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ABSTRACT. The aim of this note is to give a general framework for Chebyshev inequalities and
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1. INTRODUCTION AND SUMMARY

Let V' be a real vector space provided with an inner product . For fixedz € V and
y, 2z € V the inequality

(1.1) (2, y) (x,2) <{y,2) (z,2)

is called aChebyshev type inequality

A general method for finding vectors satisfying the above inequality is given by Niezgoda
in [4]. The same author in [3] proved a projection inequality for Haon systemgbtaining
a Chebyshev type inequalias a particular case for orthoprojectors of rank one. Furthermore,
the relation of synchronicity with respect to teaton systens introduced there. It generalizes
commonly known relations of similarly ordered vectors (cf. for example, [6, chap. 7.1]).

This paper is organized as follows. Secfign 2 contains basic notions related to convex cones.
In Section B a projection inequality in an abstract Hilbert space is studied. The framework
covers the projection inequality for the Eaton system, Chebyshev sum and integral inequalities
and others, see Examples|3.[[ 43.3. We modify and extend the applicability of the relation of
synchronicity to vector spaces with infinite bases. The results are applied@héigshev sum
inequalityin Sectior] 4 and th€hebyshev integral inequality Sectior] b.
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2. PRELIMINARIES

In this notel is a real Hilbert space with an inner prodyct). A convex cone is a nonempty
setD C V such thainD + 5D C D for all nonnegative scalakgs and /3. The closure of the
convex cone of all nonnegative finite combinationgsinC V' is denoted by:one H. Similarly,
span H denotes the closure of the subspace of all finite combinatiohs ifihe dual cone of a
subsetC C V is defined as follows

dualC ={v e V: (v,C) > 0}.
It is known, that the dual cone @f is a closed convex cone and
dual C' = dual(cone C).

If for a subsetG C V, a closed convex con€' is equal tocone G, then we say that’' is
generated by or GG is a generator of’. The inclusionA C B impliesdual B C dual A. If C'
andD are convex cones, then

dual(C' + D) = dual C N dual D.

The dual cone of a subspaldéis equal to its orthogonal complemdnt:. If a setC is a closed
convex cone, then
dual dualC' = C,

(cf. [5, lemma 2.1]). The symbelualy, C' stands fol; N dual C' and means the relative dual
of C' with respect to a closed subspakeof V. If for a closed convex con® the identity
dualy, D = D holds, thenD is called a self-dual cone w.r.¥;. For example, the convex cone
generated by an orthogonal system of vectors is self-dual w.r.t. the subspace spanned by this
system.

In other cases the standard mathematical notation is used.

3. PROJECTION INEQUALITY

From now on we make the following assumptior:is an idempotent and symmetric op-
erator (orthoprojector) defined dn, V' = V; + V5, whereV; is the range of? andV; is its
orthogonal complement, i.6; = PV andV, = (PV)+. The identity operator is denoted by
id . All subspaces and convex cones of a real Hilbert spaeee assumed to be closed.

Fory, z € V we will consider gorojection inequalitybriefly (P1)) of the form

(y, Pz) = 0.
If y = 2, then (PI) holds for any orthoprojectértaking the form|| Pz||* > 0. A general method
of solution of (PI) is established by our following theorem (Ci. [4, Theorem 3.1]).
Theorem 3.1. For vectorsy, z € V and a convex coné€' C V the following statements are
mutually equivalent.

i): (PI) holds forally € C + V4

i): Pz € dualC

ii): z € dual PC.
Proof. Since i), the inequality (PI) holds for evegye C. Thus

0<({y, Pz) =(Py,z).
Therefored < (C, Pz) = (PC, z) . HencePz € dual C' andz € dual PC. It proves that i}=
i), ii).
Conversely, ifPz € dual C then fory = ¢ + z, wherec € C and(z, V;) = 0 are arbitrary

have(y, Pz) = (¢, Pz) + (z, Pz) = (¢, Pz) > 0. By a similar argument, it € dual PC then
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y € C'+ Vy implies thatPy € PC. Itleads to(y, Pz) = (Py, z) > 0. From this we conclude

that ii),iil) = i), which completes the proof. OJ

Example 3.1(Bessel inequality) For an orthoprojectoP the inequality (P1) holds provided
thaty = 2. Let{f,} be an orthogonal systemin. If P is the orthoprojector onto the subspace

orthogonal taspan{ f, }, i.e. P =id — 3" &4 1. then we obtain the classic Bessel inequality

(
1£11?

