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ABSTRACT. This paper is mainly concerned with the application of differential subordinations
for the class of meromorphic multivalent functions with positive coefficients defined by a linear
operator satisfying the following:

−zp+1(Lnf(z))′

p
≺ 1 + Az

1 + Bz
(n ∈ N0; z ∈ U).

In the present paper, we study the coefficient bounds,δ-neighborhoods and integral represen-
tations. We also obtain linear combinations, weighted and arithmetic means and convolution
properties.
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1. I NTRODUCTION

LetL(p,m) be a class of all meromorphic functionsf(z) of the form:

(1.1) f(z) = z−p +
∞∑

k=m

akz
k for anym ≥ p, p ∈ N = {1, 2, . . . }, ak ≥ 0,

which arep-valent in the punctured unit disk

U∗ = {z : z ∈ C, 0 < |z| < 1} = U/{0}.
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2 WAGGAS GALIB ATSHAN AND S. R. KULKARNI

Definition 1.1. Let f, g be analytic inU . Theng is said to be subordinate tof, written g ≺ f ,
if there exists a Schwarz functionw(z), which is analytic inU with w(0) = 0 and |w(z)| <
1 (z ∈ U) such thatg(z) = f(w(z)) (z ∈ U). Henceg(z) ≺ f(z) (z ∈ U), theng(0) = f(0)
andg(U) ⊂ f(U). In particular, if the functionf(z) is univalent inU , we have the following
(e.g. [6]; [7]):

g(z) ≺ f(z)(z ∈ U) if and only if g(0) = f(0) and g(U) ⊂ f(U).

Definition 1.2. For functionsf(z) ∈ L(p,m) given by (1.1) andg(z) ∈ L(p,m) defined by

(1.2) g(z) = z−p +
∞∑

k=m

bkz
k, (bk ≥ 0, p ∈ N,m ≥ p),

we define the convolution (or Hadamard product) off(z) andg(z) by

(1.3) (f ∗ g)(z) = z−p +
∞∑

k=m

akbkz
k, (p ∈ N,m ≥ p, z ∈ U).

Definition 1.3 ([9]). Let f(z) be a function in the classL(p,m) given by (1.1). We define a
linear operatorLn by

L0f(z) = f(z),

L1f(z) = z−p +
∞∑

k=m

(p+ k + 1)akz
k =

(zp+1f(z))′

zp

and in general

Lnf(z) = L(Ln−1f(z))(1.4)

= z−p +
∞∑

k=m

(p+ k + 1)nakz
k

=
(zp+1Ln−1f(z))′

zp
, (n ∈ N).

It is easily verified from (1.4) that

z(Lnf(z))′ = Ln+1f(z)− (p+ 1)Lnf(z),(1.5)

(f ∈ L(p,m), n ∈ N0 = N ∪ {0}).

(1) Liu and Srivastava [4] introduced recently the linear operator whenm = 0, investi-
gating several inclusion relationships involving various subclasses of meromorphically
p-valent functions, which they defined by means of the linear operatorLn (see [4]).

(2) Uralegaddi and Somanatha [10] introduced the linear operatorLn when p = 1 and
m = 0.

(3) Aouf and Hossen [2] obtained several results involving the linear operatorLn when
m = 0 andp ∈ N.

We introduce a subclass of the function classL(p,m) by making use of the principle of
differential subordination as well as the linear operatorLn.

Definition 1.4. Let A andB (−1 ≤ B < A ≤ 1) be fixed parameters. We say that a func-
tion f(z) ∈ L(p,m) is in the classL(p,m, n,A,B), if it satisfies the following subordination
condition:

(1.6)
zp+1(Lnf(z))′

p
≺ 1 + Az

1 +Bz
(n ∈ N0; z ∈ U).
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APPLICATION OF DIFFERENTIAL SUBORDINATION 3

By the definition of differential subordination, (1.6) is equivalent to the following condition:∣∣∣∣ zp+1(Lnf(z))′ + p

Bzp+1(Lnf(z))′ + pA

∣∣∣∣ < 1, (z ∈ U).

We can write

L

(
p,m, n, 1− 2β

p
,−1

)
= L(p,m, n, β),

whereL(p,m, n, β) denotes the class of functions inL(p,m) satisfying the following:

Re{−zp+1(Lnf(z))′} > β (0 ≤ β < p; z ∈ U).

