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ABSTRACT. This paper is mainly concerned with the application of differential subordinations
for the class of meromorphic multivalent functions with positive coefficients defined by a linear
operator satisfying the following:
AL f(2)) 1+ Az

B P 1+ Bz
In the present paper, we study the coefficient boundsgighborhoods and integral represen-
tations. We also obtain linear combinations, weighted and arithmetic means and convolution
properties.

(n € Ng; z€U).

Key words and phrasesvieromorphic functions, Differential subordination, convolution (or Hadamard prodpatplent
functions, Linear operatod-Neighborhood, Integral representation, Linear combination, Weighted
mean and Arithmetic mean.
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1. INTRODUCTION
Let L(p, m) be a class of all meromorphic functiofigz) of the form:
(1.2) fz)=2"P+ Z apz* foranym >p, peN={1,2,...}, ax >0,

k=m

which arep-valent in the punctured unit disk
U'={z:2€C,0<|z] <1} =U/{0}.
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2 WAGGAS GALIB ATSHAN AND S. R. KULKARNI

Definition 1.1. Let f, g be analytic inU. Theng is said to be subordinate § writteng < f,
if there exists a Schwarz functian(z), which is analytic inU with w(0) = 0 and|w(z)| <
1 (z € U)suchthay(z) = f(w(z)) (z € U). Henceg(z) < f(z) (2 € U), theng(0) = f(0)
andg(U) C f(U). In particular, if the functiorf(z) is univalent inU, we have the following
(e.g. [6]; [4]):

g(z) < f(z)(z e U)ifand only ifg(0) = f(0) and ¢(U) C f(U).

Definition 1.2. For functionsf(z) € L(p,m) given by [1.1) and/(z) € L(p, m) defined by
1.2 o) =P+ bk, (> 0.p€Nom > p),
k=m
we define the convolution (or Hadamard producty 6f) andg(z) by
(1.3) (f*g)(z):z_p—f—f:akbkzk, (peNm>p,zeU,).
k=m

Definition 1.3 ([9]). Let f(z) be a function in the class(p, m) given by [1.1). We define a
linear operatod.” by

Lf(2) = f(2),

P . _ R
L f(z) == +;(p+k+1)akzk— por
and in general
(1.4) L"f(z) = L(L""' f(2))
=z P+ Z(p + k4 1)"ap2*
k=m
@R

zP
It is easily verified from[(1}4) that

(1.5) LM f(2)) = L™ f(z) = (p+ 1)L f(2),
(f € L(p,m), neNy=NU{0}).

(1) Liu and Srivastaval [4] introduced recently the linear operator whes- 0, investi-
gating several inclusion relationships involving various subclasses of meromorphically
p-valent functions, which they defined by means of the linear operédtdsee [4]).

(2) Uralegaddi and Somanatha [10] introduced the linear operdtovhenp = 1 and
m = 0.

(3) Aouf and Hossen |2] obtained several results involving the linear operfdtavhen
m = 0 andp € N.

We introduce a subclass of the function cldg®, m) by making use of the principle of
differential subordination as well as the linear operdtbr

Definition 1.4. Let AandB (-1 < B < A < 1) be fixed parameters. We say that a func-

tion f(z) € L(p,m) is in the class.(p,m,n, A, B), if it satisfies the following subordination

condition:

(L f(2)) - 1+ Az
D 1+ Bz

(1.6) (n € Ng; z € U).
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By the definition of differential subordination, (1.6) is equivalent to the following condition:

P L f(2)) +p
1 .
‘BWH@W@W+WJ<’ (zel)
We can write
23
L pam7n71_?7_1 :L<p7m7n>ﬁ)7

whereL(p, m,n, ) denotes the class of functionsirip, m) satisfying the following:

Re{—2""{(L"f(2))} > B8 (0<B<p; z€ D).

2. COEFFICIENT BOUNDS

Theorem 2.1. Let the functionf(z) of the form [(1.]L), be iL(p, m). Then the functiorf(z)
belongs to the clasi(p, m,n, A, B) if and only if

(2.1) §3M1—BXP+R+D%%<(A—BW,
k=m

where—1 < B<A<1l,peN,neNym>np.
The result is sharp for the functiofi( z) given by
(A—B)p
K1-B)p+k+1n o =P

Proof. Assume that the condition (2.1) is true. We must show tha L(p, m,n, A, B), or
equivalently prove that

fle) =7+

p+1 n !

