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HOMOTOPY TYPES OF ORBIT SPACES AND THEIR
SELF-EQUIVALENCES FOR THE PERIODIC GROUPS

Z/a o (Z/b× T ?
n) AND Z/a o (Z/b×O?

n)

MAREK GOLASIŃSKI and DACIBERG LIMA GONÇALVES

(communicated by Lionel Schwartz)

Abstract
Let G be a finite group given in one of the forms listed in the

title with period 2d and X(n) an n-dimensional CW -complex
with the homotopy type of an n-sphere.

We study the automorphism group Aut (G) to compute the
number of distinct homotopy types of orbit spaces X(2dn −
1)/µ with respect to free and cellular G-actions µ on all CW -
complexes X(2dn−1). At the end, the groups E(X(2dn−1)/µ)
of self homotopy equivalences of orbit spaces X(2dn − 1)/µ
associated with free and cellular G-actions µ on X(2dn − 1)
are determined.

Introduction.

Given a free and cellular action µ of a finite group G with order |G| on a CW -
complex X, write X/µ for the corresponding orbit space. The problem of determin-
ing all possible homotopy types of X/µ among all free and cellular actions µ on
X, as well the group E(X/µ) of self homotopy equivalences of X/µ has been exten-
sively studied for a number of spaces e.g., in [9]. Notoriously, for an odd dimensional
sphere S2n−1 with a free action of a finite cyclic group Z/k this corresponds to the
classification of lens spaces and the calculation of the groups of it self homotopy
equivalences studied in [4]. A larger family of interesting examples are given by
a free and cellular action of a finite group G with order |G| on a CW -complex
X(2n − 1) with the homotopy type of a (2n − 1)-sphere. Write X(2n − 1)/µ for
the corresponding orbit space called a (2n − 1)-spherical space form or a Swan
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(2n−1)-complex (see e.g., [2]). Taking into account [10], the case of spherical space
forms presents a special interest. Furthermore, Swan [11] has shown that any fi-
nite group with periodic cohomology of period 2d acts freely and cellularly on a
(2d − 1)-dimensional CW -complex of the homotopy type of a (2d − 1)-sphere. It
is worth to mention that useful cohomological and geometric aspects associated to
group actions are presented in [2] and a list of basic conjectures is provided.

Backing to the case of a (2n− 1)-dimensional CW -complex X(2n− 1) with the
homotopy type of a (2n− 1)-sphere, by means of results in [11], it is shown in [12,
Theorem 1.8] that the set of homotopy types of spherical space forms of all free
cellular G-actions on X(2n − 1) is in one-to-one correspondence with the orbits,
which contain a generator of the cyclic group H2n(G) = Z/|G| under the action of
±Aut (G) (see [4] for another approach). This plays also a fundamental role in the
calculation of the group E(X(2n− 1)/µ) of self homotopy equivalences of the orbit
space X(2n− 1)/µ.

All finite periodic groups has been completely described by Suzuki-Zassenhaus
and their classification can be found in the table [1, Chapter IV; Theorem 6.15].
The present paper is part of the project to describe the homotopy types of the
orbit spaces and the group of self homotopy equivalences for all periodic groups. It
continues the works of [4, 5, 6, 8], where the cases corresponding to the families
I and II from the table [1, Chapter IV; Theorem 6.15] with the Suzuki-Zassenhaus
classification of finite periodic groups have been solved. Here we have two goals. The
first one is to calculate the numbers of homotopy types of spherical spaces forms
for the groups Z/a o (Z × T ?n) and Z/a o (Z × O?n) corresponding to the families
III and IV from the table mentioned above. The second one is to determine the
group of homotopy classes of self-equivalences for space forms given by free actions
of those both families of finite periodic groups. The results of [4, 5, 6, 8], taking
care for the groups from families I and II of that table, are essential to make crucial
calculations to develop the main results stated in Theorem 2.2 and Theorem 3.2.

In order to obtain these results, we divide the paper into two parts. The first
part consists of some algebraic results. The automorphism group Aut(A oα G) of
a semi-direct product Aoα G of some finite groups A,G leads in [6] to a splitting
short exact sequence

0 → Derα (G,A) −→ Aut (Aoα G) −→ Aut (A)×Autα(G) → 1.

Section 1 makes use of this to achieve automorphisms of the groups in question.
This is the approach to develop in Proposition 1.1 and Proposition 1.2 the groups
Derα (G,A) and Aut (A)×Autα(G), respectively.

Then, in the second part, we present geometric interpretations of those algebraic
results in terms ofG-actions. Section 2 uses the group Aut (A)×Autα(G) established
in Proposition 1.2 and Lyndon-Hochschild-Serre spectral sequence to deal with the
number of homotopy types of spherical space forms for actions of the groups Z/ao
(Z/b× T ?n) and Z/ao (Z/b×O?n). The main results of this section are stated in

Theorem 2.2. Let γ = (γ1, γ2) : Z/b×T ?n → (Z/a)? and τ = (τ1, τ2) : Z/b×O?n →
(Z/a)? be actions with (a, b) = (ab, 6) = 1 and n > 3, where γ1 : Z/b → (Z/a)?,
γ2 : T ?n → (Z/a)? and τ1 : Z/b → (Z/a)?, τ2 : O?n → (Z/a)? are appropriate
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restrictions of γ and τ , respectively. Then:

(1) card K2k[`(γ),2]−1
Z/aoγ(Z/b×T?

n)/' = 2t+t
′+13n0O(a, k[`(γ), 2])OAutγ1 (Z/b)(b, k[`(γ), 2])

O(3n−n0 , k[`(γ), 2])−1 for some 0 6 t 6 2 and 0 6 t′ 6 1;

(2) card K2k[`(τ),2]−1
Z/aoτ (Z/b×O?

n)/' = 2t+1 × 3n−1O(a, k[`(τ), 2])OAutτ1 (Z/b)(b, k[`(τ), 2])
for some 0 6 t 6 1.

Then, Corollary 2.3 says that the number of such homotopy types of those space
forms coincides with that of (4n − 1)-lens spaces studied in [4] provided the least
period of the groups in question is 6 4.

