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ABSTRACT. Recently, in[[4] the author studied some rational identities and inequalities involv-
ing Fibonacci and Lucas numbers. In this paper we generalize these rational identities and in-
equalities to involve a wide class of sequences.
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1. INTRODUCTION

The Fibonacci and Lucas sequences are a source of many interesting identities and inequali-
ties. For example, Benjamin and Quinmn [1], and Vajda [5] gave combinatorial proofs for many
such identities and inequalities. Recently, Diaz-Barriero [4] (seelalsb [2, 3]) introduced some ra-
tional identities and inequalities involving Fibonacci and Lucas numbers. A sequefge,
is said to bepositive increasindf 0 < a, < a4 for all n > 1, andcomplex increasingf
0 < |an| < |an4q]| foralln > 1. In this paper, we generalize the identities and inequalities
which are given in[[4] to obtain several rational identities and inequalities involving positive
increasing sequences or complex sequences.

2. IDENTITIES

In this section we present several rational identities and inequalities by using results on con-
tour integrals.

Theorem 2.1.Let(a,),>o be any complex increasing sequence suchdhat a, for all p # .
For all positive integers:,

n o n _1\n+1
3 (M T (aree - %)-1> _

i R | J

ISSN (electronic): 1443-5756

(© 2004 Victoria University. All rights reserved.

The author is grateful to Diaz-Barrero for his careful reading of the manuscript.
001-04


http://jipam.vu.edu.au/
mailto:toufik@math.haifa.ac.il
http://www.ams.org/msc/

2 TOUFIK MANSOUR

holds, with0 < /¢ <n — 1.

Proof. Let us consider the integral

1 j{ 1+ 2
=— ¢ — " dz,
2mi J, zAn(2)
wherey = {z € C: |2] < |a, 1]} and A,(z) = [[}_,(z — a,1;). Evaluating the integral in
the exterior of they contour, we gef; = > _;_, R, where

. 1420 - 1+a - -
R, = lim < . H (z —ar,) 1>:—+’f H (arpr — ay,) 1

T J=1, ik ek 1
On the other hand, evaluatirign the interior of they contour, we obtain
1 1 —-1)"
Iy = lim tE_ = (=1)

=0 Au(2)  An(0)  TT arey”
Using Cauchy’s theorem on contour integrals we getthat /; = 0, as claimed. O

Theorenjz]l fon, = F, then Fibonacci numberfy = 0, F} = 1, andF,,,» = F,.1 + F,
for all n > 0) gives [4, Theorem 2.1], and far, = L, then Lucas numberf, = 2, L; = 1,
andL,,>o =L, 1+L, for alln > 0) gives [4, Theorem 2.2]. As another example, The-n 2.1
for a, = P, thenth Pell numberf, =0, P, =1,andP,., = P, .1 + P, for alln > 0) we get

that
"\ (1+ P, 1 (—=1)n+!
T rtk (P, k_ij)—l ==—"7
> (S 1T o L

k=1 Brn =1, itk
holds, with0 < ¢ < n — 1. In particular, we obtain
Corollary 2.2. Forall n > 2,
(P + 1) Poy1 Poyo Po(Pyiy +1)Pays PP (Pys +1)

(Pn+1 _Pn)(PnJrQ_Pn) (Pn_Pn+1)<Pn+2_Pn+1> (Pn_Pn+2)(Pn+l _Pn+2)

Theorem 2.3.Let(a,),>o be any complex increasing sequence suchdhat a, for all p # q.
For all n > 2,

=1

n

1 i Qa;
S I () =0

Proof. Let us consider the integral

1 z
- 2mi ), An(z)

dz,

wherey = {z € C: |2| < |ana|} andA,(2) = [[}_,(# — a,4;). Evaluating the integral in
the exterior of they contour, we gef; = 0. Evaluating!/ in the interior of they contour, we
obtain

ZResz/A i ﬁ J— :§a1—2 ﬁ <—Z—Z>.

