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Abstract: In the present paper, a general theorem on| N̄ , pn |k summability factors of
infinite series has been proved under more weaker conditions. Also we have
obtained a new result concerning the| C, 1 |k summability factors.
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1. Introduction

A positive sequence(bn) is said to be almost increasing if there exists a positive
increasing sequence(cn) and two positive constantsA andB such thatAcn ≤ bn ≤
Bcn (see [1]). We denote byBVO the expressionBV ∩ CO, whereCO andBV are
the set of all null sequences and the set of all sequences with bounded variation,
respectively. Let

∑
an be a given infinite series with partial sums(sn). We denote

by uα
n andtαn then-th Cesàro means of orderα, with α > −1, of the sequences(sn)

and(nan), respectively, i.e.,

(1.1) uα
n =

1

Aα
n

n∑
v=0

Aα−1
n−vsv,

(1.2) tαn =
1

Aα
n

n∑
v=1

Aα−1
n−vvav,

where

(1.3) Aα
n = O(nα), α > −1, Aα

0 = 1 and Aα
−n = 0 for n > 0.

The series
∑

an is said to be summable|C, α|k, k ≥ 1, if (see [6, 8])

(1.4)
∞∑

n=1

nk−1
∣∣uα

n − uα
n−1

∣∣k =
∞∑

n=1

|tαn|
k

n
< ∞.

If we takeα = 1, then we get|C, 1|k summability.
Let (pn) be a sequence of positive numbers such that

(1.5) Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1).
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The sequence-to-sequence transformation

(1.6) σn =
1

Pn

n∑
v=0

pvsv

defines the sequence(σn) of the Riesz mean or simply the(N̄ , pn) mean of the
sequence(sn), generated by the sequence of coefficients(pn) (see [7]). The series∑

an is said to be summable
∣∣N̄ , pn

∣∣
k
, k ≥ 1, if (see [2, 3])

(1.7)
∞∑

n=1

(Pn/pn)k−1 |∆σn−1|k < ∞,

where

(1.8) ∆σn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1.

In the special casepn = 1 for all values of n,
∣∣N̄ , pn

∣∣
k

summability is the same as
|C, 1|k summability.
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2. Known Results

Mishra and Srivastava [10] have proved the following theorem concerning the
∣∣N̄ , pn

∣∣
summability factors.

Theorem A. Let (Xn) be a positive non-decreasing sequence and let there be se-
quences(βn) and(λn) such that

(2.1) |∆λn| ≤ βn,

(2.2) βn → 0 as n →∞,

(2.3)
∞∑

n=1

n |∆βn|Xn < ∞,

(2.4) |λn|Xn = O(1).

If

(2.5)
n∑

v=1

|sv|
v

= O(Xn) as n →∞

and(pn) is a sequence such that

(2.6) Pn = O(npn),

(2.7) Pn∆pn = O(pnpn+1),

then the series
∑∞

n=1 an
Pnλn

npn
is summable

∣∣N̄ , pn

∣∣.
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Later on Bor [4] generalized TheoremA for
∣∣N̄ , pn

∣∣
k

summability in the follow-
ing form.

Theorem B. Let (Xn) be a positive non-decreasing sequence and the sequences
(βn) and(λn) are such that conditions (2.1) – (2.7) of TheoremA are satisfied with
the condition (2.5) replaced by:

(2.8)
n∑

v=1

|sv|k

v
= O(Xn) as n →∞.

Then the series
∑∞

n=1 an
Pnλn

npn
is summable

∣∣N̄ , pn

∣∣
k
, k ≥ 1.

It may be noticed that if we takek = 1, then we get TheoremA.
Quite recently Bor [5] has proved TheoremB under weaker conditions by taking

an almost increasing sequence instead of a positive non-decreasing sequence.

Theorem C. Let (Xn) be an almost increasing sequence. If the conditions (2.1)
– (2.4) and (2.6) – (2.8) are satisfied, then the series

∑∞
n=1 an

Pnλn

npn
is summable∣∣N̄ , pn

∣∣
k
, k ≥ 1.

Remark1. It should be noted that, under the conditions of TheoremB, (λn) is
bounded and∆λn = O(1/n) (see [4]).
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3. Main Result

The aim of this paper is to prove TheoremC under weaker conditions. For this
we need the concept of quasiβ-power increasing sequences. A positive sequence
(γn) is said to be a quasiβ-power increasing sequence if there exists a constant
K = K(β, γ) ≥ 1 such that

(3.1) Knβγn ≥ mβγm

holds for alln ≥ m ≥ 1. It should be noted that almost every increasing sequence is
a quasiβ-power increasing sequence for any nonnegativeβ, but the converse need
not be true as can be seen by taking the example, sayγn = n−β for β > 0.

Now we shall prove the following theorem.

Theorem 3.1.Let (Xn) be a quasiβ-power increasing sequence for some0 < β <
1. If the conditions (2.1) – (2.4), (2.6) – (2.8) and

(3.2) (λn) ∈ BVO

are satisfied, then the series
∑∞

n=1 an
Pnλn

npn
is summable

∣∣N̄ , pn

∣∣
k
, k ≥ 1.

It should be noted that if we take(Xn) as an almost increasing sequence, then we
get TheoremC. In this case, condition (3.2) is not needed.

We require the following lemma for the proof of Theorem3.1.

Lemma 3.2 ([9]). Except for the condition (3.2), under the conditions on(Xn), (βn)
and (λn) as taken in the statement of Theorem3.1, the following conditions hold,
when (2.3) is satisfied:

(3.3) nXnβn = O(1),
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(3.4)
∞∑

n=1

βnXn < ∞.