The group of crossed homomorphisms Derα (G,A) studied in Proposition 1.1
plays a key role in Section 3 dealing with the structure of groups E(X(2dn− 1)/µ)
of self homotopy equivalences for spherical space forms X(2dn− 1)/µ with respect
to free and cellular Z/ao (Z/b×T ?n)– and Z/ao (Z/b×O?n)–actions µ, respectively.
We point out that by means of [4, Proposition 3.1] (see also [10, Theorem 1.4]),
the group E(X(2k − 1)/µ) is independent of the action µ on X(2k − 1). Writing
X(2k − 1)/G for the corresponding orbit space, we close the paper with

Theorem 3.2. Let γ = (γ1, γ2) : Z/b × T ?n → (Z/a)? (resp. τ = (τ1, τ2) : Z/b ×
O?n → (Z/a)?) be an action with (a, b) = (ab, 6) = 1 for n > 3. If the group
Z/a oγ (Z/b × T ?n) (resp. Z/a oτ (Z/b × O?n)) acts freely and cellularly on a CW -
complex X(2k[`(γ), 2]− 1) (resp. X(2k[`(τ), 2]− 1)) then

E(X(2k[`(γ), 2]− 1)/(Z/aoγ (Z/b× T ?n))) ∼= Derγ (Z/b× T ?n ,Z/a)o
(E(X(2k[`(γ1), 2]− 1)/(Z/a))× Eγ1 (X(2k[`(β), 2]− 1)/(Z/b))× S4×

Z/
(

3n−n0

(3n−n0 , k[`(γ), 2])

)
(resp. E(X(2k[`(τ), 2]− 1)/(Z/aoτ (Z/b×O?n))) ∼= Derτ (Z/b×O?n,Z/a)o

(E(X(2k[`(τ1), 2]− 1)/(Z/a))× Eτ1 (X(2k[`(β), 2]− 1)/(Z/b))×Ono

Z/
(

3n−1

(3n−1, k[`(τ), 2])

)
)

which deals with explicit formulae for those groups of self homotopy equivalences.
Approaching of homotopy types of spherical space forms and their self homotopy

equivalences for the rest of the groups from the table in [1, Chapter IV; Theorem
6.15], or more precisely for the family of VI of this table, is in progress.

1. Algebraic backgrounds.

Let a finite group G be given by an extension

1 → G1 → G→ G2 → 1,

where the orders of groups G1 and G2 are relatively prime. We recall that by [7]
any automorphism of G leaves the subgroup G1 invariant and consequently, there
is a map ψ : Aut (G) → Aut (G1) × Aut (G2) of automorphism groups. Given an
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H-action α : H → Aut (A) on an abelian group A write Derα (H,A) for the abelian
group of crossed homomorphisms. For H-actions α1 : H → Aut (A1) and α2 : H →
Aut (A2) consider the obvious induced action (α1, α2) : H → Aut (A1 ×A2). Then,
an isomorphism

(?) Der(α1,α2) (H,A1 ×A2)
∼=−→ Derα1 (H,A1)×Derα2 (H,A2)

follows.
Now, let 0 → A → G → H → 1 be a short exact sequence, with A an abelian

group. Then, there is an obvious H-action α : H → Aut (A). If groups A and H are
finite with relatively prime orders then the cohomology group H1(H,A) vanishes
(see e.g., [1, Corollary 5.4]) and consequently, Derα (H,A) = A/AH , where AH is the
subgroup of A consisting of all elements fixed under the action of H. Furthermore,
by [6, Lemma 1.2] this sequence 0 → A → G → H → 1 of finite groups yields the
exact sequence

0 → Derα (H,A) → Aut(G)
ψ→ Aut (A)×Aut (H).

For an action α : G → Aut (A), let A oα G denote the semi-direct product of
A and G with respect to the action α. Let the orders of A and G be relatively
primes and ψ : Aut(A oα G) → Aut (A) × Aut(G) be the obvious map. Then, by
[6], Imψ = Aut (A) × Autα(G), where ϕ ∈ Autα(G) if and only if α = αϕ or
equivalently

Autα(G) = {ϕ ∈ Aut (G); ϕ(Kerα) = Kerα and ϕ̄ = idG/Kerα},

where ϕ̄ denotes the map induced by ϕ on the quotient group G/Kerα.
Now, let Q8 be the classical quaternion group {±1,±i,±j,±k} of order 8, where

1, i, j and k are generators of the quaternion algebra over reals. Consider the action
α : Z/3 → Aut (Q8) such that a generator of Z/3 is sent to the automorphism
τ ∈ Aut (Q8) defined by: τ(i) = j, τ(j) = k and τ(k) = i. Since Aut (Q8)∼=S4,
the symmetric group on four letters (see e.g., [1, Lemma 6.9]) any two faithful
representations of Z/3 in the group Q8 are conjugated. Whence, without losing
generality, we can choose the action α given above. Then, we consider the semi-
direct product Q8 oα Z/3 = T ?, the binary tetrahedral group. More generally, for
n > 1 consider the action αn : Z/3n → Aut (Q8) as the composition of the quotient
map Z/3n → Z/3 with the action α : Z/3 → Aut (Q8). Then, for the group

T ?n = Q8 oαn Z/3n,

by means of [13, p. 198], it holds

T ?n :

{
X3n

= P 4 = 1, P 2 = Q2, XPX−1 = Q,

XQX−1 = PQ, PQP−1 = Q−1

in virtue of generators and relations. In particular, the cyclic group Z/3n is the
abelianization of T ?n for any n > 1 and the center Z(T ?n) = Z/2⊕ Z/3n−1.

The symmetric group S3 has two distinct extensions by Q8, with respect to the
outer action α : S3 → Out (Q8) = Aut (Q8)/Inn (Q8) which is the composition of
the inclusion S3 ⊆ Aut (Q8) with the projection Aut (Q8) → Out(Q8). This follows
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from the facts that Z(Q8) = Z/2 and H2(S3,Z/2) = Z/2. These extensions are the
semi-direct product Q8 o S3 and

1 → Q8 → O?
ϕ→ S3 → 1,

where O? is the binary octahedral group. Because ϕ−1(A3) = T ? for the alternating
subgroup A3 ⊆ S3, so we achieve the extension

1 → T ? → O? → Z/2 → 1.

In general, since Z(T ?n) = Z/2 ⊕ Z/3n−1 and H2(S3,Z(T ?n)) = H2(S3,Z/2 ⊕
Z/3n−1) = H2(S3,Z/2) = Z/2, we achieve the non-trivial extension

1 → T ?n−1 → O?n
ϕn→ S3 → 1

for n > 1, where T ?0 = Q8. Because ϕ−1
n (A3) = T ?n a fortiori the new extension

1 → T ?n → O?n → Z/2 → 1

is obtained.
In the light of [13, p. 198] the group O?n is given by

O?n :


X3n

= P 4 = 1, P 2 = Q2 = R2, PQP−1 = Q−1,

XPX−1 = Q, XQX−1 = PQ, RXR−1 = X−1,

RPR−1 = QP, RQR−1 = Q−1

in virtue of generators and relations. It follows that the cyclic group Z/2 is isomor-
phic to the abelianization of O?n and the center Z(O?n) as well.

