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FACTORIZATION, FIBRATION AND TORSION

JIŘÍ ROSICKÝ and WALTER THOLEN

(communicated by George Janelidze)

Abstract
A simple definition of torsion theory is presented, as a fac-

torization system with both classes satisfying the 3–for–2 prop-
erty. Comparisons with the traditional notion are given, as well
as connections with the notions of fibration and of weak fac-
torization system, as used in abstract homotopy theory.

1. Introduction

That full reflective subcategories may be characterized by certain factorization
systems is well known, thanks to the works of Ringel [Ri] and Cassidy, Hébert and
Kelly [CHK]. While the former paper treats the characterization in the context of
the Galois correspondence that leads to the definition of weak factorization sys-
tems (as given in [AHRT]), the latter paper carefully analyzes construction meth-
ods for the factorizations in question. To be more specific, following [CHK], we
call a factorization system (E ,M) reflective if E satisfies the cancellation property
that g and gf in E force f to be in E ; actually, E must then have what homo-
topy theorists call the 3-for-2 property. When there is a certain one–step procedure
for constructing such factorizations from a given reflective subcategory, the sys-
tem is called simple. Following a pointer given to the second author by André
Joyal, in this paper we characterize simple reflective factorization systems of a cat-
egory C in terms of generalized fibrations P : C → B: they are all of the form
E = {morphisms inverted by P}, M = {P − cartesian morphisms} (see Theorem
3.9). In preparation for the theorem, we not only carefully review some needed
facts on factorization systems, but characterize them also within the realm of weak
factorization systems (Prop. 2.3), using a somewhat hidden result of [Ri], and we
frequently allude to the use of weak factorization systems in the context of Quillen
model categories. Furthermore, we have included a new result for many types of
categories, including extensive categories as well as additive categories, namely
that ({coproduct injections}, {split epimorphisms}) form always a weak factoriza-
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tion system (Theorem 2.7), which is somewhat surprising since both classes appear
to be small.

The main point of the paper, however, is to present an easy definition of tor-
sion theory that simplifies the definition given by Cassidy, Hébert and Kelly [CHK].
Hence, here a torsion theory in any category is simply a factorization system (E ,M)
that is both reflective and coreflective, so that both E and M have the 3–for–2
property. At least in pointed categories with kernels and cokernels, such that ev-
ery morphism factors into a cokernel followed by a morphism with trivial kernel,
and dually, our torsion theories determine a pair of subcategories with the prop-
erties typically expected from a pair of subcategories of “torsion” objects and of
“torsion–free” objects, at least when the system (E ,M) is simple (Theorem 4.10).
We present a precise characterization of “standard” torsion theories (given by pairs
of full subcategories) in terms of our more general notion in Theorem 5.2, under the
hypothesis that the ambient category is homological (in the sense of [BB]), such that
every morphism factors into a kernel preceded by a morphism with trivial cokernel.
At least all additive categories which are both regular and coregular (in the sense
of Barr [Ba]) have that property.

We have dedicated this paper to the memory of Saunders Mac Lane, whose
pioneering papers entitled “Groups, categories and duality” (Bulletin of the National
Academy of Sciences USA 34(1948) 263-267) and “Duality for groups” (Bulletin
of the American Mathematical Society 56 (1950) 485-516) were the first to not
only introduce fundamental constructions like direct products and coproducts in
terms of their universal mapping properties, but to also present a forerunner to
the modern notion of factorization system, an equivalent version of which made
its first appearance in John Isbell’s paper “Some remarks concerning categories
and subspaces” (Canadian Journal of Mathematics 9 (1957) 563-577), but which
became widely popularized only through Peter Freyd’s and Max Kelly’s paper on
“Categories of continuous functors, I” (Journal of Pure and Applied Algebra 2
(1972) 169-191).

Some of the results contained in this paper were presented by the second author
at a special commemorative session on the works of Samuel Eilenberg and Saunders
Mac Lane during the International Conference on Category Theory, held at White
Point (Nova Scotia, Canada) in June 2006.

Acknowledgement : The authors thank George Janelidze for many helpful com-
ments on an earlier version of the paper, especially for communicating to them
the current proof of Theorem 2.7 which substantially improves and simplifies their
earlier argumentation.

2. Weak factorization systems and factorization systems

2.1
For morphisms e and m in a category C one writes

e � m (e⊥m)
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if, for every commutative solid-arrow diagram

. //

e

��

.

m

��. //

d

>>}
}

}
} .

one finds a (unique) arrow d making both emerging triangles commutative. For
classes E and M of morphisms in C one writes

E� = {m | ∀e ∈ E : e � m}, �M = {e | ∀m ∈M : e � m},
E⊥ = {m | ∀e ∈ E : e⊥m}, ⊥M = {e | ∀m ∈M : e⊥m}.