2.2) L) +p |
B (L7 f(2)) + Ap

We have

pH1(_po—(p+1) S k k4 1), 2k 1

U | Sl B e i s
Bzrti(Lnf(z)) + Ap B+l (—pa—rHD) i k(p + k + 1)nag2k=1) + Ap
k=m

o0

3 k(p+k+ 1) azktr
k=m

(A= B)p+ B > k(p+k+ 1)ragzktr

k=m

> k(p+k+1)"a

k=m

(A—=Byp+BY k(k+p+1)ray
k=m

IN

< 1.

The last inequality by[ (2]1) is true.
Conversely, suppose th#fz) € L(p,m,n, A, B). We must show that the condition (2.1)
holds true. We have
SULE) |
Bzt (Lrf(2)) + Ap|
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hence we get

o0

ST k(p+k+ 1) ag2tt?

k=m

(A—B)p+ B > k(p+k+ 1)ragzktr

k=m

< 1.

SinceRe(z) < |z|, so we have

e}

S° k(p+ k4 1)"ap2*tr
Re hem < 1.
(A—=B)p+ B > k(p+k+ 1)ragzktr
k=m

We choose the values ofon the real axis and letting— 1, then we obtain

> k(p+k+ 1)

k=m

(A—BW+B§EMp+k+U%k h
then . :
> k(1-B)(p+k+1)"a, < (A-B)p
and the proof is complet];::.m O

Corollary 2.2. Let f(z) € L(p,m,n, A, B), then we have
(A—B)p
< >
C=ka-—B)ptk+rim ="
Corollary 2.3. Let0 < ny < ny, thenL(p,m,ns, A, B) C L(p,m,ny, A, B).

3. NEIGHBOURHOODS AND PARTIAL SUMS

Definition 3.1. Let -1 < B < A< 1,m > p,n € Ny, p € Nandd > 0. We define the -
neighbourhood of a functiofi € L(p, m) and denoteVs( f) such that

(3.1) Ns(f)= {g € L(p,m):g(z) =27+ Z by2", and
k=m

o

3 KL= B)p+k+D" gé}.

(A= B)p

k=m

Goodman([3], Ruscheweyhl[8] and Altintas and Owa [1] have investigated neighbourhoods for
analytic univalent functions, we consider this concept for the dldssm, n, A, B).

Theorem 3.1. Let the functionf (=) defined by[(1]1) be if(p, m, n, A, B). For every complex
numberu with |p| < 6,6 > 0, Ietf(z)li—“j_p € L(p,m,n, A, B),thenN;s(f) C L(p,m,n, A, B),
5> 0.

Proof. Sincef € L(p, m,n, A, B), f satisfies[(2]1) and we can write fore C, |y| = 1, that

L f(2) +p

(3.2) BzP“(L”f(z))’—i—pA

77
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Equivalently, we must have

3.3) U=QG) o e

2z~ P
where
Qz)=z"+ Z epzt,
k=m
such thak;, = W, satisfying|ey| < W
Since%f_p € L(p,m,n, A, B), by ),

andk > m,p € N, n € N.

L [ f(z) 4+ pz?
= (19 qm) 20

and then

1 ((fxQ)(2) + pz?
3.4 — )
(3.4 z7P ( 1+p 70
Now assume tha{t”fffz,(z) < §. Then, by ), we have

I e L
L+p 27 14p| ~ |T+p  [1+4 z7P T+pl =
This is a contradiction alg:| < . Therefore 2| > 4,
Letting
g(z) =2+ Z be2™ € Ns(f),
k=m
then
|0 QE)| (- 9= Q)
z— P - 2z~ P
< Z(ak — bi)erz"
k=m
<> lak = billex]|= )"
k=m
ma~ [k(L=B)(p+k+1)"
<™y [ 4By |ax, — by

k=m

<9

therefore”22) £ 0 and we gey(z) € L(p,m,n, A, B), soN;(f) C L(p,m,n, A, B). O

Theorem 3.2. Let f(z) be defined by (1}1) and the partial susigz) and .S, (z) be defined by
Si(z) = z7? and
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Also suppose that",>  Cya, < 1, where
k(L—B)(p+k+1)"

= (A—B)p
Then
0] f € L(p,m,n, A, B)
N f(2) 1
(3.5) (i) Re{ >1——,
Sq(2) Cq
Sq(2) Cy
(3.6) Re{f(z)}>1+6’q’ zeU,q>m.
Proof.
() Since Zﬁplfr’jf*p = 277 € L(p,m,n,A,B), |u| < 1, then by Theore.l, we have