Proof of Theorem3.1. Let (Tn) denote the(N̄ , pn) mean of the series
∑∞

n=1
anPnλn

npn
.

Then, by definition, we have

(3.5) Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr

rpr

=
1

Pn

n∑
v=1

(Pn − Pv−1)
avPvλv

vpv

,

and thus

(3.6) Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv

vpv

, n ≥ 1.

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

sv∆

(
Pv−1Pvλv

vpv

)
+

λnsn

n

=
snλn

n
+

pn

PnPn−1

n−1∑
v=1

sv
Pv+1Pv∆λv

(v + 1)pv+1

+
pn

PnPn−1

n−1∑
v=1

Pvsvλv∆

(
Pv

vpv

)
− pn

PnPn−1

n−1∑
v=1

svPvλv
1

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

To prove Theorem3.1, by Minkowski’s inequality, it is sufficient to show that

(3.7)
∞∑

n=1

(
Pn

pn

)k−1

|Tn,r|k < ∞, for r = 1, 2, 3, 4.
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Firstly by using Abel’s transformation, we have
m∑

n=1

(
Pn

pn

)k−1

|Tn,1|k =
m∑

n=1

(
Pn

npn

)k−1

|λn|k−1 |λn|
|sn|k

n

= O(1)
m∑

n=1

|λn|
| |sn| |k

n

= O(1)
m−1∑
n=1

∆ |λn|
n∑

v=1

|sv|k

v
+ O(1) |λm|

m∑
n=1

|sn|k

n

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1) |λm|Xm

= O(1)
m−1∑
n=1

βnXn + O(1) |λm|Xm = O(1) as m →∞,

by virtue of the hypotheses of Theorem3.1and Lemma3.2.
Now, using the fact thatPv+1 = O((v + 1)pv+1), by (2.6), and then applying

Hölder’s inequality, we have

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,2|k = O(1)
m+1∑
n=2

pn

PnP k
n−1

∣∣∣∣∣
n−1∑
v=1

Pvsv∆λv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

pn

PnP k
n−1

{
n−1∑
v=1

Pv

pv

|sv| pv |∆λv|

}k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

(
Pv

pv

)k

|sv|k pv |∆λv|k
(

1

Pn−1

n−1∑
v=1

pv

)k−1
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= O(1)
m∑

v=1

(
Pv

pv

)k

|sv|k pv |∆λv|k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv |∆λv|

pv

)k−1

|sv|k |∆λv|

= O(1)
m∑

v=1

|sv|k |∆λv|
(

Pv

vpv

)k−1

= O(1)
m∑

v=1

vβv
|sv|k

v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

|sr|k

r
+ O(1)mβm

m∑
v=1

|sv|k

v

= O(1)
m−1∑
v=1

|∆(vβv)|Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v |∆βv|Xv + O(1)
m−1∑
v=1

|βv|Xv + O(1)mβmXm

= O(1)

asm →∞, in view of the hypotheses of Theorem3.1and Lemma3.2.
Again, since∆( Pv

vpv
) = O( 1

v
), by (2.6) and (2.7) (see [10]), as inTn,1 we have

m+1∑
n=2

(
Pn

pn

)k−1

|Tn,3|k = O(1)
m+1∑
n=2

pn

PnP k
n−1

{
n−1∑
v=1

Pv |sv| |λv|
1

v

}k
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= O(1)
m+1∑
n=2

pn

PnP k
n−1

{
n−1∑
v=1

(
Pv

pv

)
pv |sv| |λv|

1

v

}k

= O(1)
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

(
Pv

vpv

)k

pv |sv|k |λv|k
{

1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

vpv

)k

|sv|k pv |λv|k
m+1∑

n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

vpv

)k

pv |sv|k |λv|k
1

Pv

.
v

v

= O(1)
m∑

v=1

(
Pv

vpv

)k−1

|λv|k−1 |λv|
|sv|k

v

= O(1)
m∑

v=1

|λv|
|sv|k

v

= O(1)
m−1∑
v=1

Xvβv + O(1)Xm |λm| = O(1) as m →∞.

Finally, using Hölder’s inequality, as inTn,3 we have

m+1∑
n=2

(
Pn

pn

)k−1

| Tn,4 |k =
m+1∑
n=2

pn

PnP k
n−1

∣∣∣∣∣
n−1∑
v=1

sv
Pv

v
λv

∣∣∣∣∣
k

=
m+1∑
n=2

pn

PnP k
n−1

∣∣∣∣∣
n−1∑
v=1

sv
Pv

vpv

pvλv

∣∣∣∣∣
k

http://jipam.vu.edu.au
mailto:bor@erciyes.edu.tr
http://jipam.vu.edu.au


Increasing Sequences

Hüseyin Bor

vol. 8, iss. 3, art. 82, 2007

Title Page

Contents

JJ II

J I

Page 12 of 13

Go Back

Full Screen

Close

≤
m+1∑
n=2

pn

PnPn−1

n−1∑
v=1

|sv|k
(

Pv

vpv

)k

pv |λv|k
(

1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)
m∑

v=1

(
Pv

vpv

)k

|sv|k pv |λv|k
1

Pv

· v

v

= O(1)
m∑

v=1

|λv|
|sv|k

v

= O(1)
m−1∑
v=1

Xvβv + O(1)Xm |λm| = O(1) as m →∞.

Therefore we get

m∑
n=1

(
Pn

pn

)k−1

|Tn,r|k = O(1) as m →∞, for r = 1, 2, 3, 4.

This completes the proof of Theorem3.1.
Finally if we takepn = 1 for all values ofn in the theorem, then we obtain a new
result concerning the|C, 1|k summability factors.
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