Recall that (E ,M) is a weak factorization system (wfs) if

1. C = M · E
2. E = �M and M = E�,

and it is a factorization system (fs) if (1) holds and

(2*) E = ⊥M and M = E⊥

It is well known that, in the presence of (1) , condition (2) may be replaced by

(2a) E�M (that is: e � m for all e ∈ E and m ∈M), and

(2b) E and M are closed under retracts in C2(= C{ ·
// ·}),

and (2b) may be formally weakened even further to

(2b1) if gf ∈ E with g split mono, then f ∈ E, and

(2b2) if gf ∈M with f split epi, then g ∈M (see [AHRT]).

Likewise, in the presence of (1), condition (2*) may be replaced by

(2*a) E⊥M, and

(2*b) E and M are closed under isomorphisms in C2.

2.2
Every factorization system is a wfs (see [AHS], [AHRT]), and for every wfs (E ,M)

one has E ∩M = IsoC, E and M are closed under composition, E is stable under
pushout and closed under coproducts, and M has the dual properties. For a fac-
torization system (E ,M), the class E is actually closed under every type of colimit
and satisfies the cancellation property

(3) if gf ∈ E and f ∈ E, then g ∈ E.
Using an observation by Ringel [Ri] (see also [T, Lemma 7.1]) we show that each of
these additional properties characterizes a wfs as an fs.

2.3 Proposition.
Let (E ,M) be a wfs of a category C with cokernelpairs of morphisms in E. Then

the following conditions are equivalent:

(i) (E ,M) is a factorization system;

(ii) E is closed under any type of colimit (in the morphism category of C);
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(iii) for every e : A → B in E the canonical morphism e′ : B +A B → B lies also
in E (where B +A B is the codomain of the cokernelpair of e);

(iv) E satisfies condition (3);
(v) if gf = 1 with f ∈ E, then g ∈ E.

Proof. (i) =⇒ (ii) and (i) =⇒ (iv) are well known (see 2.2), and (iv) =⇒ (v)
is trivial. For (ii) =⇒ (iii) consider the diagram

A
e //

e

��

B
p1 //
p2

//

1

��

B +A B

e′

��
B

1 // B
1 //
1

// B

where both rows represent cokernelpairs. Since the connecting vertical arrows e and
1 lie in E , e′ lies also in E , by hypothesis. For (v) =⇒ (iii) observe that, since E is
stable under pushout, one has e′p1 = 1 with p1 ∈ E , so that e′ ∈ E follows. Finally,
for (iii) =⇒ (i), consider the diagram

A
u //

e

��

C

m

��
B v

//

s

>>~~~~~~~ t

>>~~~~~~~
D

with e ∈ E , m ∈M, se = te = u and ms = mt = v. The morphism r : B +A B → C
with rp1 = s and rp2 = t makes

B +A B
r //

e′

��

C

m

��
B v

// D

commute. Hence, by hypothesis, one obtains w : B → C with we′ = r, and

s = rp1 = we′p1 = w = we′p2 = rp2 = t

follows, as desired.

Dualizing (part of) the Theorem we obtain:

2.4 Corollary
In a category with kernelpairs, (E ,M) is an fs if, and only if, it is a wfs and

satisfies the condition:
(vop) if gf = 1 with g ∈M, then f ∈M.

2.5
If (Epi, Mono) in Set is the prototype of fs, then (Mono, Epi) in Set is the pro-

totype of wfs. But the latter claim actually disguises a simple general fact which
does not seem to have been stated clearly in the literature yet. In conjunction with
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two very special features of Set, namely that 1. every monomorphism is a coprod-
uct injection and 2. every epimorphism splits (=Axiom of Choice), the following
Proposition and Theorem give, inter alia, the (Mono, Epi) system:

2.6 Proposition.
In a category with binary coproducts, (�SplitEpi, SplitEpi) is a wfs, and a mor-

phism f : A → B lies in �SplitEpi if, and only if, there is some k : B → A + B
with kf = i : A → A + B the first coproduct injection, and with < f, 1B > k = 1B;
in particular, every coproduct injection lies in �SplitEpi.

Proof. Every morphism f : A → B factors as pi = f , and the co-graph p :=<
f, 1B >: A + B → B is a split epimorphism; moreover, split epimorphisms satisfy
condition (2b2) trivially. It now suffices to prove the given characterization of mor-
phisms in �SplitEpi, since it shows in particular that coproduct injections are in
�SplitEpi (simply take k to be a coproduct injection), and since �SplitEpi (like any
class �M) satisfies (2b1). Given f ∈�SplitEpi one obtains k from f�p:

A
i //

f

��

A + B

p

��
B

k

;;x
x

x
x

x
B

Conversely, having k with kf = i and pk = 1B , consider the diagram

A
u //

f

��

X

r

��
B

v // Y

t

OO

with ru = vf and rt = 1Y . Then s :=< u, tv >: A + B → X satisfies

rsi = ru = vf = vpi, rsj = rtv = v = vpj,

with j the second coproduct injection, so that rs = vp. Hence, d := sk : B → X
satisfies

df = skf = si = u, rd = rsk = vpk = v,

as desired.

