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1. INTRODUCTION

Let / be a bounded interval of the real axis. We denoté3ly) the set of all functions which
are bounded ofu, b].

Let A be a positive linear functional : B(I) — R, such thatd(ey) = 1, wheree; : I — R,
ei(x)=a", Vo el, ieN.

The following inequality is known in literature as the Gruss inequality for the functidnal
Theorem 1.1.Let f,g : I — R be two bounded functions such that < f(z) < M; and
me < g(z) < My forall z € I, my, My, my and M, are constants. Then the inequality:

(1.1) A(fg) — AP)A()] < (M = ) (My — ms)

holds.
In 1938 Ostrowski (cf. for examplel[7, p. 468]) proved the following result:
Theorem 1.2.Let f : I — R be continuous orta, b) whose derivativef’ : (a,b) — R is
bounded ora, b), i.e.
1]l := sup |f'(t)| < oo.

te(a,b)
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2 B. GAVREA AND |. GAVREA

Then

N Gl e
1 W] (b= a)[lf'll

(1.2) ’f(x) -

forall z € [a,b]. The constant is best.

In the recent paper [4] S.S. Dragomir and S. Wang proved the following version of Os-
trowski’s inequality.

Theorem 1.3.Let f : I — R be a differentiable mapping in the interior 6fanda, b € int(I)
witha < b. If f' € Lyi[a,b] andy < f'(z) < I' for all = € [a,b] then we have the following

inequality:
f(bl)):i:(a) (I - a+b)‘ < i(b_ a) (T =)

(1.3) .

fx) =

for all z € [a, b].
The following inequality for mappings with bounded variation can be found!in [1]:

Theorem 1.4.Let f : I — R be a mapping of bounded variation. Then for alk [a,b] we
have the inequality

/f t)dt — f(x)(b—a)

where\/ f denotes the total variation of.

(1.4)

< E(b—a) +

b
x_a;b':|\/f’

The constang is the best possible one.
In[2] S.S. Dragomir gave the following result for Lipschitzian mappings:
Theorem 1.5.Let f : [a,b] — R be anL-Lipschitzian mapping ofu, b}, i.e.
|f(@) = f(y)| < L]z —yl, forall z,y € [a,0].
Then we have the inequality

/f Bt — f(2)(b— a)
forall x € [a, b].

The constang is the best possible one.

S.S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang|in [3] proved the following theorem:
Theorem 1.6. Letf w : (a,b) € R — R be so thatw(s) > 0 on (a,b), w is integrable on
(a,b) andf s)ds > 0, f is of r-HOlder type, i.e.

(1.6) |f(x) = f(y)| < H|z —y|", forall z,y € (a,b)
whereH > 0 andr € (0, 1] are given. Ifw, f € L(a,b), then we have the inequality:

1 b
Hb—/ |x — s|"w(s)ds
[ w(s)ds Ja
forall z € (a,b).

The constant factor 1 in the right hand side cannot be replaced by a smaller one.
The aim of this paper is to improve the results from Theorems 1.1]- 1.6 using an unitary
method.

(1.5) < L(b—a)?

1

b
m/ w(s)f(s)ds| <

(1.7) ‘f(x) -
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2. AUXILIARY RESULTS

Let X = (X,d) be a compact metric space ao.X) the Banach lattice of real-valued
continuous functions on the compact metric space- (X, d), endowed with the max norm
|- 1 x

For a functionf € C'(X), the modulus of continuity (with respect to the metf)ds defined
by:

w(f;t) =wa(f;t) = sup [f(z)— f(y)l, t=>0.

d(z,y)<t
The least concave majorant of this modulus with respect to the vatigbgven by

sup Ummelmtnelfi) for < ¢ < d(X);

—X
0<w<t<y Y

w(fit)=9 7
w(f;d(X)) fort > d(X),

whered(X) < oo is the diameter of the compact spake
We denote byLipy,a = Lipy(o; X) the set of all Lipschitzian functions of order o €
[0, 1] having the same Lipschitz constant Thatisf € Lipy«iffforall z,y € X

|f(x) = f(y)| < Md®(z,y).

We see that
Lipy(a; X) ={g € C(X) : w(g;t) < Mt}

Let I = [a,b] be a compact interval of the real axis,a subspace of’(/), and A a linear
functional defined ory. The following definition was given by T. Popoviciu inl [8].
Definition 2.1. The linear functionald defined on the subspadewhich contains all polyno-
mials isP,-simple(n > —1) if

() Alens1) #0
(i) for every f € S there are the distinct points, ¢o, . . ., 12 in [a, b] such that
A(f) = Alens1)[tr, ta, -ty f1,
where[t, to, .. ., t,12; f] is the divided difference of the functighon the points, ts, ..., t, 2.
In [5] the following result is proved. The proof is reproduced here for completeness.