Now, consider the periodic groups Z/a oγ (Z/b × T ?n) and Z/a oτ (Z/b × O?n)
corresponding to the families III and IV [1, Theorem 6.15] with (a, b) = (ab, 6) = 1
and n > 1, where γ : Z/b × T ?n → Aut (Z/a) and τ : Z/b × O?n → Aut (Z/a) are
actions of Z/b×T ?n and Z/b×O?n, respectively, on the cyclic group Z/a. The group
Aut (Z/a) is abelian, a fortiori the actions γ and τ are uniquely determined by their
restrictions γ1 : Z/b → Aut (Z/a), γ2 : T ?n → Aut (Z/a) and τ1 : Z/b → Aut (Z/a),
τ2 : O?n → Aut (Z/a). But the abelianizations of T ?n and O?n are isomorphic to the
groups Z/3n and Z/2, respectively. Whence, the actions γ2 and τ2 are uniquely
determined by γ2(X) and τ2(R), respectively, with γ2(X)3

n

= idZ/a and τ2(R)2 =
idZ/a.

To study the groups Aut (Z/aoγ (Z/b× T ?n)) and Aut (Z/aoγ (Z/b×O?n)), we
need, in the light of [6, Proposition 1.3], to describe the groups Derγ (Z/b×T ?n ,Z/a),
Autγ (Z/b× T ?n) and Derτ (Z/b×O?n,Z/a), Autτ (Z/b×O?n), respectively.

First, let a = pk with p 6= 2, 3 prime and k > 0. Because the actions γ2 and τ2
factor through the abelianizations of T ?n and O?n, which are isomorphic to the groups
Z/3n and Z/2, respectively, whence Ker γ2 is trivial or Ker γ2 = Q8 oαn Z/3n0

for some n0 6 n and Ker τ2 is trivial or equals T ?n (as a subgroup with index
two in O?n and containing T ?n). Consequently, by [6], we achieve that Derγ (Z/b ×
T ?n ,Z/pn) = Derγ1 (Z/b,Z/pn) provided γ2 is trivial and Derγ (Z/b × T ?n ,Z/pk) =
Derγ̄ (Z/b × Z/3n−n0 ,Z/pn) provided Ker γ2 = Q8 oαn

Z/3n0 , where γ̄ : Z/b ×
Z/3n−n0 = Z/b×(T ?n/Ker γ2) → Aut (Z/a) is the action induced by γ. Furthermore,
Derτ (Z/b × O?n,Z/pn) = Derτ1 (Z/b,Z/pn) provided τ2 is trivial and Derτ (Z/b ×
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O?n,Z/pk) = Derτ̄ (Z/b× Z/2,Z/pn) provided Ker τ2 = T ?n , where τ̄ : Z/b× Z/2 =
Z/b×O?n/T ?n → Aut (Z/a) is the action induced by τ . Because (b, 6) = 1, the groups
Z/b× Z/3n−n0 and Z/b× Z/2 are cyclic whence, as in [6, Corollary 1.5], elements
of Derτ̄ (Z/b × Z/3n−n0 ,Z/pn) and Derτ̄ (Z/b × Z/2,Z/pn) might be described by
means of some elements in Z/pn.

Now, if a is a positive integer with (a, 6) = 1 and a = pk11 · · · pks
s its prime

factorization with ki > 1 then pi 6= 2, 3 for all i = 1, . . . , s. Obviously, any iso-
morphism Z/a

∼=→ Z/pn1
1 × · · · × Z/pns

s yields isomorphisms α : Aut (Z/a)
∼=→

Aut (Z/pn1
1 × · · · × Z/pns

s ) and

Derγ (Z/b× T ?n ,Z/a)
∼=→ Derαγ(Z/b× T ?n ,Z/p

k1
1 × · · · × Z/pks

s )

for an action γ : Z/b× T ?n → Aut (Z/a), and

Derτ (Z/b×O?n,Z/a)
∼=→ Derατ (Z/b×O?n,Z/p

k1
1 × · · · × Z/pks

s )

for an action τ : Z/b×O?n → Aut (Z/a). Then, the well-known (see e.g. [6, Lemma
1.1]) isomorphism Aut (Z/pk11 ×· · ·×Z/pks

s )
∼=→ Aut (Z/pk11 )×· · ·×Aut (Z/pks

s ) and
(?) lead to isomorphisms

Derγ (Z/b×T ?n ,Z/a)
∼=−→ Derα1γ(Z/b×T ?n ,Z/p

k1
1 )× · · ·×Derαsγ (Z/b×T ?n ,Z/pns

s )

and

Derτ (Z/b×O?n,Z/a)
∼=−→ Derα1τ (Z/b×O?n,Z/p

k1
1 )×· · ·×Derαsτ (Z/b×O?n,Z/pns

s ),

where αi is the composition of α with an appropriate projection map Aut (Z/pk11 )×
· · · × Aut (Z/pks

s ) → Aut (Z/pki
i ) for i = 1, . . . , s. Thus, we may summarize the

discussion above as follows.

Proposition 1.1. Let Z/b and Z/pk be cyclic groups with p prime and k > 1,
(bpk, 6) = (b, pk) = 1 and let γ : Z/b×T ?n → Aut (Z/pk), τ : Z/b×O?n → Aut (Z/pk)
be actions. Write γ1 : Z/b → Aut (Z/pk), γ2 : T ?n → Aut (Z/pk) and τ1 : Z/b →
Aut (Z/pk), τ2 : O?n → Aut (Z/pk) for the appropriate restrictions of γ and τ ,
respectively. Then:

(1)

Derγ(Z/b× T ?n ,Z/pk) ∼= Derγ1 (Z/b,Z/pk)

and

Derτ (Z/b×O?n,Z/pk) ∼= Derτ1 (Z/b,Z/pk)

if γ2 and τ2 are trivial;