In many important types of categories, the class 2SplitEpi is remarkably small:

2.7 Theorem
Let C be a category with binary coproducts, and Sum be the class of all coproduct

injections. If Sum is stable under pullback in C, or if C is pointed and Sum contains
all split monomorphisms, then (Sum,SplitEpi) is a wfs in C. The hypotheses on C
are particularly satisfied when C is extensive (in the sense of [CLW]) or just Boolean
(in the sense of [M]), or when C is an additive category with finite coproducts.
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Proof. It suffices to prove that f : A → B in �SplitEpi is a coproduct injection.
With the (split) monomorphism k as in 1.6, consider the diagram

A
f //

1A

��

B

1B

��

1B // B

k

��
A

f
// B

k
// A + B

which is composed of two trivial pullback diagrams. By hypothesis, since kf is a
coproduct injection, its pullback f is also one.

If C is pointed, the morphism f : A → B in �SplitEpi is a split monomorphism
(since < 1A, 0 > kf =< 1A, 0 > i = 1A), and as such it is a coproduct injection, by
hypothesis.

For the sake of completeness we mention another well-known general reason for
(Mono, Epi) being a wfs in Set:

2.8 Proposition
[AHRT] In every category with binary products and enough injectives, (Mono,

Mono�) is a wfs.

�

2.9
In an extensive (or just Boolean)category, one has Sum ⊆ Mono, hence Mono� ⊆

Sum� = SplitEpi. But in the presence of enough injectives, Mono� = SplitEpi
only if Sum = Mono, a condition that rarely holds even in a presheaf category:
SetC

op
satisfies Sum = Mono if, and only if, C is an equivalence relation. For C =

{ · // // · }, so that SetC
op

is the category of (directed multi-)graphs, with the Axiom
of Choice granted, Mono� contais precisely the full morphisms that are surjective
on vertices; here a morphism f : G → H of graphs is full if every edge f(a) → f(b)
in H is the f -image of an edge a → b in G.

2.10
For a wfs (E ,M) in a category C with terminal object 1, the full subcategory

F(M) := {B ∈ obC | (B → 1) ∈M}

is weakly reflective in C, in fact weakly E−reflective, with a weak reflection ρA ∈ E
of an object A being obtained by an (E ,M)-factorization of A → 1:

A
ρA // RA

M // 1.

If (E ,M) is an fs, F(M) is E–reflective in C.

2.11 Remark
Weak factorization systems are abundant in homotopy theory. In fact, a Quillen

model category C is defined as a complete and cocomplete category together with

http://jhrs.rmi.acnet.ge
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three classes of morphisms E (cofibrations), M (fibrations) and W (weak equiva-
lences) such that W has the 3–for–2 property, is closed under retracts in C2 and
(E ,M0), (E0,M) are weak factorization systems where

M0 = M∩W, E0 = E ∩W

denote the classes of trivial fibrations and cofibrations, respectively. The 3–for–2
property means that whenever two of the morphisms gf , f and g lie in W, the third
one lies also in W.

Objects of the weakly reflective subcategory F(M) are called fibrant. Dually,
when C has an initial object 0, there is a weakly coreflective subcategory

T (E) = {A ∈ obC | (0 → A) ∈ E}

of cofibrant objects.

3. Reflective factorization systems and prefibrations

3.1
For a factorization system (E ,M) in a category C with terminal object 1, the

E–reflective full subcategory F(M) of 2.10 is even firmly E-reflective, in the sense
that any morphism A → B in E with B ∈ F(M) serves as a reflection of the object
A into F(M). Such reflective subcategories are easily characterized:

3.2 Proposition
For a factorization system (E ,M) and an E-reflective subcategory F of C, the

following conditions are equivalent:
(i) F = F(M),
(ii) F is firmly E-reflective in C,
(iii) E ⊆ R−1(IsoC).
If these conditions hold, one has E = R−1(IsoC) if, and only if, E satisfies (in
addition to (3) of 2.2 ) the cancellation property

(4) if gf ∈ E and g ∈ E, then f ∈ E.

Proof. (i) =⇒ (ii): see 3.1. (ii) =⇒ (iii): Considering the ρ-naturality diagram for
e : A → B in E ,

A
e //

ρA

��

B

ρB

��
RA

Re // RB

we see that ρBe serves as a reflection for A, by hypothesis, so that Re must be an
isomorphism. (iii) =⇒ (i): For B ∈ F , consider the (E ,M)-factorization

B
e // C

m // 1.

Since 1 ∈ F and m ∈M, also C lies in the E-reflective subcategory F . Hence e ∼= Re
is an isomorphism, by hypothesis, and (B → 1) ∈ M follows. Conversely, having
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(B → 1) ∈M, 1 ∈ F implies B ∈ F , as above. E = R−1(IsoC) trivially implies (4),
and (4) implies R−1(IsoC) ⊆ E , by inspection of the ρ-naturality diagram above.