HEES e

Example 3.2(Chebyshev type inequalities)et x € V be a fixed nonzero vector. Sét =
id — ﬁ;ﬁgx It is clear thatP is the orthoprojector onto the subspace orthogonal ta the case

where the inequality (PI) becomeg£aebyshev type inequalig.1):

(@,2) (y,2) < (y,2) =l

In the spacd/ = R™ underz = (1,...,1), inequality [1.1) transforms into th@hebyshev
sum inequalityor (CHSI) for short):

n n n
Z%Zzi < nZyiz@--
=1 =1 =1

Consider the spac® = L? of all 2-nd power integrable functions with respect to the
Lebesgue measuge on the unit interval0, 1]. Forz = 1 inequality [1.1) takes the form of
aChebeshev integral inequalitgr (CHII) for short):

/yd,u/zd,u < /yzdu.

Example 3.3 (Projection inequality for Eaton systemd)et G be a closed subgroup of the
orthogonal group acting olf, dimV < oo, andC C V be a closed convex cone. Let us
assume:

i): for each vector, € V' there exisy € G andb € C satisfyinga = gb,
ii): (a,gb) < (a,b)foralla,bec C andg € G.
If P is the orthoprojector onto a subspace orthogong{doc V' : Ga = a}, then the
inequality (PI) holds, provided that = € C, (cf. [3, Theorem 2.1]).
The triplet(V, G, C) fulfiling the conditions i)-ii) is said to be aBaton system(see e.g.[[3]
and the references given therein). The main example of this structure is the permutation group
acting onR™ and the cone of nonincreasing vectors.

14

LetC' C V be a convex cone. Every cone of the fofim+ 15 has the representation:
(3.1) C+Vy=PC+ Vs,

Therefore, on studying the projection inequality (PI), according to Theprem 3.1, it is suffi-
cient to consider convex cones of the foéim= D + V5, whereD is a convex cone if;. The
following proposition is a simple consequence of Thedrem 3.1.

Proposition 3.2. Let D C V; be a convex cone. Fay,z € V the following conditions are
equivalent.

i): (PI)holds forally € D + V4
ii): z € dual D.
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Let D C V; be aconvex cone. Than C dual D. Thisimplies thatP? dual D = ViNdual D.
Applying (3.1) todual D + V; = dual D, we get

(3.2) dualy, D + V5 = dual D.

According to the above equation and the last proposition, we need to find for (PI) such cones
D for which D N dualy, D are as wide as possible.

Proposition 3.3. The inequality (PI) holds foy, z € D + V5, whereD is an arbitrary self-dual
cone W.r.t.V;.

Proof. By assumptionD C Vi, hence[(3.R) givedual D = D + V5. Propositiorf 3 implies
that (PI) holds fory, z € (D + Vo) Ndual D = D + V5. O

If D is a self-dual cone w.r.tV; thenD + V4 is a maximal cone for (Pl) in the following
sense.

Proposition 3.4. Let D be a self-dual cone w.r.tl; with D + V;, € C, whereC C Vis a
COonvex cone.
If (P1) holds fory, z € C'thenC = D + V5.

Proof. SinceV, C C, (3.3) yieldsC = PC + V,. By Propositior] 3.2, (PI) holds foy, =z €
(PC + V3) Ndual PC. The assumption that (PI) holds fgrz € C givesPC + V, C dual PC.
SinceD +V, C C, D = P(D + V,) C PC. From this we havedual PC' C dual D = D + V5,
by (3.2), becauséual,, D = D. Combining these inclusions we can see tat PC + V, C
D + V.