(2) Derγ(Z/b×T ?n ,Z/pk) ∼= Derγ̄ (Z/b×Z/3n−n0 ,Z/pk) provided Ker γ2 = Q8oαn

Z/3n0 , where γ̄ : Z/b × Z/3n−n0 ∼= Z/b × (T ?n/Ker γ2) → Aut (Z/pk) is the
action induced by γ
and
Derτ (Z/b×O?n,Z/pk) ∼= Derτ̄ (Z/b× Z/2,Z/pk) provided Ker τ2 = T ?n , where
τ̄ : Z/b× Z/2 ∼= Z/b× (O?n/T

?
n) → Aut (Z/pk) is the action induced by τ .
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If γ : Z/b × T ?n → Aut (Z/a) and τ : Z/b × O?n → Aut (Z/a) are actions with
(a, b) = (ab, 6) = 1 and a = pk11 · · · pks

s is the prime factorization of a with
ki > 1 for i = 1, . . . , s then

Derγ (Z/b× T ?n ,Z/a)
∼=−→ Derα1γ(Z/b× T ?n ,Z/p

k1
1 )× · · ·

×Derαsγ (Z/b× T ?n ,Z/pns
s )

and
Derτ (Z/b×O?n,Z/a)

∼=−→ Derα1τ (Z/b×O?n,Z/p
k1
1 )× · · ·

×Derαsτ (Z/b× T ?n ,Z/pns
s ),

where αi is the composition of an isomorphism α : Aut (Z/a)
∼=→ Aut (Z/pk11 ×

· · · × Z/pns
s ) with an appropriate projection map Aut (Z/pk11 )×

· · · ×Aut (Z/pns
s ) → Aut (Z/pki

i ) for i = 1, . . . , s.

Now, move to the groups Autγ(Z/b × T ?n) and Autτ (Z/b × O?n), where γ =
(γ1, γ2) : Z/b× T ?n → Aut (Z/a) and τ = (τ1, τ2) : Z/b×O?n → Aut (Z/a). Because
(ab, 6) = 1, [6, Lemma 1.1] yields Aut (Z/b × T ?n) ∼= Aut (Z/b) × Aut (T ?n) and
Aut (Z/b × O?n) ∼= Aut (Z/b) × Aut (O?n). Furthermore, the groups Aut (T ?n) and
Aut (O?n) have been fully described in [7] for all n > 1. In the light of [6, Corollary
1.4] we achieve isomorphisms

Autγ (Z/b× T ?n)
∼=−→ Autγ1 (Z/b)×Autγ2 (T ?n)

and
Autτ (Z/b×O?n)

∼=−→ Autτ1 (Z/b)×Autτ2 (O?n).

But ϕ ∈ Autγ2(T
?
n) (resp. ϕ ∈ Autτ2(O

?
n)) if and only if γ2(X) = (γ2ϕ)(X) (resp.

τ2(R) = (τ2ϕ)(R)). Now, if Ker γ2 = Q8 oαn
Z/3n0 then, from the list of elements

in Aut (T ?n) presented in [7], it follows that

Autγ2(T
?
n) = {ϕ ∈ Aut (T ?n); ϕ(X) = X l(1+3n0+1) for l = 0, . . . , 3n−n0−1}.

By means of [7], any ϕ ∈ Aut (O?n) restricts to an automorphism of T ?n with the
identity on the quotient O?n/T

?
n = Z/2 a fortiori τ2(R) = (τ2ϕ)(R) holds for all

ϕ ∈ Aut (O?n). Now, in virtue of [7, Proposition 3.2], we are ready to close this
section with

Proposition 1.2. Let Z/a and Z/b with (a, b) = (ab, 6) = 1 and γ : Z/b × T ?n →
Aut (Z/a), τ : Z/b × O?n → Aut (Z/a) be actions. Write γ1 : Z/b → Aut (Z/a),
γ2 : T ?n → Aut (Z/a) for the restrictions of γ and τ1 : Z/b→ Aut (Z/a), τ2 : O?n →
Aut (Z/a) for the restrictions of τ . Then:

(1) Autγ2 (T ?n) ∼= S4 × Z/3n−n0 provided Ker γ2 = Q8 oαn Z/3n0 ;
(2) Autτ2 (O?n) ∼= Aut (O?n).

Certainly, the groups Autγ1 (Z/b) and Autτ1 (Z/b) could be described by [6,
Proposition 1.5 and Corollary 1.6]. Observe that `(γ1), `(τ1) 6 2 implies `(γ1), `(τ1) =
1 because b is odd and consequently, Autγ1 (Z/b) = Autτ1 (Z/b) = Aut (Z/b), where

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 1(1), 2006 36

`(γ1) (resp. `(τ1)) denotes the order of γ1(1b) (resp. τ1(1b)) in Aut (Z/b) for a gen-
erator 1b of the cyclic group Z/b.

2. Homotopy types of space forms.

Given a group G, write Hk(G) for its kth cohomology group with constant coef-
ficients in the integers Z for k > 0. Then, any automorphism ϕ ∈ Aut (G) yields the
induced automorphism ϕ∗ ∈ Aut (Hn(G)) and we write η : Aut (G) → Aut (Hk(G))
for the corresponding anti-homomorphism. By a period of a group G we mean an
integer d such that Hk(G) = Hk+d(G) for all k > 0, and a group G with this
property is called periodic. Among all periods of a group G there is the least one;
and all others are multiple of that one. That least one period we call the period of
the group and by [3, Section 11] the period of any periodic group is even.

Throughout the rest of the paper, X(k) denotes a k-dimensional CW -complex
with the homotopy type of a k-sphere and the group Aut (Z/a) is identified with
the unit group (Z/a)? of the mod a ring Z/a. Given a free cellular action µ of a
finite group G with order |G| on a CW -complex X(2k − 1) write X(2k − 1)/µ
for the corresponding orbit space called a (2k − 1)-spherical space form or a Swan
(2k−1)-complex (see e.g., [2]). Then, the group G is periodic with period 2d dividing
2k and by [3, Chap. XVI, §9] there is an isomorphism H2n(G) ∼= Z/|G|. Two
spherical space forms X(2k − 1)/µ and X ′(2k − 1)/µ′ are called equivalent if they
are homeomorphic and let K2k−1

G denote the set of all such classes. We say that two
such classes [X(2k − 1)/µ] and [X ′(2k − 1)/µ′] are homotopic if the space forms
X(2k − 1)/µ and X ′(2k − 1)/µ′ are homotopy equivalent. Write K2k−1

G /' for the
associated quotient set of K2k−1

G and cardK2k−1
G /' for its cardinality, respectively.