We adopt the terminology of [CHK] and call an fs (E ,M) in any category C
reflective if (4) holds. Since E is always closed under composition and satisfies (3)
of Section 2, we see that an fs (E ,M) is a reflective fs if, and only if, E satisfies the
3–for–2 property, granted the existence of cokernelpairs in C (see 1.3).

A reflective fs (E0,M) makes C a Quillen model category, with W = E0, E = C
and M0 = IsoC. The corresponding homotopy category C[W−1] is F .

3.3
A reflective fs (E ,M) in a category with terminal object depends only on the

reflective subcategory F(M), since E = R−1(IsoC) and M = E⊥. Conversely, given
any reflective subcategory F of C with reflector R and reflection morphism ρ : 1 →
R, one may ask when is E := R−1(IsoC) part of (a necessarily reflective) fs. This
question is discussed in general in [CHK], [JT1]. Here we are primarily interested
in the case when, moreover, E ’s factorization partner M = E⊥ can be presented as

M = Cart(R, ρ),

where Cart(R, ρ) is the class of ρ-cartesian morphisms, i.e., of those morphisms
whose ρ-naturality diagram is a pullback.

3.4 Proposition
For a reflective subcategory F of the finitely complete category C with reflection

ρ : 1 → R, (E ,M) =
(
R−1(IsoC),Cart(R, ρ)

)
is a factorization system of C if, and

only if, for every morphism f : A → B, the induced morphism e = (f, ρA) : A →
B ×RB RA into the pullback of Rf along ρB lies in E. In this case, F = F(M).

Proof. See Theorem 4.1 of [CHK] or Theorem 2.7 of [JT1].

Adopting again the terminology used in [CHK], we call a reflective factorization
system (E ,M) simple if M = Cart(R, ρ), that is: if the reflective subcategory
F = F(M) satisfies the equivalent conditions of Proposition 3.4. We also make use
of Theorem 4.3 of [CHK]:

3.5 Proposition
For a reflective fs (E ,M) of a finitely complete category C, in the notation of 3.3

the following conditions are equivalent, and they imply simplicity of (E ,M):
(i) E is stable under pullback along morphisms in M;
(ii) R preserves pullbacks of morphisms in M along any other morphisms;
(iii) the pullback of a reflection ρA : A → RA along a morphism in F is a reflection

morphism.
Reflective factorization systems (E ,M) satisfying these equivalent conditions are

called semi–left exact. The reflective subcategory F is a semilocalization of C if
property (iii) holds; equivalently, if the associated reflective fs is semi–left exact.
A reflective fs need not be simple, and a simple fs need not be semi–left exact(see
[CHK]).
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3.6

A Quillen model category C is called right proper if every pullback of a weak equiv-
alence along a fibration is a weak equivalence (see [H]). Since each weak equivalence
w has a factorization w = w2w1 where w1 is a trivial cofibration and w2 a trivial
fibration, and since (trivial) fibrations are stable under pullback, C is right proper
if, and only if, trivial cofibrations are stable under pullback along fibrations, that is:
if the wfs (E0,M) of 2.10 has property 3.5(i). Hence, a semi–left exact reflective fs
(E0,M) makes C a right proper Quillen model category with (E ,M0) = (C, IsoC)
and W = E0.

3.7

Simple and semi-left exact reflective factorization systems occur most naturally
in the context of fibrations. Hence, recall that a functor P : C → B is a (quasi-
)fibration if the induced functors

PC : C/C → B/PC

have full and faithful right adjoints, for all C ∈ obC. Let us call P a prefibration if,
for all C, there is an adjunction

PC
η

ε
�
IC .

whose induced monad is idempotent. (Janelidze’s notion of admissible reflective
subcategory B of C asks the right adjoints IC to be full and faithful, so that each
PC is a fibration, in particular a prefibration; see [J], [CJKP].) With the notation

IC : (g : B → PC) 7→ (vg : g∗C → C)

we can state right adjointness of PC more explicitly, as follows: for every morphism
g : B → PC in B one has a commutative diagram

P (g∗C)
Pvg //

εg

��

PC

1

��
B

g // PC

in B, and whenever

PA
Pf //

u

��

PC

1

��
B

g // PC

commutes in B (with f : A → C in C), then there is a unique morphism t : A → g∗C
in C with vgt = f and εg · Pt = u.
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If u = 1, then t = ηf , and we obtain the factorization

(Pf)∗C
vP f

##GG
GG

GG
GG

G

A

ηf

;;wwwwwwwww f // C

and the idempotency condition amounts to the requirement that Pηf = ε−1
Pf be an

isomorphism. One then has vPf ∈ CartP , with

CartP = {f | ηf iso}.

(As we will see shortly, there is no clash with the notation used in 3.3.) In fact,(
P−1(IsoB),CartP

)
is a factorization system of C, and it is trivially reflective.