The converse inclusion holds by the hypothesis, and thus the proof is complete. [

Let Gp denote the set of all unitary operators actinglowith gV, = V5. Notice thatGp is
a group of operators. The inequality (PI) is invariant with respe¢t o

Theorem 3.5. For fixedg € G p the following statements are equivalent.
i): (PI) holds fory, z
ii): (PI) holds forgy, gz.

Proof. Assume thay is a unitary operator satisfying’; = V5. This is equivalent tg*V; = V5,
whereg* is the adjoint operator af. We first show thayl; C V;.

Suppose, contrary to our claim, that there exisisal; with the propertyyu = v +v9, v; €
Vi, i =1,2, vy # 0. We have:

ull® = llgull® = llor +v2* = lloal* + Joal* (9 — unitary, vy L v),
lu = g*va|* = [lg(u — g"va)|I”
= llgu — vs|?

= [[v1]]* (since g — umitary, g*g = id),

|lu — Q*UQH2 = ||u||2 + ||g*v2||2
= ||UH2 + HvzH2 (u L g*vg, g* — unitary).
Hence:
[ull® = flod[]* 4 [lva?
2
= H’U2|| :O:>?}2 :0,
[va]1? = [Jull® 4 [|lva?

a contradiction. This completes the proofgf, C V;.
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Note thatg*V; C Vi, too. This implies that; C ¢V;. Therefore
(3.3) g1 =V1.

Now, letz € V be arbitrary. We have = z; + z,, wherez; € V;, i = 1,2. For an
orthoprojectorP onto1; we get:

gPz = gP(21 + 22) = 921 = P(g21 + gz) = Pyz,
becausgz, € Vi by (3.3) andyz, € V5 by assumption. Thus
(3.4) Pg=gP.
By (3.4).

(9y, Pgz) = (9y, 9Pz) = (g"gy, Pz) = (y, Pz) .
This proves required equivalence. O

A simple consequence of the above theorem is:

Remark 1. For a convex con€’ C V andg, € Gp the following statements are equivalent.

i): (PI) holds fory, z € C'
i): (PI) holds fory, z € goC.

In the remainder of this section we assume thas a real separable Hilbert space.
Let {f,} be an orthogonal basis #f, i.e.

>0, n=v
{20 12
for integersy, v.

Under the above assumption, the projectidntakes the form:

(3.5) Pz=Y" <Hsz‘c|2> f,.

14

From this, fory, z € V we have

ro = Bt

v

Therefore the following remark is evident.

Remark 2. Let{f,} be an orthogonal basis &f.
Fory, z € V the inequality (PI) holds if and only if

(. fv) (2, fo)
2 RE 2

v

Set

(3.6) D:{xEV:aZ:Za,,f,,,ayzO}.

Clearly, D is a closed convex cone generated by the sydtérh. The scalarsy, = fffyfllg are

the Fourier coefficients of w.r.t. the orthogonal systefy, }. Moreover,D is a self-dual cone
w.r.t. V1. By Proposition 3.3 we get

Corollary 3.6. If {f,} is an orthogonal basis df}, then (PI) holds fory, = € D + V5, where
D is defined by{(3]6).
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Let = denote the set of all sequendes- (£;,&,...)with &2 =1, v =1,2,.... For given
¢, let us define the operatgr on'V' as follows:

Jer = P“Zg” TR
This operator is an isometry, because
2
z fu>

= [l=l* — [[Px|* + HPIH2 ||9:H2
by (3.5) and obvious orthogonality

“"P“Zg” T

If z € V3, then(z, f,) = 0forall v. HencePx =0 =) _¢, Hg}fﬁg)

. For this reason

(3.7) gex =x, x € Vo

We write
(3.8) G={g::€€=}.

We will show thatG' is a group of operators. It is evident that:
(3.9 ge =1d, foré=(1,1,...).
Let(, &, v € =. We have:

gcho =1 =Pl ¢, %ﬁt’;)ﬁy Cofv.
n

because’f, = f,, v =1,2,.... From this, byx — P:c € V2 and (3.7) we get:

z fu>

=gcle — Pa) *Zg” ARG
repre el
Thus
(3.10) 9c9e = 9ce = 9e9¢s
where( - £ = ((1&1, (2o, - . . ). This clearly gives:
(3.11) 9¢(9¢9y) = geer = (9e9¢)9
and

9e9e = gee = id,
which is equivalent to

(3.12) (9¢)" = ge.
Sinceg; is an isometry and invertible,

(313) ge — Unitary, vieg.
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By (B.13), [3.7).[(3.8) {(3.12) we can assert thais an Abelian group of unitary operators
that are identities oi,. As a consequencé; C Gp.