By means of [11], it is shown in [12, Theorem 1.8] that elements of the set K2k−1
G /'

are in one-to-one correspondence with the orbits, which contain a generator of
H2k(G) = Z/|G| under an action of ±Aut (G) (see also [4] for another approach).
But generators of the group Z/|G| are given by the unit group (Z/|G|)? of the
ring Z/|G|. Thus, those homotopy types are in one-to-one correspondence with the
quotient (Z/|G|)?/{±ϕ∗; ϕ ∈ Aut (G)}, where ϕ∗ is the induced automorphism on
the cohomology H2k(G) = Z/|G| by ϕ ∈ Aut (G).

Now, let G1 and G2 be finite groups with relatively prime orders |G1| and |G2|,
respectively. If G1 and G2 are also periodic with periods 2d1 and 2d2, respectively
then by [1] the least common multiple [2d1, 2d2] of 2d1 and 2d2 is the least period of
the product G1 ×G2. Furthermore, given a finite group G with an action α : G→
(Z/a)? write |α(g)| for the order of α(g) with g ∈ G. Let `(α) = [|α(g)|; for g ∈ G]
be the least common multiple of those orders. Then, for a semi-direct product
Z/aoαG, we have shown in [6], by means of the Lyndon-Hochschild-Serre spectral
sequence, the following result.

Proposition 2.1. Let Z/a be a cyclic group of order a, G a finite group, α : G→
Z/a an action and (|G|, a) = 1. If G is periodic with the period 2d then the semi-
direct product Z/aoαG is also a period finite group with the least period 2[`(α), d].

Thus, we are in a position to investigate the periodic groups Z/aoγ (Z/b× T ?n)
and Z/a oτ (Z/b × O?n). First, we find the least periods of the groups T ?n and O?n.
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Because T ?n = Q8 oα Z/3n whence the Lyndon-Hochschild-Serre spectral sequence
applied to the short one

0 → Q8 −→ T ?n −→ Z/3n → 0

yields

Ep,q2 (T ?n) = Hp(Z/3n,Hq(Q8)) =



0, if p, q > 0;
Z, if p, q = 0;
0, if q = 0 and p odd;
Z/3n, if q = 0and p even with 6= 0;
H0(Z/3n,Hq(Q8)) = (Hq(Q8))Z/3n

, if q > 0.

Using the cohomology

Hk(Q8) =



Z, k = 0;
0, if k = 1 + 4l;
Z/2⊕ Z/2, if k = 2 + 4l;
0, if k = 3 + 4l;
Z/8, if k = 4 + 4l

with l > 0, we can easily get

Hk(T ?n) =



Z, if k = 0;
0, if k = 1 + 4l;
Z/3n, if k = 2 + 4l;
0, if k = 3 + 4l;
Z/(8× 3n), if k = 4 + 4l

with l > 0 and consequently, 4 is the least period of the group T ?n . Whence, by
Proposition 2.1, the number 2[`(γ), 2] is the least period of the group Z/aoγ (Z/b×
T ?n).

To find the least period of the group O?n, we apply Lyndon-Hochschild-Serre
spectral sequence to the short one

0 → T ?n −→ O?n −→ Z/2 → 0.

Then, Ep,q2 (O?n) = Hp(Z/2,Hq(T ?n)). Next, observe that Ep,42 = Hp(Z/2,Z/(8 ×
3n)) = Hp(Z/2,Z/8) ⊕Hp(Z/2,Z/3n). Because Hp(Z/2,Z/3n) = 0 for p > 0 and
by [11] the action of Z/2 on Z/8 is trivial Hp(Z/2,Z/(8 × 3n)) = Z/2 for p > 0.
Then, we can easily find that

Ep,q2 (O?n) = Hp(Z/2,Hq(T ?n)) =



Z, if p = q = 0;
0, if p odd, q = 0;
Z/2, if p even, q = 0;
0, if p > 0, q = 1 + 4l, 2 + 4l, 3 + 4l;
Z/(8× 3n), if p = 0, q = 4 + 4l;
Z/2, if p > 0, q = 4 + 4l
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with l > 0.

To find the cohomology H∗(O?n) consider the generalized quaternion group Q16

as the subgroup of O?n generated by P,Q,R (according to the presentation of O?n
given in Section 1) and its subgroup Q8 generated by P,Q. The exact sequence
0 → Q8 −→ Q16 −→ Z/2 → 0 leads to Lyndon-Hochschild-Serre spectral sequence
with Ep,q2 (Q16) = Hp(Z/2,Hq(Q8)). Because the action of Z/2 on Z/2 ⊕ Z/2 is

given by the matrix
(

1 0
1 1

)
and by means of [11], the action of Z/2 on Z/8 is

trivial, applying H?(Q8), we derive:

Ep,02 (Q16) = Hp(Z/2) =


Z, if p = 0;
0, if p odd;
Z/2, if p even,

Ep,12 (Q16) = 0, Ep,22 (Q16) = Hp(Z/2,Z/2⊕ Z/2) =

{
Z/2, if p = 0;
0, if p > 0,

Ep,32 (Q16) = 0 and Ep,42 (Q16) = Hp(Z/2,Z/8) = Z/2. Writing Ek(Q16) for the k-
term of that spectral sequence, we can deduce that E2(Q16) ∼= E3(Q16) ∼= E4(Q16) ∼=
E5(Q16) and d5(E

1,4
5 (Q16)) = E6,0

5 (Q16), dk(E
0,q
k (Q16)) = 0 for k > 2. Then, us-

ing the multiplicative structure of that spectral sequence and the periodicity of the
groups Q8 and Z/2, we get further isomorphisms E6(Q16) = H(E5(Q16), d5) ∼=
E7(Q16) ∼= · · · ∼= E∞(Q16) = G (H∗(Q16)), where by [3, Chapter XII] it holds:

Hk(Q16) =



Z, if k = 0;
0, if k = 1 + 4l;
Z⊕ Z/2, if k = 2 + 4l;
0, if k = 3 + 4l;
Z/16, if k = 4 + 4l

with l > 0. The commutative diagram

0 // Q8
//

��

Q16

��

// Z/2 // 0

0 // T ?n // O?n // Z/2 // 0

leads to a map

Ek(O?n) −→ Ek(Q16)

for k > 2. Because of the isomorphism Ep,q2 (O?n)
∼=−→ Ep,q2 (Q16) for p > 0, we can
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get E6(O?n) and then E∞(O?n) as well. Therefore, we can read that

Hk(O?n) =



Z, if k = 0;
0, if k = 1 + 4l;
Z/2, if k = 2 + 4l;
0, if k = 3 + 4l;
A⊕ Z/3n, if k = 4 + 4l

with l > 0, where A is an abelian group of order 16. Because of the monomorphism
H4l(O?n)(2) → H4l(Q16) on the 2-primary component of H4l(O?n) for l > 0, we
deduce an isomorphism A ∼= Z/16. Thus,

Hk(O?n) =



Z, if k = 0;
0, if k = 1 + 4l;
Z/2, if k = 2 + 4l;
0, if k = 3 + 4l;
Z/(16× 3n), if k = 4 + 4l

with l > 0 and consequently, 4 is the least period of the group O?n. Whence, by
means of Proposition 2.1, the number 2[`(τ), 2] is the least period of the group
Z/aoτ (Z/b×O?n).