Let us now assume that P preserves the terminal object 1 of C. Then

F(CartP ) = {A | A → 1 P–cartesian}

contains precisely the P–indiscrete objects of C, e.g. those A ∈ obC for which every
h : PD → PA in B (with D ∈ obC) can be written uniquely as h = Pd, with
d : D → A in C. If we denote the adjunction

C ' C/1
P1 // B/P1 ' B
I1

oo

simply by P
η

ε
�
I : B → C , then

F(CartP ) = {A | ηA iso}

is the reflective subcategory of C fixed by the adjunction P
�
I . Hence its reflec-

tor R (as an endofunctor of C) is IP , with reflection morphism η.
A routine exercise shows

P−1(IsoB) = R−1(IsoC),CartP = Cart(R, η).

In particular, the fs
(
P−1(IsoB),CartP

)
given by a prefibration P with P1 ∼= 1 is

simple. An easy calculation shows also that P−1(IsoB) is stable under pullback along
morphisms in CartP when P preserves such pullbacks. Consequently, for C finitely
complete and with the prefibration P preserving pullbacks of CartP–morphisms and
the terminal object, the fs is actually semi-left exact.

3.8
Conversely to 3.7, let us show that any simple reflective fs (E ,M) of a finitely

complete category C is induced by a prefibration P with P1 ∼= 1. More precisely,
we show that the restriction C → F(M) of the reflector R (notation as in 3.3) is
a prefibration. To this end, for g : B → RC with B ∈ F(M) we form the (outer)

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 2(2), 2007 305

pullback diagram

B ×RC C
vg //

p

��

ρB×RC C

''OOOOOOOOOOO C

ρC

��
R(B ×RC C)

Rvg

//

εg

wwooooooooooooo
RC

1

��
B g

// RC

The pullback projection p factors through R(B ×RC C) by a unique morphism εg

since B ∈ F(M). To verify the required universal property, consider f : A → C
and u : RA → B with Rf = gu. Since

guρA = Rf · ρA = ρCf,

there is a unique morphism t : A → B ×RC C with pt = uρA, vgt = f . From

εg ·Rt · ρA = ερB×RCCt = pt = uρA

one obtains εg ·Rt = u, as required. Since, conversely, εg ·Rt = u implies pt = uρA,
we have shown right adjointness of RC . Furthermore, when u = 1, the pullback
diagram above can simply be taken to be the ρ–naturality diagram of f , by simplicity
of (E ,M). Hence, A ∼= B ×RC C and p ∼= ρA, so that εPf is an isomorphism, and
this shows the required idempotency. Consequently, the reflector of F(M) is a
prefibration, and since E = R−1(IsoC), the induced factorization system must be
the given fs (E ,M). By 3.5, the system is semi-left exact precisely when the reflector
preserves pullbacks of morphisms in M. Hence, with 3.7 we proved here:

3.9 Theorem
In a finitely complete category C, (E ,M) is a simple reflective factorization sys-

tem of C if, and only if, there exists a prefibration P : C → B preserving the terminal
object with

E = P−1(IsoB), M = CartP.

(E ,M) is semi–left exact precisely when P can be chosen to preserve every pullback
along a P–cartesian morphism.

2

4. Torsion Theories

4.1
Let (E ,M) be a reflective fs in a category C with zero object 0 = 1. (There

is no further assumption on C until 4.6.) Then we have not only the E-reflective
subcategory F = F(M) with reflection ρ : 1 → R, but also the M-coreflective
subcategory T = T (E) (see 2.11), whose coreflections σB : SB → B are obtained
by (E ,M)-factoring 0 → B, for all B in C. Let us first clarify how T and F are
related.
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4.2 Proposition
In the setting of 4.1, the following assertions are equivalent for an object A in C:

(i) A ∈ T ;

(ii) C(A,B) = {0}, for all B ∈ F ;

(iii) RA ∼= 0.

Proof. (i) =⇒ (ii) follows from (0 → A)⊥(B → 0). (ii) =⇒ (iii): Since RA ∈ F , one
has ρA = 0 and obtains 1RA = 0 from ρA⊥(RA → 0). (iii) =⇒ (i): Since RA ∼= 0,
one has (A → 0) ∈ E , and this implies (0 → A) ∈ E by (4) of 3.2, hence A ∈ T .

Dualizing Propositions 3.2 and 4.2 we obtain:

4.3 Corollary
In the setting of 4.1, M = S−1(IsoC) if, and only if, M satisfies the cancellation

property :

(4op) if gf ∈M and f ∈M, then g ∈M.

In this case,

F = {B ∈ obC | SB ∼= 0} = {B | C(A,B) = {0} for all A ∈ T }.

Factorization systems (E ,M) satisfying (4op) are called coreflective.

