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ROTATING LIQUID DROPS AND DELAUNAY SURFACES
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Abstract. Here we consider the problem of finding the equilibrium configurations
of a rotating liquid drop, paying special attention to the cases when the droplet
takes the shape of a Delaunay surface. By making use of the canonical forms of the
elliptic integrals and the Jacobian elliptic functions we have derived several explicit
parameterizations of the Delaunay surfaces. They are expressed relying on two
independent real parameters accounting respectively the size and the shape so that
all possible Delaunay surfaces are represented in a unified way.
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1. Introduction

This paper is a continuation of our previous work [20], where we have considered
the problem about the shape of the rotating liquid drop in the special case with a

doi: 10.7546/jgsp-54-2019-55-78 55



56 Vladimir Pulov and Ivaïlo Mladenov

hidden parameter, meaning that one of the integration constants has been set to zero
(cf. also [12]). Here we proceed in a similar fashion with another interesting case in
which the droplets have the shapes of the Delaunay surfaces. Our principal goal in
all of the considered cases, here and in the aforementioned paper [20], remains the
same – finding the explicit parameterizations of all possible shapes of the rotating
liquid drops (recall, there does not exist elementary functions representation of
these surfaces) and classifying them in an unified and purely geometrical way. As
in the preceding paper [20], we are going to make use of the Jacobian elliptic
functions and the elliptic integrals (cf. Section 3). Let us mention that in [12] these
surfaces were considered in terms of the Weierstrassian functions.

In many references the surfaces we are interested in are called capillary surfaces.
Such surfaces represent the interfaces arising between two immiscible fluids. The
shape of the capillary surface in fluid statics is determined by balancing the surface
tension σ and the pressure difference p exerted on the opposite sides of the interface
according to the Laplace-Young equation

p = σH (1)

in which H is the mean (meaning average) curvature of the capillary surface.
The Laplace-Young equation was introduced around 1800 by Thomas Young and
Pierre-Simon Laplace to explain the existence of “curved” capillary surfaces, such
as menisci, soap bubbles, liquid drops, etc. (about soap films, cf. [14]).

It was in 1850s when the Belgian mathematician and physicist Joseph Plateau
launched his famous experiments with rotating liquid drops. He observed that
under the radial action of the centrifugal force, the initially spherical liquid drops
deform continuously to take, according to their angular velocity, different axisym-
metric shapes [18]. The first rigorous description of these shapes was given in
Lord Rayleigh’s paper [22]. He showed that the shape of the drop depends on
the rotation rate parameter, which in our notation (see the equation (4) below) is
given by ãr3. Since then many authors have explored the rotation rate parame-
ter in their study of both the shape and the stability of the rotating liquid drops
(see, e.g., [3, 5, 12, 13]). In a more general sense cylindrical [16, 21] and non-
axisymmetric configurations [8] have been also considered.

In our work on Plateau’s rotating liquid drops, instead of using the rotation rate
parameter or any other parameters that are “physical in nature”, we prefer to intro-
duce parameters of pure geometrical character (like the couple r and ν defined in
the next Section 2) which allow us to present several explicit parameterizations of
the drop’s possible shapes and to classify them in a transparent geometrical manner
(see reference [20], Section 4 and Section 5 of the present paper).
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The first analytical (integral) representation and classification of the surfaces of
revolution with constant mean curvatures (CMC surfaces of revolution) in the Eu-
clidian space R3 was given in 1841 by the French astronomer and mathematician
Charles-Eugène Delaunay [4]. Except planes, cylinders and spheres the complete
list of such surfaces include catenoids, unduloids and nodoids, all of which are
now called Delaunay surfaces. In the Appendix to the Delaunay’s paper Sturm
has presented another geometrical/mechanical description of the CMC surfaces of
revolution by characterizing them variationally (see also [1]) and as surfaces gener-
ated by Delaunay roulettes, which are traces of the foci of the conic sections when
these conics roll without slipping in a plane along the axis of revolution (Fig. 1).
As it is well known Delaunay surfaces, unduloids and nodoids, are not expressible
by elementary functions. Their alternative representations via special functions
can be found in [6, 9, 10, 19]. In some broader sense the Delaunay surfaces are
identified as rotational linear Weingarten surfaces obtained by binormal evolution
of planar p-elastic curves, being in this case the Delaunay roulettes [17].
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Sphere

Line Segment

Catenoid

Parabola

Und�loid

Ellipse

Nodoid

Hyperbola

Figure 1. Delaunay roulettes (the profile curves of the Delaunay surfaces)
generated by rolling the conics listed below them.

We are going to reveal that there exists an interesting connection between the
Plateau’s rotating liquid drops and the Delaunay’s surfaces, namely, we will show
that the Delaunay surfaces can also appear as particular shapes of rotating liquid
drops.