Theorem 2.1.Let A be a bounded linear functional : C(I) — R. If A is Py-simple then for
all f € C(I)we have

1A~ (. 2[A(ed)]
: )

. A —w
1) )< 5l (1200

Proof. Forg € C''(I) we have

AN = [A(f —g) + Al < Allf = gl + [Alg)]
< |ANLf = gll + [ACeD) g [l
From this inequality we obtain

(AN < inf ([[ALf = gll + [Aen)]lg'l])

geC1(I)

and using the following result (see |10])

) t,, 1.
nt, (17 = ol + §100) = 5300 00

geCH(T)
we obtain the relatior) (2.1). O

J. Ineq. Pure and Appl. Math1(2) Art. 11, 2000 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/
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The following result was proved by I. Raga [9].

Theorem 2.2. Let k be a natural number such that < k¥ < nand A : C®[a,b] — R a
bounded linear functionalA # 0, A(e;) = 0fori¢ = 0,1,...,n such that for everyf €
C®][a,b] P,-nonconcavel(f) > 0. ThenA is P,-simple.

A function f € C®[qa,b] is called P,-nonconcave if for any. + 2 pointsty, s, ..., Ly €

[a, b] the inequality
[t17t27"'7tn+2;f] Z 0
holds.

Another criterion forP,-simple functionals was given by A. Lupas in [6]. He proved that
a bounded linear functional : C[a,b] — R for which A(e;) = 0, £ = 0,1,...,n and
Aleni1) # 0is P,-simple if and only ifA is P,-simple onC™+Y[q, b].

Now we can prove the following result (see alsb [5]):

Theorem 2.3. Let A be a bounded linear functionall : C'(I) — R. If A(e;) # 0 and the
inequality [2.1) holds for any € C(I) thenA is Fy-simple.

Proof. We can assume that(e;) > 0. Combining the results of I. Raga and A. Lupas, it is
sufficient, for the proof of the theorem, to show that

(2.2) A(f) =0

for every nondecreasing differentiable functipefined on/.
For such a function we have

[ANI < Aled)[1F]l-

Let B be the linear functional defined by

where
t
P(O) = [ fdu, fech,
0
The functionalB is bounded and for any € C(I) we have

[BAOI <11l

Let f be a continuous function such that> 0, f # 0.
From the inequalities

f
0<e)— o <1
Al

= ()=

These inequalities imply that

we obtain

(2.3) B(f) > 0.

Further, letf be a differentiable function ohsuch thatf’ > 0, then, from|[(2.B) we obtain
B(f") > 0.

SinceB(f') = A(f), the inequality[(2]2) is thus proved. O
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3. AN INTEGRAL INEQUALITY OF OSTROWSKI TYPE

The following inequality of Ostrowski type holds.
Theorem 3.1. Let f be a continuous function ofa, b andw : (a,b) — R, an integrable
function on(a, b) such thatffw(s)ds = 1. Then for any continuous functighthe following

inequality:
< ( /a ’ w(t)dt) Wia,z] (f ; J. w}tx) Ej(t_) t)dt)

N ( L bw(t)dt) Dot (f ? k t}g?jzz)—df >dt>

Proof. From Theorem 2|3 we get that the linear functionals
Ay Cla,z] = R, Ay :Clz,b) - R

(3.1) ‘f(:v) -/ " w(s) F(s)ds

holds, wherer is a fixed pointin(a, b).

defined by N i

) = 1o) [ wiode— [ et
and , ,

Aalf) = f1a) [ wtit = [ sowio

are P,-simple.
It is easy to see that:

T b
||A1||:2/ w(t)dt and ||A2|]:2/ w(t)dt.
From the inequality:

L wisrrsas] < ([ w5 (1A N L w3 [ )
= ] ([ o) ) [ o) 3,
and from the results

|A1(el)|:/ wt)(z —tdt  and |A2(el)\:/ w(t)(t — 2)dt,

(3.7) follows. O
Corollary 3.2. Let f be a continuous function o, b], such thatf € Lipy, («,[a,z]) and

f € Lipp, (56; [z, b]). Then
<M, (/:w(t)dt)l_a V:w(t)(;c _ t)dtr

+ My (/:w(t)dt)l_ﬁ U:w(t)(t - x)dt}

Proof. The proof follows from the inequality (3.1) and the fact that
wi(g;t) < Mt
for any functiong, g € Lipy(«, [c, d]), wherew, is taken on the intervat, d. O

N———

(3.2) ‘f(x) -/ " () f(s)ds

B

Corollary[3.2 is an improvement of the result of Theofen 1.6.
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Remark 3.1. In the particular case when(t) = ﬁ the inequality) becomes:

b £(s)ds T — q)ot! )8+
(3:3) ‘ﬂ“’) B fabf+;d {Ml% 0 } =
< max(M;, M) le + (x(b—_—“?>2)] (b—a).