4.4 Definitions and Summary
A torsion theory in a category C is a reflective and coreflective factorization

system (E ,M) of C, i.e., a fs of C in which both classes satisfy the 3–for–2 property.
If C has kernelpairs or cokernelpairs, it actually suffices to assume that (E ,M) be
a wfs in this definition (see 2.7, 2.8). If C has a zero object, then T = T (E) is the
torsion subcategory and F = F(M) the torsion-free subcategory associated with
the theory. For an object C, the coreflection σC into T and the reflection ρC into
F are obtained by (E ,M)-factoring 0 → C and C → 0, respectively as in

0 // SC
σC // C

ρC // RC // 0.

R and S determine all E ,M, T ,F , via

E = R−1(IsoC) = ⊥M, M = S−1(IsoC) = E⊥,
T = R−1({0}) = F←, F = S−1({0}) = T →,

with F← :=
{
A | ∀B ∈ F

(
C(A,B) = {0}

)}
, T → :=

{
B | ∀A ∈ T

(
C(A,B) = {0}

)}
.

Furthermore, if C has pullbacks and E is stable under pullback along morphisms in
M, i.e., if the torsion theory is semi-left-exact and, hence, simple, then an (E ,M)-
factorization of f : A → B can be presented as

RA×RB B
π2

%%JJJJJJJJJJ

A
f

//

(ρA,f)
99tttttttttt

B
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where π2 is the pullback of Rf along ρB . In this case, M = Cart(R, ρ). We note
that without the hypothesis of semi-left-exactness or simplicity, one still has:

f ∈ E ⇐⇒ π2 iso, f ∈M ⇐⇒ (ρA, f) ∈M.

The condition dual to semi-left-exactness is called semi-right-exactness, and it yields
E = Cocart(S, σ), along with an alternative presentation of the (E ,M)-factorization
of f :

A +SA SB
(f,σB)

$$JJJJJJJJJJ

A

κ1

::tttttttttt
f

// B

where κ1 is the pushout of Sf along σA.
In a category C with zero object, let 0Ker be the class of morphisms whose kernel

is 0, and 0Coker the class of morphisms with zero cokernel. Note that Mono ⊆ 0Ker
and Epi ⊆ 0Coker.

4.5 Proposition
In a category C with 0, any pair of full subcategories T = F← and F = T →

satisfies the following properties, for any morphisms k : A → B, p : B → C in C.
(1) for k ∈ 0Ker, B ∈ F implies A ∈ F ;
(2) for p ∈ 0Coker, B ∈ T implies C ∈ T ;
(3) for k the kernel of p, A,C ∈ F imply B ∈ F ;
(4) for p the cokernel of k, A,C ∈ T imply B ∈ T .

Proof. (3) implies (1), and (2), (4) are dual to (1), (3), respectively. Hence, if suffices
to prove (3): any morphism f : T → B with T ∈ T satisfies pf = 0. Hence, it factors
through k, by a morphism T → A, which must be 0, so that also f = 0.

4.6
We call a full subcategory F closed under left-extensions in C if it satisfies (3)

of 4.5. If C has (NormEpi, 0Ker)-factorizations, with NormEpi the class of normal
epimorphisms (i.e. of morphisms that appear as cokernels), and if F satisfies prop-
erty (1) of 4.5, then the morphism p in (3) may be taken to be the cokernel of k, so
that closure under left-extensions amounts to the selfdual property of being closed
under extensions. Note that C has (NormEpi, 0Ker)-factorization if C has kernels
and cokernels (of kernels), and if pullbacks of normal epimorphisms along normal
monomorphisms have cokernel 0 (see Prop. 2.1 of [CDT]). From 4.5 (1), (2) one
obtains:

4.7 Corollary
The reflection morphisms of the torsion-free subcategory of a torsion theory in

a pointed category with (NormEpi, 0Ker)-factorization are normal epimorphisms.
Dually, if there are (0Coker, NormMono)–facto-rizations, then the coreflection mor-
phisms of the torsion subcategory are normal monomorphisms.
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4.8
In a pointed category with kernels and cokernels, let (E ,M) be a torsion theory.

With the notation of 4.4, let κC = kerρC and πC = cokerσC . If, as in 4.7, ρC is a
normal epimorphism and σC a normal monomorphism, so that ρC = cokerκC and
σC = kerπC , we obtain induced morphisms αC and βC that, in the next diagram,
make squares 1, 2, 3 pullbacks and squares 2, 3, 4 pushouts:

SC
1 //

αC

��
1

SC //

σC

��
2

0

��
KC

κC //

��
3

C
πC //

ρC

��
4

QC

βC

��
0 // RC

1
// RC

Since ρC ∈ E , also βC ∈ E (since E is pushout stable), whence πC ∈ E (by the
3-for-2 property) and RπC iso. But since ρRC is iso, this means that βC may be
replaced by ρQC . Likewise, replacing αC by σQC , we can redraw the above diagram
as:

SKC
SκC

∼
//

σKC

��
1

SC //

σC

��
2

0

��
KC

κC //

��
3

C
πC //

ρC

��
4

QC

ρQC

��
0 // RC

RπC

// RQC

The endofunctors K and Q behave just like S and R when we want to describe the
subcategories T and F :

4.9 Proposition
Under the hypothesis of 4.8, for every object C one has the following equiva-

lences:
C ∈ F(M) ⇐⇒ KC ∈ F(M) ⇐⇒ KC = 0,

C ∈ T (E) ⇐⇒ QC ∈ T (E) ⇐⇒ QC = 0.