After formulating the problem (Section 2) and giving some basic facts about the
elliptic integrals and the Jacobian elliptic functions (Section 3), in the next two
Sections 4 and 5, we establish four specific classes of Delaunay shapes (portions
of unduloids and nodoids) formed by the rotating liquid drop, presenting three
alternative explicit parameterizations for the surfaces of each of these classes.

2. Formulation of the Problem

In our further considerations we assume that a drop of an incompressible liquid,
immiscible with another fluid in which it is immersed, is revolved with constant
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velocity ω about some “vertical” fixed axis OZ. We assume also that the action of
gravity has been excluded. Then the drop is held together within a finite enclosing
surface S only by the surface tension σ, and the equilibrium of its shape is attained
if the resulting pressure at every point of S, being the boundary with the ambient
fluid, disappears. The pressure at the interface of the two mediums arise from three
causes, the external pe and internal pi pressures to which the respective liquids out-
side and inside of the drop are subjected, the capillary pressure σH , proportional
to the mean curvature H of the surface S according to the Laplace-Young equa-

tion [11, 15], and the pressure
ρω2R2

2
due to the centrifugal force acting at radial

distance R from the axis of revolution and opposing the surface tension; ρ is the
difference between the mass densities ρi of the inner and ρe of the exterior fluids.
By balancing of all these pressures

pi +
ρω2R2

2
= σH + pe (2)

it can be immediately deduced that the mean curvature of the equilibrium shapes
of the rotating liquid drop have the form

H = 2ãR2 + c̃ (3)

where

ã =
ρω2

4σ
, c̃ =

p

σ
· (4)

Note that ã and c̃ are arbitrary real constants, depending on the values of the phys-
ical parameters ω, σ, and the differences ρ and p of the respective mass densities
and pressures in the vicinity of the two sides of S

ρ = ρi − ρe, p = pi − pe. (5)

As can be seen from equations (3) – (5), when the two fluids have equal mass
densities, ρi ≡ ρe, the physical quantity ã equals to zero and the rotating liquid
drop assumes CMC shapes of revolution with

H = c̃, c̃ = const. (6)

From now on the equilibrium shapes of the rotating liquid drop that we are going to
deal with will be Delaunay surfaces which mean curvature is given by equation (6).

For the the case of ã 6= 0 the reader is referred to the papers [12, 20], where
other possible axisymmetric shapes are presented and parameterized explicitly via
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Figure 2. A typical closed profile
curve in XOZ-plane.

Figure 3. Geometry of the profile curve
(Rπ – parallel principal curvature).

Weierstrassian functions [12] or Jacobian elliptic functions and elliptic integrals
[20].

Let the surface S under consideration, which is the surface of the drop itself, is gen-
erated by revolving (about the “vertical” axis OZ) the meridional section γ of S, a
curve lying in theXOZ-plane of an orthogonal coordinate system (OX,OY,OZ)
in R3. Let this curve γ, which is the profile curve of S , intersects the OX-axis at
right angle and the function z = z(x) specifying it for x ≥ 0 is chosen in such a
way that z(r) = 0, r > 0 (see Fig. 2). Then the curve on the surface traced by the
point (r, 0) of the profile curve is the equator of S , which we assume to be with a
predetermined (fixed) radius r.

By making use of the wellknown in classical differential geometry [15] relations
between the mean curvature H , the meridional κµ and the parallel κπ curvatures
of S, i.e.,

κµ =
d(xκπ)

dx
, H =

κµ + κπ
2

(7)

it is straightforward to obtain for the considered CMC surfaces of revolution with
H = c̃ (cf. equation (6)) the solutions

κπ = c̃+
m

x2
, κµ = c̃− m

x2
· (8)

where m ∈ R is an integration constant. As it can be inferred from simple geo-
metrical considerations (cf. Fig. 3) and the relation κπ = 1/Rπ, the profile curve
γ = (x, z(x)) of the rotating liquid drop can be obtained by integrating the equa-
tion

dz

dx
= ± xκπ√

1− (xκπ)2
· (9)
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In view of future applications, from now on, we will abandon the use of physical
parameters, replacing c̃ and m by other two parameters having direct geometrical
meaning.