By [6, Lemma 1.1] any automorphism ϕ ∈ Aut (Z/a oα G) for (a, |G|) = 1
determines a pair (ϕ1, ϕ2) ∈ (Z/a)? ×Aut (G) with the commutative diagram

0 // Z/a //

ϕ1

��

Z/aoα G

ϕ

��

// G

ϕ2

��

// 0

0 // Z/a // Z/aoα G // G // 0.

Then, Lyndon-Hochshild-Serre spectral sequence and its naturality lead to the com-
mutative diagram of cyclic groups with exact and splitting rows

0 // H2k[d,`(α)](G) //

ϕ∗
2

��

H2k[d,`(α)](Z/aoα G)

ϕ∗

��

// H2k[d,`(α)](Z/a)

ϕ∗
1

��

// 0

0 // H2k[d,`(α)](G) // H2k[d,`(α)](Z/aoα G) // H2k[d,`(α)](Z/a) // 0

for k > 0, where 2d is the least period of G. Whence, ϕ∗ is uniquely determined by
the corresponding pair (ϕ∗2, ϕ

∗
1) and consequently, there is the factorization

Aut (Z/aoα G)

ψ

��

η // Aut (H2k[`(α),d](Z/aoα G))

(Z/a)? ×Autα (G)

η′

66mmmmmmmmmmmmmmmmmmmmmmmmmmm
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for all k > 0, where Autα (G) is the subgroup of Aut(G) defined in Section 1. But
H2k[`(α),d](Z/aoαG) ∼= Z/a|G|, so in the light of the above, to describe the number
cardK2k[`(α),d]−1

Z/aoαG
/' of homotopy types of spherical space forms for Z/aoαG we are

led to compute the order of the quotient (Z/a|G|)?/{±ϕ∗; ϕ ∈ (Z/a)?×Autα (G)}
where ϕ∗ is the induced automorphism on the cohomology H2k[`(α),d](Z/aoG) for
ϕ ∈ (Z/a)? ×Autα (G).

Now, for a periodic group G1 with the least period 2d1 and an action ω : G2 →
Aut (G1), we achieve anti-homomorphism G2 → Aut (H2kd1(G1)) = Aut (Z/|G1|).
Write (Z/|G1|)?/ ± G2 for the quotient group (Z/|G1|)?/{±ω(g2)∗; g2 ∈ G2} and
OG2(|G1|, 2kd1) for its order, where ω(g2)∗ denotes the induced map on the coho-
mology H2kd1(G1). Furthermore, we set O(m,n) for the order of the quotient group
(Z/m)?/{±ln; l ∈ (Z/m)?}.

Given ϕ ∈ Aut (T ?n) for the group T ?n = Q8 oα Z/3n there is the correspond-
ing pair (ϕ1, ϕ2) ∈ Aut (Q8) × (Z/3n)? and by means of [7] maps ϕ2 exhaust all
automorphisms of the group Z/3n. The periodicity of T ?n , Lyndon-Hochshild-Serre
spectral sequence and its naturality lead to the commutative diagram

0 // H4k(Z/3n) //

ϕ∗
2

��

H4k(T ?n)

ϕ∗

��

// H4k(Q8)

ϕ∗
1

��

// 0

0 // H4k(Z/3n) // H4n(T ?n) // H4k(Q8) // 0

of cyclic groups with exact rows for k > 0. But, by means of [11], ϕ∗1 is the identity
map and a fortiori ϕ∗ is uniquely determined by ϕ∗2.

By [7], any ϕ ∈ Aut (O?n) yields also a pair (ϕ1, ϕ2) ∈ Aut (T ?n)× (Z/2)?. Again,
the periodicity of O?n, Lyndon-Hochshild-Serre spectral sequence and its naturality
lead to the commutative diagram of cyclic groups

0 // H4k(Z/2) //

ϕ∗
2

��

H4k(O?n)

ϕ∗

��

// H4k(T ?n)

ϕ∗
1

��

// 0

0 // H4k(Z/2) // H4k(O?n) // H4k(T ?n) // 0

with exact and splitting rows for k > 0. Because the restriction of ϕ∗1 to Q8, denoted
by ϕ| induces the identity on H4n(Q8) = Z/8, by means of the description of
H4k(O?n) and H4k(T ?n), we derive from the above the commutative diagram

0 // Z/2 // Z/16

ϕ∗
|

��

// Z/8 // 0

0 // Z/2 // Z/16 // Z/8 // 0.

Therefore, the restriction ϕ∗| : Z/16 → Z/16 is the identity map or the multipica-
tion by 9. Certainly, both cases might hold. Namely, consider the automorphism
ϕ : O?n → O?n given by ϕ(P ) = P , ϕ(Q) = Q, ϕ(R) = −R and ϕ(X) = X, where
P,Q,R,X are generators of O?n. But the subgroup of O?n generated by P,Q,R
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is the generalized quaternion group Q16 with the relation (RP )4 = R2. Then,
ϕ(RP ) = (RP )5 and by [11] we achieve that ϕ∗ : H4k(O?n) → H4k(O?n) restricts on
H4n(Q16) = Z/16 to the multiplication by 9.