Ni(z27P) C L(p,m,n, A, B),p € N(V;(27?) denoting the 1-neighbourhood). Now since

i Crar < 1,
k=m

thenf € Ni(zP)andf € L(p,m,n, A, B).
(i) Since{C}} is anincreasing sequence, we obtain

m4q—2 0o o]
k=m k=q+m—1 k=m

Setting
Cy i apz" P
Gl(Z) _ Oq ( f(z) . <1 . i)) _ k=q+m;1 41,
5u(2) ¢ 1+ mJi_ ap 2kt

k=m

o0
k
Cy, >, agz™P

‘G1<Z) — 1‘ . k=q+m—1
G z2) + 1 - m—+q—2 00
1(2) 242 > apFtP+C, DS aphtr
k=m k=q+m—1
Co >
< harmol <1
- m—+q—2 [es) -
2—2 Z arp — Cq Z ag
k=m k=q+m—1

This proves). Therefor®e(G1(z)) > 0 and we obtairRe {gq(é))} >1— 4. Now, in
the same manner, we can prove the asseiftiof (3.6), by setting
Sq(2) C
= (1 q o q )
G = (1+C) (15 - 1%
This completes the proof. O

J. Inequal. Pure and Appl. Mathl0(2) (2009), Art. 53, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

APPLICATION OF DIFFERENTIAL SUBORDINATION

4. INTEGRAL REPRESENTATION
In the next theorem we obtain an integral representatioi.fgi( z).
Theorem 4.1.Let f € L(p,m,n, A, B), then

ween [T pAY(E) — 1)
206 = | G o

where|(z)| < 1,z € U*.

Proof. Let f(z) € L(p,m,n, A, B). Letting—w = y(z), we have

e 1+ Bz
or we can writ% Byy(é))‘_l A‘ < 1, so that consequently we have
y(z) — 1
A X |
BM@_A,QM@W¢@N<,26U
We can write
_Zp—H(Lnf(Z))/ _ 1— A¢(z)
v = Bu(z)’
which gives
(L f(Z)) - Zp—‘,—l(l _ BID(Z))
Hence

L plA() — 1)
Lﬂ”‘AtHM—meﬁ’

and this gives the required result.
5. LINEAR COMBINATION
In the theorem below, we prove a linear combination for the ddgsm, n, A, B).
Theorem 5.1. Let

filz) =27+ Zamzk, (ag; > 0,i=1,2,...,0,k>m,m > p)
k=m

belong toL(p, m,n, A, B), then
l
F(’Z> = Zczfz(z) € L(p7m7n7A7 B)a

=1
where>™!_ ¢, = 1.

Proof. By Theorenj 2.1, we can write for everye {1,2,...,(}

[e.9]

k(1-B)(p+k+1)"
7 17
,;n (A—B)p i =
therefore
oo 00 ¢
F(z) = ZC’ (Z Py Z ak7z~z’“) =274 Z <ch-a;w~) z
i=1 k=m k=m =1
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However,
X k(1 - B)p+k+1)" [ & k(1= B)p+k+1)n
Cilk,; | = apq| ¢ <1,
Zn (A=B)p 2_) ; Z_Z 2,% (A= B)p ’
thenF'(z) € L(p,m,n, A, B), so the proof is complete. O

6. WEIGHTED MEAN AND ARITHMETIC MEAN

Definition 6.1. Let f(z) andg(z) belong toL(p, m), then the weighted meat}(z) of f(z) and

g(z) is given by
1 . .
hi(z) = (1 =5)f(2) + (1 +5)g(2)]:
In the theorem below we will show the weighted mean for this class.

Theorem 6.1.If f(z) and g(z) are in the classL(p, m, n, A, B), then the weighted mean of
f(z)andg(z)is alsoinL(p,m,n, A, B).