Given anyz € V, we definef, = (£,1,&,2,...)b

B 1, (z,f,)>0
(3.19) 6 = { LU

Itis clear that, , (z, f,) = |(«, f.)|. Hence

e, & =2 — Px +Z|xf,, fus

1711
wherex — Pz € V, andz (= ‘fV € D. Therefore
(3.15) ge, v € D+ V.

Assertion|(3.1b) is simply the statement that
(3.16) (Gx)NC #0, Veev

with C' = D + V5. This condition ensures that the sum of the con@s whereg runs over
G, covers the whole spadé. Now, we show that[(3.16) holds far, and for every cone
C=PC+V,, PC#{0}.

Fixv e V. Clearly,v = vy +wvs, v; € V;, i = 1,2. If vy =0thenv € Gpv C Vo, C C, i.e.
(3.18) holds. Assume that# v; and note that there exisis# u; € PC. Let us construct the
two orthogonal basege, } and{f,} of V; with e; = v; and f; = u;. Setu = H’”l”uz_iu + vy
and

(3.17) g=id-P+ Z ||6V||||fu||

Observe thats € C, gv = uw andg is the |dent|ty operator of';. Now, we prove thay is
unitary. Firstly, we note that forany € V'

(@ e)’
gl = ll]|* = | P=]® + II; ﬁg = [l
14
14

becausd Pz|? = 3 ¢

have

o W, fv) fv
vy “Z TZRIAE

Set

(W, fv) ev
r=1y— Py+
Z £ el

It is easily seen thajx = y. So,g¢ is unitary.

Finally, ¢ is a unitary operator ot with gV, = V5 andgv = u. It givesu € Gpv N C, as
desired.

We are now in a position to introduce a notion of synchronicity of vectors for (PI). For an
orthoprojectorP let C' be a convex cone which admits the representation

C = PC+ Vs,
wherePC' is nontrivial. LetG be a subgroup off » with the property[(3.16).
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The two vectors,, = € V are said to bé&--synchronous (with respect t0) if there exists a
g € G such thayy, gz € C. If G = Gp, then we simply say thatandz are synchronous.

The definition is motivated by [3, sec. 2]. It generalizes the notion of synchronicity with re-
spect to Eaton systems. Obvioughsynchronicity forces synchronicity under fixéd In the
sequel, for special cones we show that synchronicity is equivalent to (PQy4syhchronicity
is a sufficient condition for (PI).

According to Theorern 3|5, by the notion of synchronicity, it is possible to extend (PI) beyond
a coneC' if only (PI) holds for vectors irC'.

Proposition 3.7. LetC' C V' be a convex cone with = PC + V,, PC # {0} and letG be a

subgroup of7» with property [(3.1p).
The following statements are equivalent.

i): (PI) holds fory, z € C
ii): (P1) holds for the vectorg and z which areG-synchronous w.r.tC'.

Proof. i) = ii). Assumey andz areG-synchronous w.r.tC'. There existy € G with gy, gz €
C. Since i), (PI) holds fogy, gz. By Theoreni 3.6 we conclude that (PI) holds foand .
The converse implication is evident becayse € C are of coursés-synchronous. O

Now, we are able to give an equivalent condition é&synchronicity. Simultaneously, the
condition is sufficient for synchronicity w.r.D + V5.

Proposition 3.8. Let G be the group defined bly (3.8) and IBtbe the cone defined Hy (B.6).
The vectorg), z € V are G-synchronous w.r.tD + V5 if and only if

(W, fo) (2. fv) 20, V..