Now, the group Z/aoγ (Z/b×T ?n) with an action γ = (γ1, γ2) : Z/b×T ?n → (Z/a)?
yields the factorization

Aut (Z/a oγ (Z/b× T ?n))

ψ

��

η // Aut (H2k[`(γ),2](Z/a oγ (Z/b× T ?n))

(Z/a)? ×Autγ1(Z/b)×Autγ2(T
?
n)

η′

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

for all k > 0. By [6, Proposition 2.2] we obtain the short exact sequence

0 → (Z/2)t −→ (Z/(8× 3nab)/± ((Z/a)? ×Autγ1 (Z/b)×Autγ2(T
?
n)) −→

((Z/a)?/± (Z/a)?)× ((Z/b)?/±Autγ1(Z/b))× ((Z/(8× 3n))?/±Autγ2(T
?
n)) → 0

for some 0 6 t 6 2. But, by means of Proposition 1.2, Autγ2(T
?
n) ∼= S4 × Z/3n−n0

with Ker γ2 = Q8 o Z/3n−n0 . Because the action of S4 on H4k(Q8) is trivial, the
canonical imbedding (Z/3n−n0)? ↪→ (Z/3n)? leads to the other short exact sequence

0 → Z/2)t
′
→ (Z/(8× 3n))?/±Autγ2(T

?
n) −→

((Z/8)?/{±1})× ((Z/3n)?/(Z/3n−n0)?) → 0

for some 0 6 t′ 6 1.
Now, we move to the group Z/a oτ (Z/b × O?n) with an action τ : Z/b × O?n →

(Z/a)?. By Proposition 1.2, Autτ2(O
?
n) = Aut (O?n), so we achieve the factorization

Aut (Z/aoτ (Z/b×O?n))

ψ

��

η // Aut (H2k[`(τ),2](Z/aoτ (Z/b×O?n))

(Z/a)? ×Autτ1(Z/b)×Aut (O?n)

η′

44jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

for all k > 0. Because
(Z/(16× 3n))?/±Aut (O?n) =

((Z/16)?/{±1, ±9})× ((Z/3n)?/{±lk[`(τ),2]; l ∈ (Z/3n)?}),

we derive that OAut (O?
n)(16×3n, 2k[`(τ), 2]) = 2×3n−1. Then, the discussion above

yields the main result.

Theorem 2.2. Let γ = (γ1, γ2) : Z/b×T ?n → (Z/a)? and τ = (τ1, τ2) : Z/b×O?n →
(Z/a)? be actions with (a, b) = (ab, 6) = 1 and n > 3, where γ1 : Z/b → (Z/a)?,
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γ2 : T ?n → (Z/a)? and τ1 : Z/b → (Z/a)?, τ2 : O?n → (Z/a)? are appropriate
restrictions of γ and τ , respectively. Then:

(1) cardK2k[`(γ),2]−1
Z/aoγ(Z/b×T?

n)/' = 2t+t
′+13n0O(a, k[`(γ), 2])OAutγ1 (Z/b)(b, k[`(γ), 2])

O(3n−n0 , k[`(γ), 2])−1 for some 0 6 t 6 2 and 0 6 t′ 6 1;

(2) cardK2k[`(τ),2]−1
Z/aoτ (Z/b×O?

n)/' = 2t+1 × 3n−1O(a, k[`(τ), 2])OAutτ1 (Z/b)(b, k[`(τ), 2])
for some 0 6 t 6 1.

We point out that the numbers t, t′ above are given by [6, Proposition 2.2] and
the orders OAutγ1 (Z/b)(b, k[`(γ), 2]), OAutτ1 (Z/b)(b, k[`(τ), 2]) are determined by [6,
Corollary 2.3].

Now, let γ = (γ1, γ2) : Z/b× T ?n → (Z/a)? and τ = (τ1, τ2) : Z/b×O?n → (Z/a)?
be actions with `(γ), `(τ) 6 2. Then, of course 2`(γ), 2[`(τ), 2] 6 4, a fortiori γ2

is trivial and the groups Z/a oγ (Z/b × T ?n), and Z/a oτ (Z/b × O?n) act on a
CW -complex X(4k − 1) for any k > 1. Furthermore, as it was observed in [6],
Autγ1 (Z/b) = Autτ1 (Z/b) = (Z/b)? . Hence, Z/aoγ (Z/b× T ?n) ∼= Z/ab× T ?n and
Z/a oτ (Z/b × O?n) ∼= Z/ab oτ ′ O

?
n with the action τ ′ : O?n

τ2→ (Z/a)? ↪→ (Z/ab)?,
respectively. Then, in the light of [6, Proposition 2.2], we are in a position to deduce

Corollary 2.3. Let γ : Z/b× T ?n → (Z/a)? and τ : Z/b×O?n → (Z/a)? be actions
with (a, b) = (ab, 6) = 1 and `(γ), `(τ) 6 2. Then:

(1) cardK4k−1
Z/aoγ(Z/b×T?

n) = 2× 3ncardK4n−1
Z/ab /'

and
(2) cardK4k−1

Z/aoτ (Z/b×O?
n) = 2× 3n−1cardK4n−1

Z/ab /'.

We point out that cardK4n−1
Z/ab /' as the number of homotopy types of (4n−1)-lens

spaces has been fully described in [4].

3. Groups of self homotopy equivalences.

Let µ be a free and cellular action of a finite group G on a CW -complexX(2k−1).
Write η̃ : Aut (G) → (Z/|G|)?/{±1} for the composition of the anti-homomorphism
η : Aut (G) → H2k(G) = (Z/|G|)? considered in the previous section with the
quotient map (Z/|G|)? → (Z/|G|)?/{±1}. Then, by means of [4, Proposition 3.1]
(see also [10, Theorem 1.4]), the group E(X(2k − 1)/µ) of homotopy classes of self
homotopy equivalences for the space formX(2k−1)/µ is independent of the action µ
of the group G as isomorphic to the kernel of the map η̃ : Aut (G) → (Z/|G|)?/{±1}
for all n > 1 provided |G| > 2. Whence, we simply write E(X(2k − 1)/G) for this
group.

Let α : G → (Z/a)? be an action, (a, |G|) = 1 and 2d a period of G. Then, in
virtue of [10, Theorem 1.4], one gets

E (X(2kd− 1)/(Z/aoα G)) ∼=
{

Z/2, if a|G| 6 2;
E (X(2kd− 1)/G)), if a|G| > 2 and a 6 2.

By [6], the following generalization of [10, Theorem 1.8] holds.

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 1(1), 2006 43

Proposition 3.1. Let the group Z/aoαG with (a, |G|) = 1 acts freely and celullary
on a CW -complex X(2k[`(α), d] − 1) for n > 1, where 2d is a period of G. Then,
there are isomorphisms:

E (X(2k[`(α), d]−1)/(Z/aoαG)) ∼=
{

Z/2, if a|G| 6 2;
E (X(2k[`(α), d]− 1)/G)), if a|G| > 2 and a 6 2;

however for a|G| > 2 with a > 2 it holds

E(X(2k[`(α), d]− 1)/(Z/aoα G)) ∼={
Derα (G, Z/a) o (E (X(2k[`(α), d]− 1)/(Z/a))× Eα (X(2n[`(α), d]− 1)/G)), if |G| > 2;
Z/a o E (X(2k[`(α), d]− 1)/(Z/a)), if |G| 6 2,

where Eα (X(2n[`(α), d] − 1)/G)) is the subgroup of E (X(2n[`(α), d] − 1)/G)) de-
termined by the subgroup Autα (G) ⊆ Aut (G).