2. COEFFICIENT BOUNDS

Theorem 2.1. Let the functionf(z) of the form (1.1), be inL(p,m). Then the functionf(z)
belongs to the classL(p,m, n,A,B) if and only if

(2.1)
∞∑

k=m

k(1−B)(p+ k + 1)nak < (A−B)p,

where−1 ≤ B < A ≤ 1, p ∈ N, n ∈ N0, m ≥ p.
The result is sharp for the functionf(z) given by

f(z) = z−p +
(A−B)p

k(1−B)(p+ k + 1)n
zm, m ≥ p.

Proof. Assume that the condition (2.1) is true. We must show thatf ∈ L(p,m, n,A,B), or
equivalently prove that

(2.2)

∣∣∣∣ zp+1(Lnf(z))′ + p

Bzp+1(Lnf(z))′ + Ap

∣∣∣∣ < 1.

We have

∣∣∣∣ zp+1(Lnf(z))′ + p

Bzp+1(Lnf(z))′ + Ap

∣∣∣∣ =

∣∣∣∣∣∣∣∣
zp+1(−pz−(p+1) +

∞∑
k=m

k(p+ k + 1)nakz
k−1) + p

Bzp+1(−pz−(p+1) +
∞∑

k=m

k(p+ k + 1)nakzk−1) + Ap

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

k=m

k(p+ k + 1)nakz
k+p

(A−B)p+B
∞∑

k=m

k(p+ k + 1)nakzk+p

∣∣∣∣∣∣∣∣
≤


∞∑

k=m

k(p+ k + 1)nak

(A−B)p+B
∞∑

k=m

k(k + p+ 1)nak

 < 1.

The last inequality by (2.1) is true.
Conversely, suppose thatf(z) ∈ L(p,m, n,A,B). We must show that the condition (2.1)

holds true. We have ∣∣∣∣ zp+1(Lnf(z))′ + p

Bzp+1(Lnf(z))′ + Ap

∣∣∣∣ < 1,

J. Inequal. Pure and Appl. Math., 10(2) (2009), Art. 53, 11 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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hence we get ∣∣∣∣∣∣∣∣
∞∑

k=m

k(p+ k + 1)nakz
k+p

(A−B)p+B
∞∑

k=m

k(p+ k + 1)nakzk+p

∣∣∣∣∣∣∣∣ < 1.

SinceRe(z) < |z|, so we have

Re


∞∑

k=m

k(p+ k + 1)nakz
k+p

(A−B)p+B
∞∑

k=m

k(p+ k + 1)nakzk+p

 < 1.

We choose the values ofz on the real axis and lettingz → 1−, then we obtain
∞∑

k=m

k(p+ k + 1)nak

(A−B)p+B
∞∑

k=m

k(p+ k + 1)nak

 < 1,

then
∞∑

k=m

k(1−B)(p+ k + 1)nak < (A−B)p

and the proof is complete. �

Corollary 2.2. Letf(z) ∈ L(p,m, n,A,B), then we have

ak ≤
(A−B)p

k(1−B)(p+ k + 1)n
, k ≥ m.

Corollary 2.3. Let0 ≤ n2 < n1, thenL(p,m, n2, A,B) ⊆ L(p,m, n1, A,B).

3. NEIGHBOURHOODS AND PARTIAL SUMS

Definition 3.1. Let−1 ≤ B < A ≤ 1, m ≥ p, n ∈ N0, p ∈ N andδ ≥ 0. We define theδ -
neighbourhood of a functionf ∈ L(p,m) and denoteNδ(f) such that

(3.1) Nδ(f) =

{
g ∈ L(p,m) : g(z) = z−p +

∞∑
k=m

bkz
k, and

∞∑
k=m

k(1−B)(p+ k + 1)n

(A−B)p
|ak − bk| ≤ δ

}
.

Goodman [3], Ruscheweyh [8] and Altintas and Owa [1] have investigated neighbourhoods for
analytic univalent functions, we consider this concept for the classL(p,m, n,A,B).

Theorem 3.1.Let the functionf(z) defined by (1.1) be inL(p,m, n,A,B). For every complex
numberµwith |µ| < δ, δ ≥ 0, let f(z)+µz−p

1+µ
∈ L(p,m, n,A,B), thenNδ(f) ⊂ L(p,m, n,A,B),

δ ≥ 0.

Proof. Sincef ∈ L(p,m, n,A,B), f satisfies (2.1) and we can write forγ ∈ C, |γ| = 1, that

(3.2)

[
zp+1(Lnf(z))′ + p

Bzp+1(Lnf(z))′ + pA

]
6= γ.
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APPLICATION OF DIFFERENTIAL SUBORDINATION 5

Equivalently, we must have

(3.3)
(f ∗Q)(z)

z−p
6= 0, z ∈ U∗,

where

Q(z) = z−p +
∞∑

k=m

ekz
k,

such thatek = γk(1−B)(p+k+1)n

(A−B)p
, satisfying|ek| ≤ k(1−B)(p+k+1)n

(A−B)p
andk ≥ m, p ∈ N, n ∈ N0.

