

JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

GEOMETRIC QUANTIZATION OF FINITE TODA SYSTEMS AND COHERENT STATES

RUKMINI DEY AND SAIBAL GANGULI

Communicated by Vasil V. Tsanov

Abstract. Adler had showed that the Toda system can be given a coadjoint orbit description. We quantize the Toda system by viewing it as a single orbit of a multiplicative group of lower triangular matrices of determinant one with positive diagonal entries. We get a unitary representation of the group with square integrable polarized sections of the quantization as the module . We find the Rawnsley coherent states after completion of the above space of sections. We also find non-unitary finite dimensional quantum Hilbert spaces for the system. Finally we give an expression for the quantum Hamiltonian for the system.

MSC: 53D50, 81S10, 81R05 *Keywords*: Coadjoint orbit, geometric quantization, induced representation

1. Introduction

The connection between finite Toda system and coadjoint orbits was first explored by Adler [1]. We summarize the introduction to the Toda system as in [1]. The Hamiltonian considered is $H = \frac{1}{2} \sum_{i=1}^{n} y_i^2 + \sum_{i=1}^{n} e^{x_i - x_{i+1}}$, $x_0 = x_{n+1}$. The Hamiltonian equations of motion are $\dot{x}_i = y_i$, $\dot{y}_i = e^{x_{i-1} - x_i} - e^{x_i - x_{i+1}}$, i = 1, ..., n. Define

$$a_i = \frac{1}{2} e^{\frac{1}{2}(x_i - x_{i+1})}, \qquad i = 1, ..., n - 1, \qquad b_i = \frac{1}{2} y_i, \qquad i = 1, ..., n.$$

Note that $a_i > 0$ for i = 1, ..., n - 1.

Adler showed that the Hamiltonian equation of motion corresponds to a Lax equation and gave explicit expression for the integrals of motion which Poisson commute w.r.t. the following Poisson bracket

$$\{f,g\} = \sum_{i=1}^{n} (a_{i-1}g_{a_{i-1}} - a_ig_{a_i})f_{b_i} + \sum_{i=1}^{n} a_i(g_{b_i} - g_{b_{i+1}})f_{a_i}$$

where \cdot means that terms with undefined elements, i.e., terms involving a_0, a_n, b_{n+1} .

doi: 10.7546/jgsp-44-2017-21-38