We define

ν =
κ̊µ
κ̊π

= r κ̊µ (10)

where κ̊π = 1/r and κ̊µ are the parallel and the meridional principal curvatures
evaluated along the equator E, i.e., for θ ≡ θ̊ = π/2 (cf. Fig. 2 – Fig. 3 and
the assumptions made above). In this setting the mean curvature of the droplet’s
surface at the points of the equator H̊ = (̊κµ + κ̊π)/2 and equations (6), (8) and
(10) produce the relations

c̃ =
1 + ν

2r
, m =

(1− ν)r

2
· (11)

As a result the initially given constants c̃ and m have been expressed by the real
parameters, ν ∈ R and r > 0, which geometrical significance can be seen at once –
the dimensionless quantity ν accounts for the type of the Delaunay surfaces, while
the “length parameter” r controls their size. Three particular types of surfaces are
easily recognized as right circular cylinders for ν = 0, spheres for ν = 1 and
catenoids for ν = −1.

Now, by substituting in the equation (9) the expression for κπ from (8) and passing
to the parameters ν and r by (11), the profile curve of the rotating liquid drop (its
upper right branch) takes the form (ν 6= 0)

z(χ) = ± r

2

1∫
χ

((ν + 1)t− ν + 1)dt√
t(1− t) ((ν + 1)2t− (ν − 1)2)

, χ =
x2

r2
(12)

in which for the surfaces lying inside the cylinder ν = 0

x ∈ [0, r], χ ∈ [0, 1], t ∈ (0, 1) (13)

and for the surfaces positioned outside the cylinder

x ∈ [r,+∞), χ ∈ [1,+∞), t ∈ (1,+∞). (14)

For two specific values of ν the above integral can be immediately evaluated to
obtain (using only elementary functions) the sphere with H = 1/r for ν = 1 and
the catenoid with H = 0 for ν = −1 which profile curve, the catenary, is given by

z(x) = r arcsinh

√(x
r

)2
− 1, x ∈ [r,+∞). (15)



Rotating Liquid Drops and Delaunay Surfaces 61

Figure 4. Graphic of the root σ̄ versus ν (dashed lines are the asymptotes of
the function).

The polynomial under the radical in (12) has three roots (for ν 6= −1) all of which
are real numbers

0, 1, σ̄ =

(
1− ν
1 + ν

)2

· (16)

For the classification of the Delaunay shapes of the rotating liquid drop we need to
know in what order these three roots are related to each other for each value of ν.

Based on the ranges of the root σ̄ (cf. Fig. 4) and the possible types of Delaunay
surfaces we can distinguish four particular classes of the drop’s shapes (Fig. 5)

DI(ν) ν ∈ (−∞,−1) 0 < 1 < σ1

DII(ν) ν ∈ (−1, 0) 0 < 1 < σ2 (17)
DIII(ν) ν ∈ (0, 1) 0 < σ3 < 1

DIV(ν) ν ∈ (1,+∞) 0 < σ4 < 1

where σi is the root σ̄ (σi ≡ σ̄) referred to the surfaces of the i-th class. Each one
of the above classes consists of certain portions of Delaunay surfaces being, either

Figure 5. Ranges of the parameter ν related to different classes of shapes of
the rotating liquid drop.



62 Vladimir Pulov and Ivaïlo Mladenov

Figure 6. Ranges of the parameter ν related to different types of Delaunay
surfaces.

nodoids of classes DI(ν) and DIV(ν), or unduloids of classes DII(ν) and DIII(ν)
(cf. Fig. 6 and the graphics of the profile curves in the next sections). The catenoid
ν = −1 and the surfaces DI(ν) and DII(ν) are lying outside the cylinder ν = 0,
while the sphere ν = 1 and the other two classes of surfaces DIII(ν) and DIV(ν)
are positioned inside the cylinder.

For ν 6= 0, ±1 the integral (12) belongs to the class of the so called elliptic in-
tegrals. Elliptic integrals do not have closed form representation in elementary
functions. Our present goal is to build up the canonical forms of the elliptic inte-
gral (12) for all values of the parameter ν.

3. Elliptic Integrals and Jacobian Elliptic Functions

In the next sections we use the normal elliptic integrals of the first

F (ϕ, k) ≡
ζ∫

0

dt√
(1− t2)(1− k2t2)

=

ϕ∫
0

dθ√
1− k2 sin2 θ

(18)

and the second kind

E(ϕ, k) ≡
ζ∫

0

√
1− k2t2
1− t2

dt =

ϕ∫
0

√
1− k2 sin2 θ dθ. (19)

These two fundamental elliptic integrals depend on the variable upper limit ζ or ϕ,
which is considered as their argument

ζ = sinϕ, ζ ∈ (0, 1], ϕ ∈ (0,
π

2
]
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and the so called elliptic modulus k ∈ (0, 1). There is only one more normal
elliptic integral of third kind, which is not presented here as it is not needed for our
considerations (for more details about the elliptic integrals and their normal forms,
cf. [2]).