Sincef(z)+µz−p

1+µ
∈ L(p,m, n,A,B), by (3.3),

1

z−p

(
f(z) + µz−p

1 + µ
∗Q(z)

)
6= 0,

and then

(3.4)
1

z−p

(
(f ∗Q)(z) + µz−p

1 + µ

)
6= 0.

Now assume that
∣∣∣ (f∗Q)(z)

z−p

∣∣∣ < δ. Then, by (3.4), we have∣∣∣∣ 1

1 + µ

f ∗Q
z−p

+
µ

1 + µ

∣∣∣∣ ≥ |µ|
|1 + µ|

− 1

|1 + µ|

∣∣∣∣(f ∗Q)(z)

z−p

∣∣∣∣ > |µ| − δ

|1 + µ|
≥ 0.

This is a contradiction as|µ| < δ. Therefore
∣∣∣ (f∗Q)(z)

z−p

∣∣∣ ≥ δ.

Letting

g(z) = z−p +
∞∑

k=m

bkz
k ∈ Nδ(f),

then

δ −
∣∣∣∣(g ∗Q)(z)

z−p

∣∣∣∣ ≤ ∣∣∣∣((f − g) ∗Q)(z)

z−p

∣∣∣∣
≤

∣∣∣∣∣
∞∑

k=m

(ak − bk)ekz
k

∣∣∣∣∣
≤

∞∑
k=m

|ak − bk||ek||z|k

< |z|m
∞∑

k=m

[
k(1−B)(p+ k + 1)n

(A−B)p

]
|ak − bk|

≤ δ,

therefore(g∗Q)(z)
z−p 6= 0, and we getg(z) ∈ L(p,m, n,A,B), soNδ(f) ⊂ L(p,m, n,A,B). �

Theorem 3.2. Letf(z) be defined by (1.1) and the partial sumsS1(z) andSq(z) be defined by
S1(z) = z−p and

Sq(z) = z−p +

m+q−2∑
k=m

akz
k, q > m, m ≥ p, p ∈ N.
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Also suppose that
∑∞

k=mCkak ≤ 1, where

Ck =
k(1−B)(p+ k + 1)n

(A−B)p
.

Then

(i) f ∈ L(p,m, n,A,B)

(ii) Re

{
f(z)

Sq(z)

}
> 1− 1

Cq

,(3.5)

(3.6) Re

{
Sq(z)

f(z)

}
>

Cq

1 + Cq

, z ∈ U, q > m.

Proof.

(i) Since z−p+µz−p

1+µ
= z−p ∈ L(p,m, n,A,B), |µ| < 1, then by Theorem 3.1, we have

N1(z
−p) ⊂ L(p,m, n,A,B), p ∈ N(N1(z

−p) denoting the 1-neighbourhood). Now since
∞∑

k=m

Ckak ≤ 1,

thenf ∈ N1(z
−p) andf ∈ L(p,m, n,A,B).

(ii) Since{Ck} is an increasing sequence, we obtain

(3.7)
m+q−2∑
k=m

ak + Cq

∞∑
k=q+m−1

ak ≤
∞∑

k=m

Ckak ≤ 1.

Setting

G1(z) = Cq

(
f(z)

Sq(z)
−
(

1− 1

Cq

))
=

Cq

∞∑
k=q+m−1

akz
k+p

1 +
m+q−2∑
k=m

akzk+p

+ 1,

from (3.7) we get

∣∣∣∣G1(z)− 1

G1(z) + 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
Cq

∞∑
k=q+m−1

akz
k+p

2 + 2
m+q−2∑
k=m

akzk+p + Cq

∞∑
k=q+m−1

akzk+p

∣∣∣∣∣∣∣∣∣
≤

Cq

∞∑
k=q+m−1

ak

2− 2
m+q−2∑
k=m

ak − Cq

∞∑
k=q+m−1

ak

≤ 1.

This proves (3.5). Therefore,Re(G1(z)) > 0 and we obtainRe
{

f(z)
Sq(z)

}
> 1 − 1

Cq
. Now, in

the same manner, we can prove the assertion (3.6), by setting

G2(z) = (1 + Cq)

(
Sq(z)

f(z)
− Cq

1 + Cq

)
.

This completes the proof. �
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4. I NTEGRAL REPRESENTATION

In the next theorem we obtain an integral representation forLnf(z).

