

JOURNAL OF

Geometry and Symmetry in Physics

ISSN 1312-5192

TWO TYPES OF LORENTZ TRANSFORMATIONS FOR MASSLESS FIELDS

VICTOR L. MIRONOV AND SERGEY V. MIRONOV

Communicated by Abraham A. Ungar

Abstract. In the present paper we demonstrate that the massless fields can be described by two types of potentials with different space-time properties and different Lorentz transformations. In particular, we discuss the possible applications of such approach to the description of electromagnetic field and weak gravity.

MSC: 11R52 *Keywords*: Lorentz transformations, sedeonic equations for massless fields, spacetime sedeons

1. Introduction

The group of Lorentz transformations is widely discussed especially in application for electromagnetic field [18], [19]. In particular, there is an asymmetry between Lorentz transformations for potentials and field strengths in electrodynamics. The potentials are transformed as the components of four-vector, while the field strengths as the components of four-tensor [8]. However, it can be shown that there is an alternative possibility of constructing equations for massless field with different transformational properties.

In recent years, there have been a few publications devoted to the reformulation of linear equations for electromagnetic field and weak gravity (gravitoelectromagnetism [10]) in terms of hypercomplex field potentials. The first approach is based on four-component quaternions, which consist of scalar and vector parts that adequately describes the four-vector concept of special relativity [7], [9], [2]. However since the system of Maxwell equations consist of four equations for scalar, pseudoscalar, vector and pseudovector values, the application of multi-component algebras is more appropriate. Taking into account this spatial symmetry several approaches have been proposed to describe massless fields on the basis of eight-component octonions [6], [16], [1] and octons [11], [4], [3]. However, a consistent relativistic consideration implies equally the space and time symmetries that require using the extended sixteen-component space-time algebras.