Proof. If y, z are G-synchronous, then there existg auch thatg.y, gz € D + V,. Hence
& (y, fu) > 0andg, (z, f,) > 0 for all v. Multiplying the above inequalities side by side we

obtain0 < &2 (y, f.) (2, f.) = (y, f,) (2, f.,) for everyw.
Conversely, suppose thay, f,) (z, f,) > 0 for everyv. In this situation, the sequences

defined fory andz by (3.14) are equal. Hengeandz areG-synchronous by (3.15). O

Summarizing the above considerations we give sufficient and necessary conditions for (PI)
to hold.

Theorem 3.9.Let{f,} be an orthogonal basis df,. SetC = D + V,, whereD is defined by
(3.6). The following statements are equivalent.

I): y andz are synchronous w.r.C'
ii): (PI1) holds fory and z.

In particular, if

(318) <y7g0fl/> <Z790f11> Z 07 VV,
then (PI) holds, wherg, € Gp is fixed.

Proof. The first part, i}=ii). It is a consequence of Corollary 3.6 and Proposifion 3.7.
Conversely, if i), then Py, Pz) > 0. Firstly, suppose thaPz = «Py. Clearly,a > 0.
By (3.16), which holds forG» and C, there exists & € Gp such thatgy € C. Hence
Pgy € PC = D. By (8.4),9Py € D. Sincea > 0, agPy € D. Sincez — Pz € V5,
g(z — Pz) € V,, becausgV, = V. Hence
gz =gPz+ g(z — Pz) = agPy + g(z — Pz) € C.

Thereforegy, gz € C, i.e.y andz are synchronous.
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Next, assume thaPy and Pz are linearly independent. Let us construct an orthogonal basis
{e, } of V; with

(Pz, Py)
et =Py, e=Pz———--Py
[ Pyl[?
and letg € G p be defined by[(3.17). There is no difficulty to showing that
1Pyl
WL g e
V2 N——
eD
|| Pz||2|| Py||—(Pz,Py)*
92 =g Pz+ pippg it ! Pl 2 €C
€V >0, by (PI) >0, by Cauchy—Schwarz ineq.

-~

eD

Thereforey andz are synchronous as required.

Now, let us note thaf (3.18) is equivalent to

<géy7 fl/> <96<27 fV) 2 O, Y.
By Propositior] 3.Bg;y andg;z areG-synchronous w.r.tC. Hence there exists@c G such

that ggsy, g5 € C. Sinceggs € Gp, y andz are synchronous w.r.iC. For this reason (PI)
holds, by the first part of this proposition. The proof is complete. O

4. APPLICATIONS TO THE CHEBYSHEV SUM INEQUALITY

Throughout this sectiorl/ = R™ with the standard inner produ¢t -). Let {s;} be the basis
of R, wheres; = (1,...,1,0,...,0), « = 1,...,n. The symbolsl; andV, stand for the

subspace orthogonal tg and its orthogonal complement, respectively, i.e.

Vlz{ Ti,. .., T sz—O} Vo = span{s, }.

Let P be the orthoprojector ontb;, i.e. P = id—%sn. In this situation, by Examp@.z,

(PI) becomes th€hebyshev sum inequal{gHSI).

It is known that the convex cone of nonincreasing vectors
C={z=(21,...,2,) X1 >0 > > T}

is generated bys, ..., s,, —s,}. On the other side,

{(1,-1,0,...,0), (0,1,-1,0,...,0), (0,...,0,1,—1)}

is a generator of

dualC’:{ (x1,...,x sz_o Z%ZO kE=1,. n—l}.

Sete;, =nPs;, i=1,...,n—1. Clearly,

4.2) ei=mns;—isp,=M—14,...,n—i,—i,...,—1), i=1,...,n—1
~~ ~~
(3 n—1

Write
D = cone{e; }.
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Clearly, PC = D andV; C C. Hence by|[(3]1),
C=D+V,.

Applying Propositior} 32, we conclude that (PI) holds for € (D + V) Ndual D = C' N
dual D. With the aid of generators we can check that: dual C. HenceC' = dual dual C' C
dual D.

By the above considerations, for arbitrayyz € C, the inequality (CHSI) holds. This is a
classic Chebyshev result.