Theorem 4.1.Letf ∈ L(p,m, n,A,B), then

Lnf(z) =

∫ z

0

p(Aψ(t)− 1)

tp+1(1−Bψ(t))
dt,

where|ψ(z)| < 1, z ∈ U∗.

Proof. Let f(z) ∈ L(p,m, n,A,B). Letting− zp+1(Lnf(z))′

p
= y(z), we have

y(z) ≺ 1 + Az

1 +Bz

or we can write
∣∣∣ y(z)−1
By(z)−A

∣∣∣ < 1, so that consequently we have

y(z)− 1

By(z)− A
= ψ(z), |ψ(z)| < 1, z ∈ U.

We can write
−zp+1(Lnf(z))′

p
=

1− Aψ(z)

1−Bψ(z)
,

which gives

(Lnf(z))′ =
p(Aψ(z)− 1)

zp+1(1−Bψ(z))
.

Hence

Lnf(z) =

∫ z

0

p(Aψ(t)− 1)

tp+1(1−Bψ(t))
dt,

and this gives the required result. �

5. L INEAR COMBINATION

In the theorem below, we prove a linear combination for the classL(p,m, n,A,B).

Theorem 5.1.Let

fi(z) = z−p +
∞∑

k=m

ak,iz
k, (ak,i ≥ 0, i = 1, 2, . . . , `, k ≥ m,m ≥ p)

belong toL(p,m, n,A,B), then

F (z) =
∑̀
i=1

cifi(z) ∈ L(p,m, n,A,B),

where
∑`

i=1 ci = 1.

Proof. By Theorem 2.1, we can write for everyi ∈ {1, 2, . . . , `}
∞∑

k=m

k(1−B)(p+ k + 1)n

(A−B)p
ak,i < 1,

therefore

F (z) =
∑̀
i=1

ci

(
z−p +

∞∑
k=m

ak,iz
k

)
= z−p +

∞∑
k=m

(∑̀
i=1

ciak,i

)
zk.
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However,
∞∑

k=m

k(1−B)(p+ k + 1)n

(A−B)p

(∑̀
i=1

ciak,i

)
=
∑̀
i=1

[
∞∑

k=m

k(1−B)(p+ k + 1)n

(A−B)p
ak,i

]
ci ≤ 1,

thenF (z) ∈ L(p,m, n,A,B), so the proof is complete. �

6. WEIGHTED M EAN AND ARITHMETIC M EAN

Definition 6.1. Let f(z) andg(z) belong toL(p,m), then the weighted meanhj(z) of f(z) and
g(z) is given by

hj(z) =
1

2
[(1− j)f(z) + (1 + j)g(z)].

In the theorem below we will show the weighted mean for this class.

Theorem 6.1. If f(z) and g(z) are in the classL(p,m, n,A,B), then the weighted mean of
f(z) andg(z) is also inL(p,m, n,A,B).

Proof. We have forhj(z) by Definition 6.1,

hj(z) =
1

2

[
(1− j)

(
z−p +

∞∑
k=m

akz
k

)
+ (1 + j)

(
z−p +

∞∑
k=m

bkz
k

)]

= z−p +
∞∑

k=m

1

2
((1− j)ak + (1 + j)bk)z

k.

Sincef(z) andg(z) are in the classL(p,m, n,A,B) so by Theorem 2.1 we must prove that
∞∑

k=m

k(1−B)(p+ k + 1)n

[
1

2
(1− j)ak +

1

2
(1 + j)bk

]

=
1

2
(1− j)

∞∑
k=m

k(1−B)(p+ k + 1)nak +
1

2
(1 + j)

∞∑
k=m

k(1−B)(p+ k + 1)nbk

≤ 1

2
(1− j)(A−B)p+

1

2
(1 + j)(A−B)p.

The proof is complete. �

Theorem 6.2.Letf1(z), f2(z), . . . , f`(z) defined by

(6.1) fi(z) = z−p +
∞∑

k=m

ak,iz
k, (ak,i ≥ 0, i = 1, 2, . . . , `, k ≥ m,m ≥ p)

be in the classL(p,m, n,A,B), then the arithmetic mean offi(z) (i = 1, 2, . . . , `) defined by

(6.2) h(z) =
1

`

∑̀
i=1

fi(z)

is also in the classL(p,m, n,A,B).

