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Abstract: Suppose two bounded subsets ofRn are given. Parametrise the Minkowski com-
bination of these sets byt. The Classical Brunn-Minkowski Theorem asserts that
the1/n-th power of the volume of the convex combination is a concave function
of t. A Brunn-Minkowski-style theorem is established for another geometric
domain functional.
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1. Introduction

Let Ω be a bounded domain inRn. Define

(1.1) I(k, ∂Ω) =

∫
Ω

dist(z, ∂Ω)kdµz for k > 0.

Heredist(z, Ω) denotes the distance of the pointz ∈ Ω to the boundary∂Ω of Ω.
The integration uses the ordinary measure inRn and is over allz ∈ Ω. Whenn = 2
andk = 1 this functional was introduced, in [1], in bounds of the torsional rigidity
P (Ω) of plane domainsΩ. See also [10] where the inequalities

(1.2)
I(2, ∂Ω)

I(2, ∂B1)
≤ P (Ω)

P (B1)
≤ 128

3

I(2, ∂Ω)

I(2, ∂B1)

are presented. HereB1 is the unit disk and

I(2, ∂B1) =
π

6
=

|B1|2

6π
.

This inequality is one of many relating domain functionals such as these: see [9, 2,
7]. As an example, proved in [9], we instance

(1.3) (ṙ(Ω))4 ≤ P (Ω)

P (B1)
≤

(
|Ω|
|B1|

)2

≤
(
|∂Ω|
|∂B1|

)4

giving bounds for the torsional rigidity in terms of the inner-mapping radiusṙ, the
area|Ω| and the perimeter|∂Ω|.

We next define the Minkowski sum of domains by

Ω0 + Ω1 := {z0 + z1| z0 ∈ Ω0, z1 ∈ Ω1} ,
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and
Ω(t) := {(1 − t)z0 + tz1| z0 ∈ Ω0, z1 ∈ Ω1}, 0 ≤ t ≤ 1.

The classical Brunn-Minkowski Theorem in the plane is that
√
|Ω(t)| is a concave

function oft for 0 ≤ t ≤ 1, and it also happens that|∂Ω(t)| is, for convexΩ, a linear,
hence concave, function oft. Given a nonnegative quasiconcave functionf(t) for
which, withα > 0, f(t)α is concave, we say thatf is α-concave. In [3] it was shown
that, for convex domainsΩ, the torsional rigidity satisfies a Brunn-Minkowski style
theorem: specificallyP (Ω(t)) is 1/4-concave. Thus inequalities (1.3) show that
the 1/4-concave functionP (Ω(t)) is sandwiched between the 1/4-concave functions
|Ω(t)|2 and |∂Ω(t)|4. In [6] it is shown that the polar moment of inertiaIc(Ω(t))
about the centroid ofΩ, for which

(1.4)

(
|Ω|
|B1|

)2

≤ Ic(Ω)

Ic(B1)
≤

(
|∂Ω|
|∂B1|

)4

,

holds, is also 1/4-concave. (The 1/4-concavity ofṙ(Ω(t))4 has also been established
by Borell.) In this paper we show that the same 1/4-concavity of the domain func-
tions holds for the quantities in inequalities (1.2). Our main result will be the fol-
lowing.

Theorem 1.1. Let K denote the set of convex domains inRn. For Ω0, Ω1 ∈ K,
I(k, ∂Ω(t)) is 1/(n + k)-concave int.

Our proof is an application of the Prekopa-Leindler inequality, Theorem2.2 be-
low.
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2. Proofs

The proof will use two little lemmas, Theorems2.1and2.3, and one major theorem,
the Prekopa-Leindler Theorem2.2. None of these three results is new: the new item
in this paper is their use.

Theorem 2.1 (Knothe).Let0 < t < 1 andΩ0, Ω1 ∈ K. With

zt = (1 − t)z0 + tz1,

we have

(2.1) dist(zt, ∂Ω(t)) ≥ (1 − t) dist(z0, ∂Ω0) + t dist(z1, ∂Ω1).

Proof. Let zt ∈ Ω(t) be as above. Denote the usual Euclidean norm with| · |. Let
wt ∈ ∂Ω(t) be a point such that

|zt − wt| = dist(zt, ∂Ω(t)).

Define the directionu by

u =
zt − wt

|zt − wt|
.

