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BOOK REVIEW

Differential Geometry for Physicists and Mathematicians: Moving Frames and
Differential Forms: From Euclid Past Riemann, by Jose G. Vargas, World Scien-
tific, Singapore 2014, xvii+292 pp., ISBN 978-9814566391.

The book under review is a non-standard book on differential geometry that also
includes relevant topics in theoretical physics. Object of investigation is the theory
of affine and Euclidean connections. Following Cartan’s approach for studying
this theory, the author uses the exterior calculus and the method of moving frames.
The book is written in an appropriate style for physicists. It is also of interest to
mathematicians since the basic notions of differential geometry are presented from
a different point of view. A great merit of the book is that the advanced concepts
like fibre bundles, connections, Lie algebras, etc., are considered after introducing
them in simple structures like affine and Euclidean spaces. The book consists of
Preface, thirteen Chapters structured in five Parts, three Appendices, References
and Index.

Part I - Introduction. In Chapter 1 the author refers the readers to the selective
capitalization in titles of sections according to their difficulty. The author addresses
the intended readers of his book. As he says, they are “readers unsatisfied” by
the style of presenting the theory of connections in other books on differential
geometry. He points out that there are many misconceptions in the literature on
differential geometry for physicists and gives such examples. The chapter closes
with brief remarks about some basic notions like a ring, field ideal, vector space,
module, etc.

Part II - Tools. This part has three chapters devoted to the main tools used in
the book. In Chapter 2 (Differential Forms) the differential forms are viewed as
functions of curves, surfaces, etc., but not as a covariant skew-symmetric ten-
sors. A scalar-valued differential one-form α is defined by α = αi(x)dx

i, i =
1, 2, . . . , n, where dxi are differentials of coordinate functions x = (x1, . . . , xn),
the components αi(x) are smooth functions. A simple differential r-form ω1 ∧
. . . ∧ ωr is the result of the exterior product ∧ (∧ is defined as an algebraic opera-
tion that is linear with respect to each factor and it is anticommutative with respect
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to the interchange of any two factors) of r differential one-forms ω1, . . . , ωr. Any
linear combination of simple r-forms is also called an r-form. By using rele-
vant examples it is shown that the differential r-forms are integrands of r-integrals
(r = 1, 2, 3, . . . for a line, surface, volume, . . .) in the vector calculus. The con-
cept of exterior products of one-forms is extended to forms of arbitrary grades and
a change of basis of differential forms is discussed. A short introduction of dif-
ferentiable manifolds is given. Basic facts about vector space, dual vector space,
Euclidean vector space are presented in Chapter 3 (Vector Spaces and Tensor Prod-
ucts). Contrary to the usual definition of a tensor as a multilinear map of vectors,
tensors are introduced as elements of the vector space which is the tensor prod-
uct of vector spaces. In this chapter the author also acquaints the reader with the
Clifford algebra that is important for physicists. It is the natural algebra of spaces
endowed with a metric since the Clifford product is a combination of the exterior
and interior product. The tangent Clifford algebras of the 3-D Euclidean vector
space and of spacetime are considered. In Chapter 4 (Exterior Differentiation) the
author presents two definitions of exterior derivative. In the first approach the gen-
eralized Stokes theorem is viewed as an implicit definition of the exterior derivative
dω of the differential r-form ω as follows: dω is the differential (r + 1)-form that
satisfies the identity

∫
∂S

ω =
∫
S
dω, where S is a domain with a boundary ∂S.

In the second definition the exterior derivative of a sum is the sum of the exterior
derivatives and for a simple r-form τ = fdxi1∧. . .∧dxir its exterior derivative dτ
is given by dτ = df ∧dxi1 ∧ . . .∧dxir . Useful expression for the exterior product
of forms of any grade is obtained. Basic operators as gradient, curl, divergence and
Laplacian are defined for differential forms.