Inequality [3.8) improves the inequalify (1.5).
Corollary 3.3. Let f : [a,b] — R be continuous offa, b), whose derivativg’ : (a,b) — R is
bounded or{a, b) andw a function as in Theorefn 3.1. Then we have the following inequality:

b T b
1)~ [oerres] < | [Cutee o [Cowi - o 171
Proof. The above inequality is a consequence of the inequality (3.1) and the fact that

(f;t) < floot

The inequality of Ostrowski follows fron (3.4) if we consider

(3.4)

w(t) = t € [a,b].

O

Corollary 3.4. Let f : I — R be a mapping with bounded variation amda function as in
Theoreni 3[1. Then for all € [a, b] we have the inequalities

(3.5) ‘f(a:) /ab s)ds \/f/ dt+\/f/

(3.6) ‘f(fc)— / " w(s) f(s)ds

Proof. It is clear that

T b
(3.7) Sleal(fin <\ f  and Sl <\ /

for every positive number.
Thus, inequality[(315) follows from (3.7).

For the proof of the mequallt 3.6) we note that, if we suppﬁ%e; t)dt < = thenf t)dt >

= and vice versa.
For definiteness we assume that

T b
/w(t)dtg% and /w(t)dtz%.

We then have

\/f/ dt+\/f/ < %\I/fjt\b/f/;w(t)dt
- %\:/f+\i/f</: ()dt—%)
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and so

b " b
(3.8) \/f/ dt+\/f/ t)dt < <_+ /s w(t)dt;fa w(t)dt) V7.

From the inequalities (3.5) and (8.8), the inequality](3.6) follows. O

Remark 3.2. The inequality from Theorefn 1.4 follows if we take [n (3.6)
1
b—a
Theorem 3.5. Let g be a continuous differentiable function @n b such thaty(a) = ¢g(b) = 0.
Then the inequality

b
(3.9) ]@—b% g(t)dt| <

holds, wherer is an arbitrary point in(a, b).

w(t) =

(x—a)+b—a)?_ [, 2(@—a)P+(y—0b)?
8(b—a) w< a )

Proof. The following functionalA defined onC|[a, b] by

A(f>=bfa/: (t—“;b) f(t)dt

is a linear bounded functional having its norm equdﬁ@. For every increasing functiofiwe
have:

A(f) 2 0.
Using Theorem 2]3, we deduce that the functiofid £,-simple with

Aley) = 12“) .

From Theorem 2]1, we obtain the following inequality:

b J—
(3.10) ‘bia/ (t—a;b> F(t)dt| < 58% (f;;(b-@).

Inequality [[3.10) holds for every continuous functin
Let us suppose thatis differentiable orja, b]. From the inequality (3.10) (written fof’) we

obtain the foIIowing inequality:
f( ) a (. 2
— < c— — X
P /f t)dt < 8wf,3(b a)

Now, we can prove the mequah@.g). We have the following identity:

(3.12) —M+L/abg(t)dt:x_a( ! /mg(t)dt—M)

2 b—a b—a\z—a)/, 2

b—x (1 [ g(b) +g(x)
+b—a<b—x/ag(t)dt_ 2 >
Using the relationg (3.11) and (3]12) we obtain

(3.13) ‘ﬁ . —/ ‘

(3.11)
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As the function(¢'; -), is concave, then fronf (3.1L3) and using Jensen’s inequality, we obtain
the inequality[(3.D). O

Corollary 3.6. Letg be a continuous differentiable function @nb| such thay(a) = g(b) = 0,
then the following inequality

2
g<$> 1 /b 1 (ZE - aT—H)) /
3.14 —_t = Hdt| < | =+ -~——| (b—
ey |8 [anal < g G2 0= ol
is valid for all z € [a, b].
Proof. It is well known that
(3.15) W(g51) < 2[1g'llo,
for every positive number.
The inequality[(3.15) then readily follows from the inequalty (3.14). O

Remark 3.3. The result from the Theorem 1.3 can be written in terms a6ing the inequality
(3.13) for the function

T —a b—=x

b—af<b> b—a

glx) = f(z) -

In [5] the following result was proved:

Let A be a linear positive functional : C[0,1] — R, A(ey) = 1 andy, ¢ : [0,1] — Ra
continuous increasing function such thie; ) — A(e1)A(¢) > 0. Then the following Griiss
type inequality

. Allp = AW ( ;. 2(Alerg) = Ale)Alp))
16) G - Ala(n| < AEZ A (Al = FouleD)

f(a).

holds.

We are interested in the following open problem:

Open problem. Let A be a linear positive functional defined @0, 1] and f, g be two
continuous functions. Do positive numbeéis= §,(f) < 1 andd, = d»(f) < 1 exist such that

A(fg) — A A()| < 3(F: B)B(S,52)7
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