In order to reduce the elliptic integral (12) to its canonical form we will make
substitutions involving Jacobian elliptic functions defined by the inversion of the
elliptic integral of the first kind u = F (ϕ, k). The new functions obtained by the
inversion are called am (amplitude) and respectively sn (sine amplitude)

ϕ = am(u, k), ζ = sinϕ = sn(u, k). (20)

Two related functions, namely, cn (cosine amplitude) and dn (delta amplitude), are
introduced by the formulas

cn(u, k)=
√

1−ζ2=cosϕ, dn(u, k)=
√

1−k2ζ2=
√

1−k2sn2(u, k). (21)

The functions sn(u, k), cn(u, k) and dn(u, k) are called Jacobian elliptic functions.
Their derivatives with respect to the argument u are obtained directly from the
definitions

d

du
(snu) = cnu dnu,

d

du
(cnu) = −snu dnu,

d

du
(dnu) = −k2snu cnu.

Assuming as above the modulus k to be fixed we will simply write ϕ = amu, etc.
As a consequence of formulas (20) and (21) the following fundamental relations
are obtained

sn2u+ cn2u = 1, dn2u+ k2sn2u = 1, dn2u− k2cn2u = 1− k2 (22)

and the alternative representations of the elliptic integrals are easily revealed

F (ϕ, k) = F (amu, k) ≡ u =

u∫
0

dũ

(23)

E(ϕ, k) = E(amu, k) =

u∫
0

dn2ũ dũ.

In the case of ζ = 1, respectively ϕ = π/2, the integrals (18) – (19) are said to be
complete elliptic integrals of the respective first and second kind

K(k) = F (π/2, k), E(k) = E(π/2, k). (24)
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Figure 7. Commutative diagram for the inversion of the normal elliptic inte-
gral of the first kind.

In the process of reversing and canonizing the elliptic integrals we find it useful to
visualize the composite functions by commutative “barred arrow diagrams” as the
one displayed in Fig. 7.

4. Delaunay Shapes of First DI and Second Class DII

As shown above, drop’s shapes of the first and the second class DI(ν) and DII(ν)
(Fig. 5) are portions of Delaunay surfaces (cf. Fig. 6) lying outside the cylinder
ν = 0, whose profile curves (upper right parts), according to equations (12) and
(14), are given by the formula

zi(χ) =
r

2|ν + 1|

χ∫
1

((ν + 1)t− ν + 1)dt√
t(1− t)(t− σi)

, χ =
x2

r2
, x ∈ [r, r

√
σi] (25)

where the root σi (i = 1, 2) calculated by (16) (σi ≡ σ̄) for the surfaces of the
respective class

DI(ν) : ν ∈ (−∞,−1) or DII(ν) : ν ∈ (−1, 0) (26)

is such that the following inequalities hold (compare with the first and the second
item in (17))

1 < t < σi, 1 ≤ χ ≤ σi, i = 1, 2. (27)

On substituting with

t = 1 + ξ2, χ = 1 + χ̃2, ξ > 0, χ̃ ≥ 0
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Figure 8. Commutative diagram illustrating the “inversion procedure” for
the canonization of the elliptic integral (29).

the polynomial under the radical in (25) is transformed to a product of a sum and a
difference of squares

zi(χ̃) =
r

|ν + 1|

χ̃∫
0

((ν + 1)ξ2 + 2)dξ√
(1 + ξ2)(σ̃2i − ξ2)

, i = 1, 2 (28)

where
σ̃i =

√
σi − 1, 0 < ξ < σ̃i, 0 ≤ χ̃ ≤ σ̃i.

In this way the integral can be split into two integrals

zi(χ̃) =
r∣∣ν + 1
∣∣
 σ̃i∫

0

((ν + 1)ξ2 + 2)dξ√
(1 + ξ2)(σ̃2i − ξ2)

−
σ̃i∫
χ̃

((ν + 1)ξ2 + 2)dξ√
(1 + ξ2)(σ̃2i − ξ2)


each of which is obtained as a special case of the elliptic integral

σ̃i∫
ζ

((ν + 1)ξ2 + 2)dξ√
(1 + ξ2)(σ̃2i − ξ2)

, 0 ≤ ζ < σ̃i, i = 1, 2 (29)

for ζ = 0 and ζ = χ̃, respectively. The integral (29) can be reduced to its canonical
form with the help of the Jacobian cosine elliptic function, replacing ξ and ζ by
the new variables ũ and u

ξ = σ̃icn(ũ, ki), ζ = σ̃icn(u, ki), u = F (ϕ(ζ), ki), u ∈ (0,K(ki)] (30)

thereby employing the “inversion procedure” illustrated by the commutative dia-
gram in Fig. 8 where