Definev0 ∈ Ω0, andv1 ∈ Ω1 as the points on these boundaries which are on the
rays, in directionu, from z0 andz1 respectively. Thus

v0 = z0 + |z0 − v0|u, v1 = z1 + |z1 − v1|u.

Now letp be any unit vector perpendicular tou. The preceding definitions give that

〈wt − ((1 − t)v0 + tv1), p〉 = 0,
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from which, on defining

vt = (1 − t)v0 + tv1 we havewt = vt + ηu.

for some numberη. Now, we do not know (or care) ifvt is on the boundary ofΩ(t),
but we do know thatvt is in the closed setΩ(t). Using the convexity ofD(t) we
have thatvt is on the ray joiningzt with wt, and betweenzt andwt. From this,

dist(zt, ∂Ω(t)) = |zt − wt| ≥ |zt − vt|,
= (1 − t)|z0 − v0| + t|z1 − v1|,
≥ (1 − t) dist(z0, ∂Ω0) + t dist(z1, ∂Ω1),

as required.

Theorem 2.2 (Prekopa-Leindler).Let0 < t < 1 and letf0, f1, andh be nonnega-
tive integrable functions onRn satisfying

(2.2) h ((1 − t)x + ty) ≥ f0(x)1−tf1(y)t,

for all x, y ∈ Rn. Then

(2.3)
∫

Rn

h(x) dx ≥
(∫

Rn

f0(x) dx

)1−t (∫
Rn

f1(x) dx

)t

.

For references to proofs, see [5].

Theorem 2.3 (Homogeneity Lemma).If F is positive and homogeneous of degree
1,

F (sΩ) = sF (Ω) ∀s > 0, Ω ,

and quasiconcave

(2.4) F (Ω(t)) ≥ min(F (Ω(0)), F (Ω(1))) ∀0 ≤ t ≤ 1, ∀Ω0, Ω1 ∈ K,
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then it is concave:

F (Ω(t)) ≥ (1 − t)F (Ω(0)) + tF (Ω(1)) ∀0 ≤ t ≤ 1 .

Proof. See [5]. ReplaceΩ0 by Ω0/F (Ω0), Ω1 by Ω1/F (Ω1). Using the homogeneity
of degree 1, and applying (2.4), we have

F

(
(1 − t)

Ω0

F (Ω0)
+ t

Ω1

F (Ω1)

)
≥ 1 .

With

t =
F (Ω1)

F (Ω0) + F (Ω1)
, so(1 − t) =

F (Ω0)

F (Ω0) + F (Ω1)
,

the last inequality onF becomes

F

(
Ω0 + Ω1

F (Ω0) + F (Ω1)

)
≥ 1 .

Finally, using the homogeneity we have

F (Ω0 + Ω1) ≥ F (Ω0) + F (Ω1) ,

and using homogeneity again,

F ((1 − t)Ω0 + tΩ1) ≥ (1 − t)F (Ω0) + tF (Ω1) ,

as required.

Proof of the Main Theorem1.1. Knothe’s Lemma2.1and the AGM inequality give

(2.5) dist(zt, ∂Ω(t)) ≥ dist(z0, ∂Ω0)
(1−t) dist(z1, ∂Ω1)

t,
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and similarly for any positivek-th power of the distance. Denote the characteristic
function ofΩ by χΩ. A standard argument, as given in [5] for example, establishes
that

χΩ(t)((1 − t)z0 + tz1) ≥ χΩ0(z0)
1−tχΩ1(z1)

t.

So, with

h(z) = dist(z, ∂Ω(t))χΩ(t)(z),

f0(z) = dist(z, ∂Ω0)χΩ0(z),

f1(z) = dist(z, ∂Ω1)χΩ1(z),

the conditions of the Prekopa-Leindler Theorem are satisfied. This gives thatI(k, ∂Ω(t))
is log-concave int. Now defineF (Ω(t)) := I(k, ∂Ω(t))1/(n+k). The functionF
is quasiconcave int (as it inherits the stronger property of logconcavity int from
I(k, ∂Ω(t))). SinceI(k, ∂Ω(t)) is homogeneous of degreen + k, F is homoge-
neous of degree 1. The Homogeneity Lemma applied toF yields thatI(k, ∂Ω(t)) is
1/(n + k)-concave.
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