Proof. We have for;(z) by Definition[6.],
1 L~ L~
h;i(z) = 5 [(1 —J) <z Py Z akzk> +(1+) (z P —i-kZbkzk)]
—z"’+z (1= ag + (1 + j)bg) 2"
Sincef(z) andg(z) are in the clasé (p, m,n, A, B) so by Theorerh 2|1 we must prove that

i k(L=B)(p+k+1)" B(l — J)ak + 1(1 +j)bk:|

2

k=m
1 - | e 0
:5(1—j)§k(1—3)(p+k+1) ak+§(1+j)§k(1—3)(p+k+l) be
1 , 1 .
<51 =A=Bp+ 51 +j)(A~Bp.
The proof is complete. O

Theorem 6.2.Let f1(2), fa(2), - . ., fo(z) defined by

(61) fl(z) :Z_p+zak,izkv (ak,i ZOaZ:1727a€7kZmam2p)

be in the clasd.(p, m, n, A, B), then the arithmetic mean ¢f(z) (i = 1,2, ..., ¢) defined by
1 ¢

(6.2) hz) = > filz)

is also in the class.(p, m,n, A, B).
Proof. By (6.1), (6.2) we can write

:%i< _p+§:ak7izk> :z‘p+§:<

l
E a;w- Zk

i=1

~|
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Sincef;(z) € L(p,m,n, A, B) for everyi = 1,2,...,{, so by using Theorefn 2.1, we prove
that

S k(1 - B)(p 4k 1)° (% > ak)

o 1 l [e%S) . 1 J4
= > (Z k(1= B)(p+Fk+ 1)"ak,i> <37 Z(A — B)p.
The proof is complete. oo o O
7. CONVOLUTION PROPERTIES
Theorem 7.1.1f f(z) andg(z) belong toL(p, m,n, A, B) such that
(7.2) fz)=2z"P+ i aiz2”, g(z) =277+ i br2",
k=m k=m

then .
T(z) =27+ (af +b)2"

k=m

is in the classL(p, m,n, Ay, By) such thatd, > (1 — By)u* + By, where

-
o m(m +2)"(1 - B)

Proof. Sincef, g € L(p,m,n, A, B), Theorenj 2]1 yields

= ([k(1=B)(p+k+1)" 2
> (=t =
k=m
and ,
(k1 -B)(p+k+1)"
Z([( A5 )]b’“)“'
We obtain from the last tv;o inequalities
(7.2) i%{k(l_ﬁx_jg;)iﬂ)n_ (ai +b) < 1.
k=m -

However,T'(z) € L(p, m,n, Ay, By) if and only if

L [k(1—=B)p+E+1D)"], 5
(7.3) Z[( (A1>£pBl>p )_(ak+bk)§1,

where—1 < By < Ay <1, but {7.2) implies[(7.3) if
E(1—B)p+k+1)" 1[k(1-=B)p+k+1)"]

k=m

Hence, if

1-5B Ep+k+1)" , 1-B
< whereqs = ——.
Al—Bl 2p &5 @ A-B

In other words,
1-B n
Lo k(k + 2) o2
Al - Bl 2
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This is equivalent to
Al - Bl > 2
1— Bl k?(k? + 2)”0&2.

So we can write

A - B 2(A — B)? ,
7.4 > = u”.
(7.4) 1-B, _ m(m+2r(1-Byr "
Hence we getd; > (1 — By)u? + B. O

Theorem 7.2.Let f(z) andg(z) of the form[(7.]L) belong t&(p, m,n, A, B). Then the convo-
lution (or Hadamard product) of two functiorfsand g belong to the class, that i§f x g)(z) €
L(p, m,n, Al; Bl)a WhereAl 2 (1 — Bl)?) -+ Bl and

(A-B)?
m(1 — B)?(m + 2)"
Proof. Since f,g € L(p, m,n, A, B), by using the Cauchy-Schwarz inequality and Theorem
[2.7, we obtain

(7.5) Z )(p +)l€ +1)" /—akbk

— k(1= B)(p+k+1)" : — k(1= B)(p+k+1)" :
S(% (A~ Bp ) (Z (A-B)p b’“) =b

k=m

v =

We must find the values o, B; so that

k(1—B)(p+k+1)"
(7.6) Z ( (Al)ipBl)p :
k=m

Therefore, by[(7]5)[ (716) holds true if

apb, < 1.

(7.7) vapby < ((11__%)1()1?2__?31)), kE>m, m>p, a. #0, b # 0.

By .) we have/a;b, < W’ therefore.7) holds true if

F1=B)p+k+1D)" _ {k(l—B)(PJrkJr )]
(AL = Bu)p N (A—B)p ’

which is equivalent to
(1 - By) _ k(1—B)?*(p+k+1)"
(A1 — By) (A— B)?p
Alternatively, we can write

(1=B) _ k(1= BP(k+2)"

(A — By) (A— B)? ’
to obtain
A — By - (A — B)?
1—-B; = m(l—-DB)*(m+2)"
Hence we getd; > v(1 — B;) + B. O
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