ϕ := ϕ(ζ) = arccos
(
ζ

σ̃i

)
, ki =

σ̃i√
1 + σ̃2i

, i = 1, 2. (31)
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Hence, the reduction of the elliptic integral (29) follows in succession

σ̃i∫
ζ

((ν + 1)ξ2 + 2)dξ√
(1 + ξ2)(σ̃2i − ξ2)

=

u∫
0

((ν + 1)σ̃2i cn2ũ+ 2)dn ũdũ√
1 + σ̃2i − σ̃2i sn2ũ

=
1√

1 + σ̃2i

u∫
0

((ν + 1)σ̃2i cn2ũ+ 2)dn ũdũ√
1− k2i sn2ũ

=
1√

1 + σ̃2i

(
2

u∫
0

dũ+ (ν + 1)σ̃2i

u∫
0

cn2ũdũ
)

(32)

=
1√

1 + σ̃2i

(
2

u∫
0

dũ+
(ν + 1)σ̃2i

k2i

( u∫
0

dn2ũdũ− (1− k2i )
u∫

0

dũ
))

=
1

k2i

√
1 + σ̃2i

((
2k2i − (ν + 1)(1− k2i )σ̃2i

)
F (ϕ, ki) + (ν + 1)σ̃2iE(ϕ, ki)

)
.

In the above chain of equalities we have made use of the fundamental relations
(22), the normal elliptic integrals (23) and the formula for the differentiation of the
Jacobian cosine function (see above in Section 3). On returning back to the profile
curve (28), we make two substitutions in the last line of (32), ζ = 0 and ζ = χ̃,
and then, by subtracting the obtained expressions, we are led to the canonical form
(cf. [2, Formula (213.13)])

zi(χ̃) =
r

k2i
∣∣ν + 1

∣∣√1 + σ̃2i

((
2k2i − (ν + 1)(1− k2i )σ̃2i

)(
K(ki)− F (ϕ(χ̃), ki)

)

+(ν + 1)σ̃2i

(
E(ki)− E(ϕ(χ̃), ki)

))
, χ̃ =

√
x2

r2
− 1, x ∈ [r, r

√
σi]

where the complete elliptic integrals K(k1) and E(k1) are obtained from the in-
complete ones with argument ϕ(0) = π/2 (cf. equations (24) and (31)).

Written with the help of the variable x the above expression provides explicit pa-
rameterizations of the profile curves of the drop’s shapes of the first class DI and
the second one DII in Monge representation (i = 1, 2)
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Figure 9. A catenary (ν = −1) with an ensemble of nodaries DI(−2. 2),
DI(−2. 9) and DI(−4) (left) and an ensemble of undularies DII(−0. 7),
DII(−0. 55) and DII(−0. 3) (right), both read from outside to inside.

zi(x) = r
(
K(ki)− F (ϕ(x), ki) +

1− ν
1 + ν

(
E(ki)− E(ϕ(x), ki)

))
(33)

ϕ(x) = arccos

√
(x/r)2 − 1

σi − 1
, ki =

2
√
−ν

1− ν
, x ∈ [r, r

√
σi]

where σi is the root σ̄ calculated by formula (16) for the surfaces in the i-th class.
Surfaces described by zi(x) in (33) are actually portions of Delaunay surfaces –
nodoids DI(ν): ν ∈ (−∞,−1) and unduloids DII(ν): ν ∈ (−1, 0), obtained
respectively for i = 1 and i = 2.

Figure 10. The nodoid DI(−2. 2) with and without a cut and its profile
curve (left).

The above formula describes the upper right part of the profile curve. The whole
curve is obtained by two consecutively applied reflections with respect to the coor-
dinate axes OX and OZ (cf. Fig. 2). Graphics of profile curves – two ensembles
of three curves each, nodaries DI and undularies DII, are given in Fig. 9.
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Figure 11. Ensemble of nodoid shapes with a cut DI(−2. 2), DI(−2. 9) and
DI(−4) (from outside to inside) and their profile curves (left).

The next two canonical representations of the surfaces of classes DI and DII are
obtained from (33) by introducing two real parameters. One of these parameters
v ∈ [0, 2π] measures the angular coordinate of the meridians while the other
parameter u is related to χ̃ (respectively to the coordinate x) in two different ways,
either by the equations

u = arccsc
√

1 + χ̃2 = arccsc
(x
r

)
, u ∈

[
arccsc

√
σi,

π

2

]
(34)

or by the equations

u = cn−1
( χ̃
σ̃i

)
= cn−1

(√(x/r)2 − 1

σi − 1

)
, u∈ [0, 2K(ki)] . (35)

The corresponding canonical representations of the drop’s shapes – the nodoids
DI(ν): ν ∈ (−∞,−1) and the unduloids DII(ν): ν ∈ (−1, 0) are given either by
the set of equations

zi(u) = r
(
K(ki)− F (ϕ(u), ki) +

1− ν
1 + ν

(
E(ki)− E(ϕ(u), ki)

))
ϕ(u) = arccos

( cotu√
σi − 1

)
, β = arccsc

√
σi (36)

x(u, v) = r cscu cos v, y(u, v)=r cscu sin v, z(u, v)=zi(u), u ∈
[
β,

π

2

]
.