The systeme;, i = 1,...,n — 1} constitutes a basis df;. Observe that

(ei,ej) =i(n—jg)n, i<j,4,j=1,....,n—1
Hence, easy computations lead to

k-1
<ek+1—n—ek,ei>20, i=1,.. . ki k=1,...n-2
n—=k

From this, the Gram-Schmidt orthogonalization gives the orthogonal systgnfor the basis
{e;} as follows:

4.2) { nee .
Qer1 = (ekﬂ — ”n_klek) , k=1,....n—2.
According to [(4.1) and (4]2) we obtain the explicit form of the orthogonal bias}s
(4.3) qk:(u,n—k,—l,...,—l), E=1,....,n—1.
k—1 n—k

Let us denote N
K=D+ ‘/27

whereD stands for theone{q; }. The convex cond is self-dual w.r.t.V;.

According to Propositioh 3]3 we can assert that (CHSI) holdg fere K.

Let go(z1,...,2n) = (—2n,...,—21). Clearly,go € Gp. By RemarK 1, (CHSI) holds for
Y,z € goKK. Have:

90K = go(D + Vi) = goD + Vi = cone{gogi} + Va.

Define fy = gogn—k, k =1,...,n — 1. Sincegy € Gp, go is unitary andg,V; = Vi, by (3.3).
Hence{ f;} is an orthogonal basis &f,. Observe

(4.4) fo=(@1,...,1,—-k0,...,0), k=1,...,n—1.
k
Write
M = cone{fy} + Va.
By RemarK 1, it is evident that (CHSI) holds forz € M.

Proposition 4.1. For z = (z,...,x,) € R”

1 n
€ K <= the sequencd —— i iS nonincreasing,
; wened 73} :

k n
1 . . .
xr € M < the sequenc{E E xl} IS nonincreasing.
i k=1
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Proof. We prove only the first equivalence. The second one uses a similar procedure.

By (3 .) K = dual D, becauseD is self-dual w.r.t.V;. Hence by.) we can assert that
x € K is equivalent to

(n—k)kaZIi, k=1,....n—1.
i=k+1

Adding to both of sidegn — k) >, ., z; and dividing by(n — k)(n — k + 1), we obtain

1 - 1 n
n——kﬁl<;xl>zn_k<le>v k=1,...,n—1.

i=k+1
This is equivalent to our claim. O

By the above proposition, we can see thatC K andC' C M. The coneM is said to be a
cone of vectors nonincreasing in mean. It is easily seen that (CHSI) holgsfar — K and
fory,z € —M (for e.g., by takingC' = K, M and substituting- id into g, in Remark 1). The
statement that (CHSI) holds for vectors monotonic in mean is due to Biernacki, see [1].

The remainder of this section will be devoted to (CHSI) for synchronous vectors. We will
consider relations between synchronicity and similar ordering.

HereGp is the group of all orthogonal matrices such that the sum of the entries of each row
and column is equal tb or —1. The group of all. x n permutation matrices is a subgroup of
Gp, which together with the con@ fulfil (8.16). The permutation group synchronicity w.\X.
is simply the relation "to be similarly ordered". It implies synchronicity w.r.t. every cone which
containsC, e.g. M or K.

The two vectors: = (z4,...,2,), ¥y = (Y1, .-, ¥n) € R™ are said to be similarly ordered if

(4.5) (zi —2j)(yi —y5) >0, Vi

The assertion that (CHSI) holds for similarly ordered vectors is a consequence of Proposition
[B3.1.

Theoren] 3.9 states that (CHSI) is equivalent to synchronicity w.oie{ f,} + V5> where
{/f} is an arbitrarily chosen orthogonal basisi@f Moreover,GG-synchronicity gives (CHSI),
whereG is the group[(3.8) acting oR". For this reason, the specification of Theofen) 3.9 can
be as follows.

Let{ .} be defined by (4]4) and by (3.8) in compliance with the basis.