The paper [5, Section 3] deals with the group E (X(2k[`(α), d]− 1)/(Z/a)), how-
ever the group Eα (X(2k[`(α), d]−1)/G) consists of all automorphisms ϕ ∈ Autα (G)
with ϕ∗ = ±id(Z/|G|)? provided |G| > 2.

If now γ = (γ1, γ2) : Z/b × T ?n → (Z/a)? and τ = (τ1, τ2) : Z/b × O?n → (Z/a)?
are actions considered in the previous section then it holds |Z/b×T ?n | = 8×3nb > 2
and |Z/b×O?n| = 16× 3nb > 2 for the order of those groups. Furthermore,

Eγ (X(2k[`(γ), 2]− 1)/(Z/b)× T ?n) ∼=

Eγ1 (X(2k[`(τ), 2]− 1)/(Z/b))× Eγ2 (X(2k[`(γ), 2]− 1)/T ?n)

and
Eτ (X(2k[`(τ), 2]− 1)/(Z/b)×O?n) ∼=

Eτ1 (X(2k[`(τ), 2]− 1)/(Z/b))× Eτ2 (X(2k[`(τ), 2]− 1)/O?n).

But, the group Eγ1 (X(2k[`(γ), 2]−1)/(Z/b)) and Eτ1 (X(2k[`(τ), 2]−1)/(Z/b)) has
been fully described in [6, Theorem 3.2].

To study the group Eγ2 (X(2k[`(γ), 2] − 1)/T ?n), we recall that by [11] any au-
tomorphism ϕ ∈ Aut (Q8) ∼= S4 induces the identity map on the cohomology
group Hk[`(γ),2](Q8) and by Proposition 1.2, Autγ2 (T ?n) ∼= S4 × Z/3n−n0 provided
Ker γ2 = Q8 oαn

Z/3n0 . Then, we easily derive an isomorphism

Eγ2 (X(2k[`(γ), 2]− 1)/T ?n) ∼= S4 × Z/
(

3n−n0

(3n−n0 , k[`(γ), 2])

)
.

Now, to move to the group Eτ2 (X(2k[`(τ), 2] − 1)/O?n), we first recall that by
Proposition 1.2, Autτ2(O

?
n) = Aut (O?n). Because of the isomorphism

H2k[`(γ),2](O?n) ∼= Z/(16× 3nab) from Section 1, we must study all automorphisms
ϕ ∈ Aut (O?n) with ϕ∗ = ∓idZ/(16×3nab).

Let Aut0 (O?n) = {ϕ ∈ Aut (O?n); ϕ
∗ = idZ/(16×3nab)}. Consider the automor-

phisms ϕ,ψ ∈ Aut (O?n) defined on generators (according to the presentation of
O?n given in Section 1) by: ϕ(P ) = P , ϕ(Q) = Q, ϕ(X) = X, ϕ(R) = R−1 and
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ψ(P ) = P , ψ(Q) = Q, ψ(X) = X4, ϕ(R) = R and write
〈
ϕ,ψ

〉
for the subgroup

of Aut (O?n) generated by ϕ and ψ. It is easy to check that there is an isomorphism〈
ϕ,ψ

〉 ∼= Z/2 ⊕ Z/3n−1 and
〈
ϕ,ψ

〉
∩ Inn (O?n) = E, the trivial subgroup of O?n.

Then, by the results of [7] and order arguments, there is the splitting short exact
sequence

1 → Inn (O?n) −→ Aut(O?n) −→ Z/2⊕ Z/3n−1 → 1.

Consequently, a simple calculation, by means of the list of elements in Aut (O?n)
presented in [7] and considerations in the first paragraph on page 14 provides an
isomorphism

Aut0(O?n) ∼= Inn (O?n) o Z/
(

3n−1

(3n−1, k[`(τ), 2])

)
.

Because the restriction of any automorphism of Aut (O?n) to the subgroup Q8 in-
duces the identity in cohomology at dimension multiple of 4, there is no element of
Aut (O?n) which induces the minus identity in cohomology at dimension 2k[`(τ), 2].
Since Z(O?n) = Z/2 and so Inn (O?n) ∼= O?n/(Z/2) = On (the group considered in
[7]) and consequently, we derive an isomorphism

Eτ2 (X(2k[`(τ), 2]− 1)/O?n) ∼= On o Z/
(

3n−1

(3n−1, k[`(τ), 2])

)
.

Finally, by Proposition 3.1 and the consideration above, we can close the paper
with

Theorem 3.2. Let γ = (γ1, γ2) : Z/b × T ?n → (Z/a)? (resp. τ = (τ1, τ2) : Z/b ×
O?n → (Z/a)?) be an action with (a, b) = (ab, 6) = 1 for n > 3. If the group
Z/a oγ (Z/b × T ?n) (resp. Z/a oτ (Z/b × O?n)) acts freely and cellularly on a CW -
complex X(2k[`(γ), 2]− 1) (resp. X(2k[`(τ), 2]− 1)) then

E(X(2k[`(γ), 2]− 1)/(Z/aoγ (Z/b× T ?n))) ∼= Derγ (Z/b× T ?n ,Z/a)o
(E(X(2k[`(γ1), 2]− 1)/(Z/a))× Eγ1 (X(2k[`(β), 2]− 1)/(Z/b))× S4×

Z/
(

3n−n0

(3n−n0 , k[`(γ), 2])

)

(resp. E(X(2k[`(τ), 2]− 1)/(Z/aoτ (Z/b×O?n))) ∼= Derτ (Z/b×O?n,Z/a)o
(E(X(2k[`(τ1), 2]− 1)/(Z/a))× Eτ1 (X(2k[`(β), 2]− 1)/(Z/b))×Ono

Z/
(

3n−1

(3n−1, k[`(τ), 2])

)
).

Thus, in the light of Proposition 1.1, the groups E(X(2k[`(γ), 2] − 1)/(Z/a oγ

(Z/b×T ?n))) and E(X(2k[`(τ), 2]−1)/(Z/aoτ (Z/b×O?n))) have been fully described.
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