Alternatively, they can be described by another set of formulas in which appears
the same parameter u (running however in a different interval) and the same axial
variable v ∈ [0, 2π], i.e.,

xi(u) = r
√
σi dnu, u ∈ [0, 2K(ki)] , v ∈ [0, 2π]

zi(u) = r
(
K(ki)− u+

1− ν
1 + ν

(
E(ki)− E(amu, ki)

))
(37)

x(u, v) = xi(u) cos v, y(u, v) = xi(u) sin v, z(u, v) = zi(u)
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Figure 12. The unduloid DII(−0. 7) with and without a cut and its profile
curve (left).

where ki (for i = 1 and i = 2) is defined in (33). Using one and the same nota-
tion u for parameters with different meanings and different ranges allows different
parameterizations to be represented uniformly and this generally does not lead to
confusion. Nevertheless one must be careful not to confuse the parameter u in the
representation (34) with the variable u that has been previously used for denoting
the values of the normal elliptic integral of the first kind (cf. the definitions (23)).

In the same time the variable u in the representation (35) appears in exactly that
previous meaning, related here with the inverse of the Jacobian cosine function.
The latter becomes at once transparent if one looks at the commutative diagram
in Fig. 8 with the variable ζ replaced by χ̃. Various drop’s shapes of the first and
the second class are given in Fig. 10 – Fig. 13. Note also that when ν → −∞ the
surfaces degenerate to a circle with radius r.

Figure 13. Ensemble of unduloid shapes with a cut DII(−0. 3), DII(−0. 55)
and DII(−0. 7) (from inside to outside) and their profile curves (left).
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5. Delaunay Shapes of Third DIII and Fourth Class DIV

Drop’s shapes of the thirdDIII(ν) and the fourth classDIV(ν) (Fig. 5) are portions
of Delaunay surfaces, unduloids and nodoids respectively (cf. Fig. 6), lying inside
the cylinder ν = 0. According to equations (12) – (13) their profile curves (upper
right parts) are given by the formula

zi(χ) =
r

2(ν + 1)

1∫
χ

((ν + 1)t− ν + 1)dt√
t(1− t)(t− σi)

, χ =
x2

r2
, x ∈ [r

√
σi, r] (38)

where the root σi (i = 3, 4) calculated by (16) (σi ≡ σ̄) for the surfaces of the
respective class

DIII(ν) : ν ∈ (0, 1) or DIV(ν) : ν ∈ (1,∞) (39)

is such that the following inequalities hold (compare with the third and the forth
item in (17))

0 < σi < t < 1, 0 < σi ≤ χ ≤ 1, i = 3, 4. (40)

The reduction of the above elliptic integral goes through the “inversion procedure”,

Figure 14. Commutative diagram illustrating the “inversion procedure” for
the canonization of the elliptic integral (38).

as illustrated by the commutative diagram in Fig. 14, on writing

t = 1− (1− σi)sn2(ũ, ki) ≡ dn2(ũ, ki)

(41)

χ = 1− (1− σi)sn2(u, ki) ≡ dn2(u, ki)
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where

u = F (ϕ(χ), ki), ϕ(χ) = arcsin
√

1− χ
1− σi

, ki =
√

1− σi · (42)

By substituting and integrating in succession the profile curve in (38) is reduced to
a representation involving only normal elliptic integrals of the first and the second
kind (cf. [2, Formula (236.16)])

zi(χ) =
r

ν + 1

u∫
0

(
2− (ν + 1)(1− σi)sn2ũ

)
dn ũdũ√

1− (1− σi)sn2ũ

=
r

ν + 1

u∫
0

(
2− (ν + 1)(1− σi)sn2ũ

)
dn ũdũ√

1− k2i sn2ũ

= r

u∫
0

(
2

ν + 1
− (1− σi)sn2ũ

)
dũ (43)

= r

(
2

ν + 1

u∫
0

dũ− 1− σi
k2i

(

u∫
0

dũ−
u∫

0

dn2ũdũ)

)

= r

(
1− ν
1 + ν

F (ϕ(χ), ki) + E(ϕ(χ), ki)

)
.

In the above chain of equalities we have made use of the formulas (20) – (23) and
the formula for the derivative of the Jacobian sine elliptic function (cf. Section 3).

