the program end with A = a.
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The figure shows the evolution. We must avoid touching the regions of
blockage (in gray). The only way to achieve this is to enter the central zone
through the relatively narrow gates P1 and P2, to provide mixing for A. This
cannot happen unless

p1
p2
=


a21
1−a11 for gate P1
1−a22
a12

for gate P2.

We encounter facts we already knew. If p1 is insufficient, we do not make
q1, or else we use it in the manufacture of q2; if p2 is relatively high, we
struggle with a shortage of q2. For a finite horizon, we need to get into an
eigenvalue q as soon as possible. If we think of pure exponential growth
as a superhighway, here is an example of a turnpike. You have to find an
entrance, P1 or P2.
We can take away from this quick review the fact that duality re-emerges

in

1. the struggle between two players, each limiting the other by seeking his
own benefit;

2. the discussion of a technology matrix, where the game is between the
manufacturer and the supplier;
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3. the growth of a closed economy, where the game is between successive
periods.

If we take quantities as primal and prices as dual in problems of economic
growth, then we realize that the evolution of prices is structurally simpler
than that of quantities, but a bad choice of initial positions (in prices, the
quantities being what they are) leads to blockage.

Abstract

In linear programming, the search for a maximum in the primal program
corresponds to the search for a minimum in the dual program.

In game theory, the Minimax theorem for two players in a zero-sum game
relies on the fact that the players’ strategies are always dual, so that the
strategy for one of the players is self-dual. For more than two players, or in a
game that is not zero-sum, the indeterminacy should be removed by ethical
rules, conventions that exclude certain coalitions or types of coalition.

The problem of economic growth brings out the duality between quan-
tities and prices. A schematic example shows that we have only a narrow
margin for maneuver if we are to make prices and quantities compatible. The
gate in the field of initial conditions through which we must slip in order to
avoid a blockage of the system is small and hard to calculate. Blockage would
be the natural result of any programming that cannot be adjusted.
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