Corollary 4.2. (CHSI) holds fory, z if and only ify and z are synchronous w.r.t}/.
In particular, (CHSI) is satisfied by and z such that

<y,Ufk><z,Ufk)20, /{221,...,”—1,

whereU is a fixed unitary operation witl/s,, = s,, or Us,, = —s,, i.e. U is represented by an
orthogonal matrix whose rows and columns sum up ¢o to —1.

By Propositiorj 3.8 we have:

Remark 3. The vectoryy = (yi,...,y,) andz = (zy,..., z,) areG-synchronous w.r.t\/ if
and only if
k

k
[Zyi_kyk+1] [Z%—kzkﬂl >0, k=1,...,n—-1
i—1

=1
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Relations of similar ordering an@-synchronicity w.r.t. M are not comparable, i.e. there
exist similarly ordered vectors which are not synchronous and there exist synchronous vectors
that are not similarly ordered. On the other hand, both relations imply synchronicity M.r.t.
and as a consequence, (CHSI) holds.

Example 4.1. ConsideR"™, n > 3.

For0 < a<l<p<n-—1sety=(0,...,0,1 —n,—a), 2z =(0,...,0,1 —n,—f).
According to [(4.5) and RemarfK 3 the vectarsand = are similarly ordered and are n6t-
synchronous, but they are synchronous wit.so (CHSI) holds.

Now, sety’ = f1 + fo, 2’ = fo + f3, wheref; are defined by[ (4]4). The vectaysand:’ are
G-synchronous w.r.tM, because/, 2’ € M, so (CHSI) holds.

On the other hang’ = (2,0,—2,0,...,0), 2/ = (2,2,—1,-3,0,...,0) are not similarly
ordered by[(4]5), becausg; — v})(z} — z}) = —2(—1+3) < 0.

5. APPLICATIONS TO THE CHEBYSHEV INTEGRAL INEQUALITY

SetV = L? as in Exampl¢ 3]2. The characteristic function of the measurablé sefo, 1]
is denoted byl 4. Additionally we will write e, = Ijp 4, 0 < s < 1. The symbolV; stands for
the subspace orthogonal g = span{e, }, i.e. V; = {x € L?: [xzdu =0} . By Examplg 3.2,
it is known that for the orthoprojecta? onto V; (PI) transforms into th&€hebyshev integral
inequality(CHII). Let C' c L? be the closed convex cone of all nonincreasinge. functions.
It is known (seel[5, Theorem 3.1 and 3.3]) that:

(5.1) C =cone({e;: 0<s<1}U{—e1}),
dual C' = cone{ly — Iy : € > 0,11, 11+ ¢ C [0, 1]},

wherell stands for an interval.
The Haar system:

(5.2) Xg = €1
L e
Xn(t)=q =27, 2 <t < 325
0, otherwise
n=01,..., k=12...,2"
forms an orthonormal basis @f. In particular, X = {x* : n=0,1,..., k=1,...,2"}isan
orthonormal basis of;.
Let
D = coneH.
The coneD is self-dual w.r.t.V;, so by [3.2) we have:
(5.3) dual D = D + V5.

By (5.1), observe thak{ C dual C, henceC' = dual dualC' C dual H = dual D. Combin-
ing this with (5.3), we obtain

(5.4) CcD+V,.
From [5.4) and Corollarly 3|6 it follows that

Corollary 5.1. (CHII) holds fory, z € D + V5.
The coneD + V5 contains the cone of all nonincreasipg:.e. functions inL?.
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It is easily seen that the core + V5, contains functions which are not nonincreasing.e.
Let G be the group((3]8) acting ab? with the Haar system. Employing tkié-synchronicity
relation w.r.t.D + V5, by Theorenj 3]9 we get:

Corollary 5.2. (CHII) holds fory, z € L? if only
(55) <y> X> <Z7 X> Z 07 vXGH'

We next discuss the relation between the condifior] (5.5) and the known sufficient conditions
for (CHII). One of these is the condition thaandz are similarly ordered, i.e.