n
k=1 j=1, j#k ko j=1,j#k

Using Cauchy’s theorem on contour integrals we get that I, = 0, as claimed. O
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For example, Theorefn 2.3 far, = L,, thenth Lucas number give§[[4, Theorem 2.5]. As
another example, Theorém P.3 for = P, thenth Pell number obtains, for all > 2,

> 11 ( _%):0'

n
k=1 "k j=1,j#k

3. INEQUALITIES
In this section we suggest some inequalities on positive increasing sequences.

Theorem 3.1.Let(a,,),>0 be any positive increasing sequence suchthat 1. Foralln > 1,

n n a
(3.1) ap™tt +apt < apt 4 a7
and
(3.2) altt? — gt < gint? — gfn
' n+1 n+1 n+2 n+2-

Proof. To prove [3.1) we consider the integral

An+1
I = / (ay 1y log ani1 — ay, log ay,)dx.

Sincea,, satisfiesl < a,, < a,4, foralln > 1, so for allz, a,, < x < a,.; we have that
a, loga, < a,,loga, < a, loga,i,
hencel > 0. On the other hand, evaluating the integralirectly, we get that
I'= (a5 —ag ™) = (ap’y —ap™),
hence
@yt agy <A+ oy
as claimed in[(3]1). To provg (3.2) we consider the integral

an+42
J = / (ay o log anio — a1 10g any1)d.
an
Sincea,, satisfiesl < a,,1 < a,,o foralln > 0, so for allz, a,.1 < z < a,,» We have that

ay11ogan < ay ylogan s,
hence/J > 0. On the other hand, evaluating the integralirectly, we get that
I = (a5 — apio) — (a5 — aiiy),
hence

An+2 an An+2 an
Gpi = Opq < Qpuig — Qg

as claimed in[(3]2). O

For example, Theorein 3.1 far, = L,, thenth Lucas number gives[[4, Theorem 3.1]. As
another example, Theorgm B.1 for = P, thenth Pell number obtains, for all > 1,
Pt 4 Py < P+ B

whereP, is thenth Pell number.

Theorem 3.2. Let (a,),>o be any positive increasing sequence such that> 1. For all
n,m>1,

m—1 m
an Antj+1 An+j
an+m||an+j <||an+j.
J=0 J=0
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Proof. Let us prove this theorem by induction en Sincel < a, < a,,, for alln > 1 then
atrt1i=on < gt equivalently,atttialt, < afra,t', so the theorem holds fon = 1.
Now, assume for alh > 1

m—1
|| An+j+1 || An+j
n+m 1 a’nJrj < anJrj .
Jj=0

On the other hand, similarly as in the case= 1, foralln > 1,

An+m —0an An+m —0an

Uppm—1 < Angm

Hence,
m—2 m—1
An+4+m—0n _Qn An+j+1 An+4+m—0an An4j
an+m 1 a’n+m 1 H an+j] < a’n+m H an+jjv
7=0 7=0
equivalently,
m
An4j+1 an+j
U’y m H any ™ < [l aniy
j=0
as claimed. 0

Theorenj 3.2 for,, = L, thenth Lucas number and = 3 gives [4, Theorem 3.3].

Theorem 3.3. Let (a,).>0 and (b,),>o be any two sequences such thak a, < b, for all
n > 1. Then for alln > 1,

n_ pltl/n _ 1+/n

n

n+1 , ;
>t ta) 2 o [T
SRR R Vi b —a;

i=1 =1

Proof. Using the AM-GM inequality, namely

1 n n )
DI | K
=1 =1

wherez; > 0foralli =1,2,...,n, we get that

1 / / 1/n
x;dx x;" dxy -+ - dxy,
/I;I ln Z b bl bn Hl '

equivalently,

1 n n
- b2 _ 42 1+1/n . 1+1/n
5o 20 =) T[ 0= = [T (0 = al™).

i=1 j=1, j#i i=1

hence, on simplifying the above inequality we get the desired result. O

Theorenj 38 for,, = L, ! whereL,, is thenth Lucas number antl, = F; ! whereF, is the
nth Fibonacci number gives|[4, Theorem 3.4].
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