Part III - Two Klein Geometries. This part consists of Chapter 5 (Affine Klein Ge-
ometry) and Chapter 6 (Euclidean Klein Geometry). These two flat geometries
(affine and Euclidean) are considered from the view point of the bundles and in-
tegrability of differential equations. In Chapter 5 an affine space Af(n) is defined
as a pair of a vector space V n and an associated set of points {A,B,C, . . .} sat-
isfying some properties. The frame bundle F n of Af(n) is introduced as the set
of all frames (P, e1, . . . , en) of Af(n), where P is a point and {e1, . . . , en} is
a basis at P of V n. It is well known that F n is an (n + n2)-dimensional differ-
entiable manifold, which is a principal fiber bundle over Af(n) (called the base
space). The relation between the frames is realized by the action of the affine
group Af(n) in F n. The fibers of F n are n2-dimensional manifolds whose points
are vector bases of V n. The group acting in each fibre is the linear subgroup GL(n)
of Af(n). By using the basic theory of differential forms the connection equations
dP = ωi

ei, dei = ωj
i ej (ωi, ω

j
i are one-forms, called connection forms) and

the equations of structure of affine space dωi−ωj ∧ωi
j = 0, dωj

i −ωk
i ∧ωj

k = 0
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are obtained. The last two equations are also the integrability conditions of the
connection equations. The author remarks that they are the basis for the Cartanian
generalization of an affine space in Chapter 8. Other topics treated in this chap-
ter are: curvilinear coordinates and bases of vector fields generated by the system
of curvilinear coordinates (called holonomic or coordinate bases), non-holonomic
bases, the Maurer-Cartan equations, etc. The Lie algebra of the affine group is ex-
pressed in terms of the connection forms (ωi, ωk

j ). It is shown that the connection
is a differential one-form on the frame bundle F n with values in the Lie algebra of
the affine group. Chapter 6 begins with the definition of Euclidean space En (En is
an affine space whose associated vector space is Euclidean) and Euclidean frame
bundle. All frames in this bundle are Euclidean, i.e., the bases {e1, . . . , en} are
orthonormal. The group acting in Euclidean frame bundle is the Euclidean group,
and the group in its fibers is the rotation group. The equations of structure and
integrability of the connection equations of Euclidean space are discussed. The
equations of structure of affine and Euclidean spaces are the same but in the Eu-
clidean case there is an additional condition ωj

i = −ωi
j which follows from the or-

thonormality of the bases. This yields that the fibers are of dimension n(n− 1)/2.
The author also considers the extension of the Euclidean frame bundle to an affine
frame bundle by the action of the linear group on the Euclidean fibers. He briefly
presents: the Hodge dual of a differential r-form using Clifford algebra, the Kähler
calculus of scalar-valued differential forms referring to [1] where computations in
relativistic quantum mechanics with Kähler calculus are given. The Lie algebra of
the Euclidean group is found.

Part IV - Cartan Connections. In Chapter 7 (Generalized Geometry Made Sim-
ple) three surfaces (Euclidean plane, two-sphere, two-torus) equipped with two
Euclidean connections (the Levi-Civita connection (LCC) and the Columbus con-
nection, which is teleparallel) are studied. These examples help the reader un-
derstand the connection on a manifold as a rule to compare tangent spaces at dif-
ferent points on this manifold. Chapter 8 (Affine Connections) is devoted to the
main topic - affine connection, i.e., connection on the affine frame bundle of a
differentiable manifold. This chapter begins with a presentation of the Cartan’s
and Kähler’s interpretation of a vector field and the Lie derivative of a differential
form. Next, the author simply and clearly introduces the concept of affine con-
nection. First, an affine frame bundle of an n-dimensional differentiable manifold
M is constructed in a similar way as the frame bundle F n of an affine space. The
difference is that it consists of all frames (P, e1, . . . , en), where P is a vector be-
longing to the tangent space TxM , x ∈ M and {e1, . . . , en} is a basis of TxM .
After defining an affinely connected differentiable manifold M , its equations of
structure in terms of torsion and curvature are given. A geometric interpretation
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of the affine curvature of the manifold is described. Integrability and an interpre-
tation of the torsion are discussed. At the end of the chapter, an affine connection
on manifold M is formally introduced as a differential one-form (ωi, ωj