Proof. By (6.1), (6.2) we can write

h(z) =
1

`

∑̀
i=1

(
z−p +

∞∑
k=m

ak,iz
k

)
= z−p +

∞∑
k=m

(
1

`

∑̀
i=1

ak,i

)
zk.
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APPLICATION OF DIFFERENTIAL SUBORDINATION 9

Sincefi(z) ∈ L(p,m, n,A,B) for everyi = 1, 2, . . . , `, so by using Theorem 2.1, we prove
that

∞∑
k=m

k(1−B)(p+ k + 1)n

(
1

`

∑̀
i=1

ak,i

)

=
1

`

∑̀
i=1

(
∞∑

k=m

k(1−B)(p+ k + 1)nak,i

)
≤ 1

`

∑̀
i=1

(A−B)p.

The proof is complete. �

7. CONVOLUTION PROPERTIES

Theorem 7.1. If f(z) andg(z) belong toL(p,m, n,A,B) such that

(7.1) f(z) = z−p +
∞∑

k=m

akz
k, g(z) = z−p +

∞∑
k=m

bkz
k,

then

T (z) = z−p +
∞∑

k=m

(a2
k + b2k)z

k

is in the classL(p,m, n,A1, B1) such thatA1 ≥ (1−B1)µ
2 +B1, where

µ =

√
2(A−B)√

m(m+ 2)n(1−B)
.

Proof. Sincef, g ∈ L(p,m, n,A,B), Theorem 2.1 yields
∞∑

k=m

([
k(1−B)(p+ k + 1)n

(A−B)p

]
ak

)2

≤ 1

and
∞∑

k=m

([
k(1−B)(p+ k + 1)n

(A−B)p

]
bk

)2

≤ 1.

We obtain from the last two inequalities

(7.2)
∞∑

k=m

1

2

[
k(1−B)(p+ k + 1)n

(A−B)p

]2

(a2
k + b2k) ≤ 1.

However,T (z) ∈ L(p,m, n,A1, B1) if and only if

(7.3)
∞∑

k=m

[
k(1−B1)(p+ k + 1)n

(A1 −B1)p

]
(a2

k + b2k) ≤ 1,

where−1 ≤ B1 < A1 ≤ 1, but (7.2) implies (7.3) if

k(1−B1)(p+ k + 1)n

(A1 −B1)p
<

1

2

[
k(1−B)(p+ k + 1)n

(A−B)p

]2

.

Hence, if
1−B1

A1 −B1

<
k(p+ k + 1)n

2p
α2, whereα =

1−B

A−B
.

In other words,
1−B1

A1 −B1

<
k(k + 2)n

2
α2.
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This is equivalent to
A1 −B1

1−B1

>
2

k(k + 2)nα2
.

So we can write

(7.4)
A1 −B1

1−B1

>
2(A−B)2

m(m+ 2)n(1−B)2
= µ2.

Hence we getA1 ≥ (1−B1)µ
2 +B1. �

Theorem 7.2.Letf(z) andg(z) of the form (7.1) belong toL(p,m, n,A,B). Then the convo-
lution (or Hadamard product) of two functionsf andg belong to the class, that is,(f ∗ g)(z) ∈
L(p,m, n,A1, B1), whereA1 ≥ (1−B1)v +B1 and

v =
(A−B)2

m(1−B)2(m+ 2)n
.

Proof. Sincef, g ∈ L(p,m, n,A,B), by using the Cauchy-Schwarz inequality and Theorem
2.1, we obtain

(7.5)
∞∑

k=m

k(1−B)(p+ k + 1)n

(A−B)p

√
akbk

≤

(
∞∑

k=m

k(1−B)(p+ k + 1)n

(A−B)p
ak

) 1
2
(

∞∑
k=m

k(1−B)(p+ k + 1)n

(A−B)p
bk

) 1
2

≤ 1 .

We must find the values ofA1, B1 so that

(7.6)
∞∑

k=m

k(1−B1)(p+ k + 1)n

(A1 −B1)p
akbk < 1.

Therefore, by (7.5), (7.6) holds true if

(7.7)
√
akbk ≤

(1−B)(A1 −B1)

(1−B1)(A−B)
, k ≥ m, m ≥ p, ak 6= 0, bk 6= 0.

By (7.5), we have
√
akbk <

(A−B)p
k(1−B)(p+k+1)n , therefore (7.7) holds true if

k(1−B1)(p+ k + 1)n

(A1 −B1)p
≤
[
k(1−B)(p+ k + 1)n

(A−B)p

]2

,

which is equivalent to
(1−B1)

(A1 −B1)
<
k(1−B)2(p+ k + 1)n

(A−B)2p
.

Alternatively, we can write

(1−B1)

(A1 −B1)
<
k(1−B)2(k + 2)n

(A−B)2
,

to obtain
A1 −B1

1−B1

>
(A−B)2

m(1−B)2(m+ 2)n
= v.

Hence we getA1 > v(1−B1) +B1. �
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