Proof. Since κC = kerρC and RC ∈ F , one has (C ∈ F ⇐⇒ KC ∈ F) by Prop.
4.5. Furthermore, (C ∈ F ⇐⇒ ρC iso ⇐⇒ κC = 0 ⇐⇒ KC = 0). The rest
follows dually.

The normal monomorphism αC
∼= σKC and the normal epimorphism βC

∼= ρQC

measure the “distance” from κC to the coreflection σC and from πC to the reflection
πC , respectively. The following Theorem indicates when that “distance” is zero:
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4.10 Theorem
Under the hypothesis of 4.8, the following conditions are equivalent for every

object C:
(i) πC · κC = 0;
(ii) ker ρQC = 0;
(iii) πQC is an isomorphism;
(iv) QC ∈ F(M);
(v) cokerσKC = 0;
(vi) κKC is an isomorphism;
(vii) KC ∈ T (E);
(viii) (0 → QC) ∈M;
(ix) (KC → 0) ∈ E .
All conditions are satisfied when (E ,M) is simple (see 3.4).

Proof. Since ρQC · πC · κC = 0, (i) ⇐⇒ (ii) is obvious. (iv) implies ρQC iso, hence
(ii), and also (iii), since

ρQQC · πQC = RπQC · ρQC ,

with RπQC iso. Conversely, (ii) =⇒ (iv) holds since ρQC is a normal epimorphism,
and (iii) =⇒ (iv) holds since πQC = cokerσQC iso means SQC = 0, hence QC ∈
F(M). Consequently, we have (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv), and (i) ⇐⇒ (v)
⇐⇒ (vi) ⇐⇒ (vii) follows dually. Since

KC
ρKC // RKC // 0

is the (E ,M)-factorization system of KC → 0, one has RKC → 0 iso, if, and only
if, KC → 0 lies in E . This shows (vii) ⇐⇒ (ix), and (iv) ⇐⇒ (viii) follows dually.
Finally, assume (E ,M) to be simple and consider the commutative diagram

KC
1 //

ρKC

��

KC
κC //

��
3

C

ρC

��
RKC // 0 // RC

Since 0 = ρCκC = RκC · ρKC with ρKC epi, the buttom row is RκC , and diagram
1 of 4.9 shows that κC lies in M, since (E ,M) is coreflective. Hence, the whole
diagram is a pullback, by simplicity of (E ,M), and therefore also its left square:
KC ∼= KC × RKC. Now the morphism t = 〈0 : RKC → KC, 1RKC〉 shows that
ρKC must be 0, which means RKC = 0 and, hence, KC ∈ T .

4.11 Remarks
(1) Following the terminology of [CHK] we call a torsion theory normal if the

equivalent conditions of 4.10 hold. Hence every simple torsion theory is normal, pro-
vided that C satisfies the hypothesis of 3.8. Moreover, square 3 of 4.8 and condition
(ix) of 4.10 show that (E ,M) is normal if, and only if, E satisfies a very particular
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pullback-stability condition. No failure of this condition is known since the following
open problem of [CHK] remains unsolved: is there a non-normal torsion theory?

(2) The advantage of our definition of torsion theory is that we do not need to
assume the existence of kernels and cokernels in C. It applies, for example, to a
triangulated category C. Such a category has only weak kernels and weak cokernels
and our definition precisely corresponds to torsion theories considered there as pairs
F and T of colocalizing and localizing subcategories (see [HPS]).

It is also easy to express torsion theories in terms of prefibrations, since Theorem
3.9 gives immediately:

4.12 Corollary
In a finitely complete category C, the class M belongs to a torsion theory (E ,M)

if, and only if, there is a prefibration P : C → B with P1 ∼= 1 such that M = CartP
has the 3–for–2 property. Dually, in a finitely cocomplete category C, the class E
belongs to a torsion theory (E ,M) if, and only if, there is a precofibration Q : C → A
with Q0 ∼= 0 such that E = CocartQ has the 3–for–2 property.