i ) on its
n(n + 1)-dimensional frame bundle B(M) taking values in the Lie algebra of
the affine group for dimension n and satisfying some conditions. In Chapter 9
(Euclidean Connections) an Euclidean frame bundle of an n-dimensional differen-
tiable manifold M is defined. It has the same structure as the affine frame bundle
of M but the vector bases {e1, . . . , en} are orthonormal or pseudo-orthonormal.
An Euclidean connection on M , endowed with a metric, is introduced by a similar
definition as that of an affine connection at the end of Chapter 8. In this defini-
tion the n(n+1)-dimensional frame bundle, affine group, GL(n) , torsion and the
affine curvature are replaced by the (n+n(n−1)/2)-dimensional Euclidean frame
bundle, Euclidean group, O(n) or Lorentz group, torsion and the Euclidean curva-
ture, respectively. The equations of the Euclidean structure are the equations of the
affine structure plus the condition that is a consequence from the orthonormality
(or pseudo-orthonormality) of the metric. Formulas for an Euclidean connection
in the case when the frames of the bundle are not orthonormal (or not pseudo-
orthonormal) are given. This is the so-called “extension” of an Euclidean connec-
tion to an affine connection. A contorsion of Euclidean connections is defined and
its components are expressed by the components of the torsion. Next, the author
deals with the LCC which is an Euclidean connection with zero torsion. The com-
ponents of the affine extension of the LCC with respect to the coordinate bases (the
Christoffel symbols of the LCC) are expressed as usual - only by the metric and its
first derivatives. The author also supplies a faster way (by inspection) to compute
the components of the LCC with respect to an orthonormal basis. He gives five
rules illustrated with examples. The relation between the curvature of the LCC,
called Riemannian curvature, and the Euclidean curvature through the contorsion
(and hence through the torsion) is presented. In the beginning of Chapter 10 (Rie-
mannian Pseudo-Spaces & Riemannian Spaces) the author explains the notion of
the Klein’s geometry used in the previous chapters. In the spirit of the Erlangen
program, a Klein geometry is a pair (G,G0) of a group G and its subgroup hav-
ing a certain property. The transformations in G0 are the transformations from G
that leave a point unchanged. Then the author comments on the so-called by Car-
tan “false spaces of Riemann”. Here the sense of the term “pseudo-Riemannian
spaces” is not the same as usual, i.e., spaces with a non-positive definite metric.
Cartan characterized the false (or the old) Riemannian geometry (until 1917 when
the LCC was proposed) as a generalization of the metric part but not the affine
one of the Euclidean structure. Next, the Cartan’s approach of derivation of the
Riemannian curvature is reproduced. For a Riemannian space (a differentiable
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manifold endowed with the LCC) the equations of structure, the Bianchi identities
and the Ricci tensor are obtained. At the end of the chapter, physical applications
of the Riemannian geometry towards the Einstein’s equations, the Einstein’s dif-
ferential three-form, the Einstein’s tensor and properties of its components and the
Einstein’s equation for the Schwarzschild’s metric are presented.

Part V - The Future? In Chapter 11 (Extensions of Cartan) the author emphasizes
on the fact that Cartan’s theory of moving frames is an excellent way to investigate
extensions of classical differential geometry of interest for physics. Moreover, this
theory can be applied to all Klein geometries. Chapter 12 (Understand the Past to
Imagine the Future) is a historical review of algebras and calculus closely related to
geometry, the main ideas in the Riemann’s program and Klein’s Erlangen program,
Cartan’s approach to Finsler geometry, etc. In Chapter 13 (A Book of Farewells) the
author explains why one should say farewell (in his opinion) to vector algebra and
calculus, calculus of complex variables, Dirac’s calculus, tensor calculus, auxiliary
bundles. He also outlines his next book. By using the moving frame method,
some facts of the geometry of curves and surfaces in 3-D Euclidean spaces are
given in Appendix A. Appendix B provides biographical data about the famous
mathematicians Elie Cartan (1869-1951) and Hermann Grassmann (1808-1877)
concerning their work and professional life. Appendix C is a list of 51 publications
by the author.

This interesting book is recommended to advanced physics and mathematics stu-
dents and to scientists working in differential geometry. It has a great methodolog-
ical value because of the multitude of unusual advanced concepts and applications.
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