On returning back to the variable x in the last line of (43) we arrive at our first
explicit parameterization of the profile curves of the drop’s shapes of the thirdDIII

and the fourth class DIV in Monge representation

zi(x) = r
(1− ν

1 + ν
F (ϕ(x), ki) + E(ϕ(x), ki)

)
, i = 3, 4

(44)

ϕ(x) = arcsin
(√1− (x/r)2

ki

)
, ki =

2
√
ν

1 + ν
, x ∈ [r

√
σi, r].

Here σi is the root σ̄ calculated by formula (16) for the surfaces of the respective
i-th class. Each one of the surfaces in the two classes DIII and DIV, which profile
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Figure 15. A circle (ν = 1) with an ensemble of undularies DIII(0. 1),
DIII(0. 35) and DIII(0. 6) (left) and an ensemble of nodaries DIV(1. 3),
DIV(1. 8) and DIV(2. 9) (right), both read from outside to inside.

curve is given by (44) for i = 3, 4, is a particular portion of a Delaunay surface,
being either a unduloid DIII(ν) for some ν ∈ (0, 1), or a nodoid DIV(ν) for some
ν ∈ (1,∞).

Note that the above formula describes only the upper right part of the profile curve.
The whole curve is obtained by performing two consecutively reflections with re-
spect to the coordinate axesOX andOZ (cf. Fig. 2). Graphics of the profile curves
obtained in this way are combined in two ensembles by three undularies DIII and
three nodaries DIV are presented in Fig. 15.

Now we are going to give two canonical representations of the surfaces of the third
and fourth classes obtained from (44) by substituting for χ (respectively the coor-
dinate x) the parameter u, defined in two different ways, either by the equations

u = arcsin
√
χ = arcsin

(x
r

)
, u ∈

[
arcsin

√
σi,

π

2

]
(45)

Figure 16. The unduloid DIII(0. 8) with and without a cut and its profile
curve (left).
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Figure 17. Ensemble of unduloid shapes with a cutDIII(0. 3),DIII(0. 5) and
DIII(0. 7) (from outside to inside) and their profile curves (left).

or by the equations

u = sn−1
(√ 1− χ

1− σi

)
= dn−1

(x
r

)
, u∈ [−K(ki), K(ki)] . (46)

We have two choices for the parameter u, fixed by the equations (45) and (46),
and they have different ranges and different relationships with the variable χ (re-
spectively x). This however should not create confusion in the respective param-
eterizations of the surfaces and their profile curves. The commutative diagram in
Fig. 14 may serve to clarify the meaning of the second choice. As a result the cor-
responding canonical representations of the drop’s shapes – the unduloidsDIII(ν):
ν ∈ (0, 1) and the nodoids DIV(ν): ν ∈ (1,∞), are given for i = 3, 4, respec-
tively, either by the set of equations

zi(u) = r
(1− ν

1 + ν
F (ϕ(u), ki) + E(ϕ(u), ki)

)
ϕ(u) = arcsin

(cosu

ki

)
, β = arcsin

√
σi (47)

x(u, v) = r sinu cos v, y(u, v)=r sinu sin v, z(u, v)=zi(u), u ∈
[
β,
π

2

]

Figure 18. The nodoid DIV(1. 9) with and without a cut and its profile
curve (left).
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Figure 19. Ensemble of nodoid shapes with a cut DIV(1. 3), DIV(1. 9) and
DIV(3) (from outside to inside) and their profile curves (left).

or by another set of equations in which the parameter u appears again, but this time
in a different range, i.e.,

xi(u) = r dnu, u ∈ [−K(ki), K(ki)] , v ∈ [0, 2π]

zi(u) = r
(1− ν

1 + ν
u+ E(amu, ki)

)
(48)

x(u, v) = xi(u) cos v, y(u, v) = xi(u) sin v, z(u, v) = zi(u).

The respective moduli ki are defined in (44). Notice that the second parameter v,
which is the same for both parameterizations, coincides with the angular coordinate
of the meridians.

Various drop’s shapes of the third and the fourth class are given in Fig. 16 – Fig. 19.
Notice also that when ν →∞ these surfaces degenerate to a circle with radius r.

