LATTICE BOUNDED DISTANCE EQUIVALENCE FOR 1D DELONE SETS WITH FINITE LOCAL COMPLEXITY

PETR AMBROŽ, ZUZANA MASÁKOVÁ AND EDITA PELANTOVÁ

Communicated by Nicolae Cotfas

Abstract. Spectra of suitably chosen Pisot-Vijayaraghavan numbers represent non-trivial examples of self-similar Delone point sets of finite local complexity, indispensable in quasicrystal modeling. For the case of quadratic Pisot units we characterize, dependingly on digits in the corresponding numeration systems, the spectra which are bounded distance to an average lattice. Our method stems in interpretation of the spectra in the frame of the cut-and-project method. Such structures are coded by an infinite word over a finite alphabet which enables us to exploit combinatorial notions such as balancedness, substitutions and the spectrum of associated incidence matrices.

MSC: 52C23, 11J72, 11K38
Keywords: Bounded distance equivalence, cut-and-project sets, Erdős spectra, finite local complexity

Contents

1 Introduction 2
2 Balanced Infinite Words 5
3 Bounded Distance Equivalence 9
4 Geometric Representations of Infinite Words 10
5 Fixed Points of Morphisms and Balancedness 12
6 The BDL Property of Fixed Points of Substitutions 13
7 The BDL Property of Cut-and-Project Sequences 17
8 The Spectrum of Quadratic Units and the BDL Property 21
9 Comments 25
References 27

doi:10.7546/jgsp-59-2021-1-29 1