2

5. Characterization of normal torsion theories

5.1
In a finitely complete category C with a zero object and cokernels (of normal

monomorphisms), we wish to compare the notion of normal torsion theory (as pre-
sented in 4.4, 4.11) with concepts considered previously, specifically with the more
classical notion used in [BG] and [CDT]. Hence here let us refer to a pair (T ,F) of
full replete subcategories of C satisfying

1. C(A,B) = {0} for all A ∈ T and B ∈ F ,

2. for every object C of C there exists A
k // C

q // B with A ∈ T , B ∈
F , k = kerq, q = cokerk.

as a standard torsion theory of C; its torsion-free part is necessarily normal-epireflec-
tive in C. The main result of [JT2] states that, when normal epimorphisms are stable
under pullback in C, a normal-epireflective subcategory F is part of a standard
torsion theory if, and only if, F satisfies the following equivalent conditions:

(i) F is a semilocalization of C (see 3.5);

(ii) the reflector C → F is a (quasi)fibration (see 3.7 );

(iii) F is closed under extensions, and the pushout of the kernel A
k // C of

ρC along ρA is a normal monomorphism, for every C ∈ obC (with ρC the
F-reflection of C).
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Recall that C is homological [BB] if it is regular [Ba] and protomodular [Bo]; here
the latter property amounts to: if in the commutative diagram

·

��

// ·
p

��

// ·

��
· // · // ·

with regular epimorphism p the left and the whole rectangles are pullbacks, so is
the right one. In such categories one has (NormEpi, 0Ker) = (RegEpi, Mono).

We are now ready to prove:

5.2 Theorem
Every standard torsion theory of C determines a simple reflective factorization

system (E ,M) of C with F(M) normal-epireflective and T (E) normal-monocoreflec-
tive. When C is homological, such factorization systems are normal torsion theories.
When both C and Cop are homological, then normal torsion theories correspond
bijectively to standard torsion theories.

Proof. Since a standard torsion theory (T ,F) is given by the semilocalization F ,
its reflective factorization system (E ,M) is simple (see 3.4, 3.5), and one has T =
T (E) (see 4.2). This proves the first statement. For the second, let (E ,M) be a
simple reflective factorization system such that the reflections of F(M) are normal
epimorphisms and the coreflections of T (M) are normal monomorphisms. Simplicity
means M = Cart(R, ρ) by 3.4, and since the reflections ρC (C ∈ obC) are regular
epimorphisms, protomodularity of C gives immediately that M satisfies the 3–for–2
property. Hence (E ,M) is a torsion theory, and its normality follows from 4.10,
which is applicable since the assumptions of 4.8 are fulfilled, by hypothesis. When
both C and Cop are homological, because of 4.7 we can apply 4.10 and obtain the
last statement.

5.3 Remarks
(1) As the proof of 5.2 shows, for the bijective correspondence between normal

torsion theories and standard torsion theories, it suffices to have C homological with
(0Coker, NormMono)-factorizations. The latter condition is, of course, still quite
restrictive: even standard semi-abelian categories (like the categories of groups or of
commutative rings) do not satisfy it. However, the type of categories that are both
homological and co-homological is very well studied. As George Janelidze observed,
these are precisely the ”Raikov semi-abelian” [Ra], [K] or ”almost-abelian” [Ru]
categories. In fact, in a pointed protomodular category, the canonical morphism
A + B → A × B is an extremal epimorphism, hence it is an isomorphism when
the category is also co-protomodular. Since protomodular categories are Mal’cev,
co-protomodularity makes such categries additive. Hence, the following conditions
are equivalent for a category C:

(i) C is regular, coregular and additive;
(ii) C is homological and co-homological;
(iii) C is Raikov semi-abelian (= almost-abelian).
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Clearly, these conditions imply that C is homological with (0Coker, NormMono)-
factorizations, but we don’t know whether these properties are equivalent to (i)-(iii).

(2) Consider the additive homological category C of abelian groups satisfying the
implication (4x = 0 =⇒ 2x = 0). As shown in [JT2], the subcategory F of groups
satisfying 2x = 0 is closed under extensions and normal epireflective, but is not
part of a standard torsion theory. Its reflective factorization system is not simple
(likewise when one considers it not in C but in the abelian category of all abelian
groups, see [CHK]), and it is not a normal torsion theory of C. In fact, for C = Z,
the diagram of 4.8 is as follows:

0 //

σ

��

0 //

σ

��

0

��
Z ∼= 2Z � � κ //

��

Z
ρ

��

π=1 // Z
ρ

��
0 // Z2

1 // Z2

But we do not know whether (E ,M) is a torsion theory.

5.4
A standard torsion theory is called hereditary if T is closed under normal subob-

jects, and it is cohereditary if F is closed under normal quotients. While hereditary
standard torsion theories are of principal importance, coheredity is a very restrictive
property, as we show in the next proposition, which is well–known in the case of
groups (see [N]).

5.5 Proposition
Let C be a pointed variety of universal algebras where free algebras are closed

under normal subobjects. Then each standard cohereditary torsion theory (T ,F) in
C is trivial, i.e., T = C or F = C.

Proof. Assume F 6= C. Since F is closed under normal quotients, there is a free
algebra V not belonging to F . Hence, the T –coreflection of V satisfies

0 6= KV ∈ T ,

and KV is free (as a normal subobject of a free algebra)and belongs to T . Since T
is closed under coproducts and quotients, T = C follows.
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