6. Concluding Remarks

At the mid 1850s Joseph Plateau (a Belgiian physicists) carried out the first sys-
tematic studies of the rotating liquid drops as a part of his famous surface ten-
sion experiments [18]. Curiously enough it was approximately at the time when
Charles-Eugène Delaunay (a French mathematician) had classified in 1841 all sur-
faces of revolution with a constant mean curvature [4]. These axially symmetric
surfaces were later called Delaunay’s surfaces. As we have shown above, there
exists an interesting connection between the rotating liquid drops of Plateau and
Delaunay’s surfaces. Under certain conditions a drop, held together by the action
of surface tension and rotating uniformly, assumes the shape of a Delaunay sur-
face. This happens when the mass densities of the liquid drop itself, ρi, and of the
fluid that fills the surrounding space, ρe, are equal to each other: ρ ≡ ρi− ρe = 0.
By introducing two pure geometric parameters, one of which, r, is measuring the
size and the other, ν, is accounting for the shape of the Delaunay surfaces, we have
distinguished four particular classes of the drop’s shape, being either portions of
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Table 1. Various relationships referring to the curvatures, κπ , κµ and H ,
and the pressure difference p, for different types of Delaunay shapes of the
rotating liquid drop.

Delaunay Principal Mean Pressure
Surfaces Curvatures Curvature Difference

nodoids DI(ν)
κµ < κπ, κµ < 0 H < 0 p < 0

ν < −1

catenoids
κµ = −κπ < 0 H = 0 p = 0

ν = −1

unduloids DII(ν)
κµ < κπ, κπ > 0 H > 0 p > 0

ν ∈ (−1, 0)

cylinders
κµ = 0, κπ =

1

r
H =

1

2r
p =

σ

2rν = 0

unduloids DIII(ν)
κµ < κπ, κπ > 0 H > 0 p > 0

ν ∈ (0, 1)

spheres
κµ = κπ =

1

r
H =

1

r
p =

σ

rν = 1

nodoids DIV(ν)
κµ > κπ, κµ > 0 H >

1

r
p >

σ

rν > 1

nodoids of class DI(ν), for ν < −1, and class DIV(ν), for ν > 1, or portions of
unduloids of classes DII(ν) and DIII(ν), for ν ∈ (−1, 0) and ν ∈ (0, 1), respec-
tively (cf. the classification (17) and Fig. 6). The rest of the Delaunay surfaces
(excluding the plane) have been classified as follows: catenoids ν = −1, right
circular cylinders ν = 0, and spheres ν = 1.

By making use of the canonical forms of the elliptic integrals and the Jacobian
elliptic functions, we have obtained several explicit parameterizations of the undu-
loids and nodoids, which, as it is well known, are surfaces that do not have closed
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form description in elementary functions. Thus we have parameterized all the De-
launay shapes of the rotating liquid drops, namely, we have described explicitly a
two parametric family of CMC axially symmetric surfaces, which mean curvature
as a function of the two characteristic parameters r and ν is given by

H =
1 + ν

2r
·

Besides, we have established that the principal curvatures of these surfaces ex-
pressed as functions of the distanceR from the axis of revolution have the form

κπ =
1 + ν

2r
+

(1− ν)r

2R2
, κµ =

1 + ν

2r
− (1− ν)r

2R2
(49)

whereR is within the interval [r, r
√
σ̄] for the surfaces of classesDI andDII or be-

longs to the interval [r
√
σ̄, r] for classesDIII andDIV (cf. equations (8) and (11)).

As it follows from these equations the ratio between the pressure difference p and
the surface tension σ can be expressed through the geometric parameters r and ν

p =
(1 + ν)σ

2r
·

Based on the above formulae we have related in Table 1 the principal curvatures
κπ and κµ for each one of the four classes of surfaces, and as well as, returning
back to the physical conditions, we have compared the values (and particularly the
signs) of the mean curvature H and the pressure difference p with respect to their
dependencies on r and ν. The significance of these relationships can be under-
stood in connection with some other framework – the capillary action and wetting
phenomena. As can be seen from the above equations and the last two columns of
Table 1, the pressure difference p = pi − pe changes its value and sign in accor-
dance with the Laplace-Young equation (1) which is a direct consequence of the
pressure balance equation (2) in the case of equal mass densities, i.e., ρ ≡ 0.
In this regard it is worth noting that for a narrower interval R ∈ [r, r 4

√
σ̄] the

nodoids of class DI can be referred as anticlastic surfaces (having opposite signs
of their principal curvatures), while the nodoids of class DIV, if considered for
R ∈ [r 4

√
σ̄, r], belong to the synclastic type of surfaces (with the same signs of

the principal curvatures). A similar classification can also be made for the undu-
loids of class DII and class DIII. This kind of observations concerning the specific
relations between the principal curvatures κπ and κµ, which in our considerations
are given by (49), is basically connected with the ability of the respective shapes,
being here nodoids or unduloids, to form capillary surfaces embracing the liquid
drops in case of their contact with solids. More details on how the geometry of the
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contact surfaces and the wettability of the solid materials are related with the shape
of the capillary surfaces can be found in [7].
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