(5.6) [y(s) —y(t)] [z(s) — 2z(t)]] >0, forall0<s,t<1

(see e.qg.l]6, pp. 198-199]). Now, we show by an example that-tsgnchronicity condition
(5.5) is not stronger than the condition of similar ordering](5.6)4n

Example 5.1.In L? lety = x4 + x3, 2 = x3 + x3, wherey! are defined b2). The vectors
y andz areG-synchronous w.r.tD + V5, because they are iD.
On the other hand

y(s) =2, 0
y(t) =0, %

From this,[y(s) — y(t)] [z(s) — 2(t)]] = [2 — 0][0 — 2] < O forany(0 < s <
Thusy andz are not similarly ordered.

IN

INA
®|Ut ol

z(s) =0,

)

<s<

IA

S

olut ool

_ 4
t At)y=2, 1<t<

IN

and:z <t <

oo
o] 5N
oot

Now, we recall that a functiop € L? is nonincreasing (nondecreasing, monotone) in mean
if the functions — 1 [* ydy, is nonincreasing (nondecreasing, monotone).
1 [?sifferentiatingi fos ydp we can easy obtain thgtis nonincreasing in mean if and only if
sl ydu > y(s), pae.

It is known that (CHII) holds fory andz which are monotone in mean in the same direction
(seel[l1], cf. also |6, pp. 198-199]). Johnsonlin [2] gave a more general condition. Namely, if

1 [° 1 [°

(5.7) {—/ ydu—y(s)} {—/ zdu—z(s)} >0, Vo<
S Jo S Jo

then (CHII) holds fory and=.

Remark 4.

(1) There exist functions inone H which are not nonincreasing in mean.

(2) There exist functions nonincreasing in mean which are nabie 7.

(3) There exist functions inone H for which (5.7) does not hold, i.e. the conditi¢n (5.5) is
not stronger tharn (5.7).

Proof. An easy verification shows that:
Ad. 1) x* € H, k > 1 are not nonincreasing in mean.
Ad. 2) Setf = Ijg1/2) — 211/2,3/4)- [ IS NONincreasing in mean and is notcisne H because

(fixi) <. ,
Ad. 3) Sety = x3, z = x3. For < s < ¢ have:

L[ vy [2 [ ] - 2222 <o
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The set of allL?-functions nonincreasing in mean constitutes a convex cone. It will be de-
noted by . Let M, be the class of all step functions of the form

g 0<s<it<lL

gst = I[ ,

Proposition 5.3.

M = dual./\/lo,
PM = dualy, Mg = cone My,
M = cone My + V5.

Proof. By definition, f € M if and only if

1 [° 1 /[t
—/ fduZ—/fd,u forall0 <s <t <1.
$Jo t Jo

After equivalent transformations we obtain

/Osfduzi/:fdu forall0 < s <t< 1.
This is simplyf € dual M, so the first equation holds.
To show the second equation, note thdt ¢ M N V;. Hence
dual(M N'Vy) C dual My = M
by the first equation. It follows that; N dual(M NV;) C M NV, i.e.
(5.8) dualy, (M NVy) C M N V.
Fix f € M NV, and letg € M NV, be arbitrary. For suclf andg (CHII) holds and takes

the form:
/fgdu>/fdu /gdu—O 0=0,

i.e. f € dualy, (M NVy). Therefore
(5.9) M NVy C dualy, (M N V).

SinceM = dual My, dual M = cone M,. Now, observe that, C M. This implies by
(3.1) thatM = PM + V5. Furthermore, in this situatioR M/ = A N V;. The above gives

dual M = dual(M NV} + V3)
= ViNndual(M NV;) = dualy, (M NVY).
Hence
(5.10) dualy, (M NV;) = cone M.

Combining [5.8),[(5]9) andl (5.1.0) we obtain the required equations.
The third equation is a consequence of the second one. The proof is complete. [

The second equation of the above propositions immediately gives:

Remark 5. The convex cone of all>-functions nonincreasing in mean with integral equal to
0 is self-dual w.r.t.V;.

TakingC' = M in Theorenj 3]1, by Propositi¢n 5.3 we easily obtain:

Corollary 5.4. If [ fdu [ gdu < [ fgdp holds for all functionsf € L? monotone in mean,
theng ¢ L? is also monotone in mean.
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