J Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

\olume 3, Issue 3, Article 43, 2002

INEQUALITIES ON LINEAR FUNCTIONS AND CIRCULAR POWERS

PANTELIMON STANICA

AUBURN UNIVERSITY MONTGOMERY,
DEPARTMENT OFMATHEMATICS,
MONTGOMERY, AL 36124-4023, USA.

stanica@strudel.aum.edu
URL: http://sciences.aum.edu/” stanpan

Received 25 February, 2002; accepted 10 April, 2002
Communicated by C.P. Niculescu

ABSTRACT. We prove some inequalities such as
IU IO n
Fz,", oz, ™)) < F(afr, ... 2o,

’ n
where F' is a linear function or a linear function in logarithms amds a permutation, which
is a product of disjoint translation cycles. Stronger inequalities are proved for second-order
recurrence sequences, generalizing those of Diaz.
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1. INTRODUCTION

Define the second-order recurrent sequence by
(1.1) Tpi1 = ATy +bxy_ 1,20 > 0,21 > 1,

witha,b > 1. If a = b = 1andzy = 0,2, = 1 (or o = 2,2z, = 1), thenxz,, is the Fibonacci
sequencefF,, (or Pell sequencel’,). Inequalities on Fibonacci numbers were used recently
by Bar-Noyet.al[1], to study ad9/8— approximation for a variant of the problem that models
the Broadcast Disks application (model for efficient caching of web pages)). In [2], J.L. Diaz
proposed the following two inequalities:
F, Frni2 Fp F, Frnt1 Frni2

(CZ) an+1 +Fn+1 +Fn+2 < an—*_Fn-i-l +Fn+2 ’

(b) B ESEy < BT E

In this note we show that the inequalities proposed by Diaz are not specific to the Fibonacci
sequence, holding for any strictly increasing sequence. Moreover, we prove that stronger in-
equalities hold for any second-order recurrent sequence as |n (1.1). Furthermore, we pose a
problem for future research.
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2 PANTELIMON STANICA

2. THE RESULTS

We wondered if the inequalitigs), (b) were dependent on the Fibonacci sequence or if they
can be extended to binary recurrent sequences. From here on, we assume that all sequences
have positive terms. Without too great a difficulty, we prove, for a binary sequence, that

Theorem 2.1. For any positive integen,

Tn+1 Tn42 Tn T Tn+1 ITn+4+2
(2.1) oy A Ay, < a4 a
Tn+1 .0n+2 . Tn xT Tn+l Tnt2
(22) xnn xn+1 ‘rn+2 < ‘rnnxn+1 xn+2 .

Proof. We shall prove
(2.3) 2V + y* T 4 (ax + by)® < 2® + y¥ + (ax + by) T,
if 0 < z <y, which will imply our theorem. For easy writing, we denate= ax + by. Then
(2.3) is equivalent to
(2.4) x” (xy’x — 1) + Y (yzfy — 1) < zY (zz’y — z’(y’x)) .
Now, z* + y¥ < z¥ +y¥ < (x + y)¥ < z¥, sincea, b > 1. Moreover,
(=) + (V=1 =aV "4y V-2
<zV4yTV-—-1
<(z+y)v-1
< 2TV - D),
TakingA = 2*,B = y¥,C = 2" — 1, D = y* ¥ — 1 and using the inequality for positive
numbersAC + BD < (A + B)(C + D), we obtain[(2.4).
The inequality[(2.R) is implied by
(2.5) 2yt < atylt = 2V Ty Y < 2P
But 25 = 2(==9+=2) > (3 4 y)*7¥(z + )@ > y*Yz¥~*. The theorem is proved. [
Remark 2.2. We preferred to give this proof since it can be seen that the two inequalities are

far from being tight. We remark that inequalify (2.2) can be also shown by using Thgorem 2.7.

With a little effort, while not attempting to have the best bound, we can improve it, and also
prove that the gaps are approaching infinity.

Theorem 2.3. We have
n Tn n n Tn Tn n+1—Tn
Tt iy <@gt a2 — g™

T4l .Tn+2 . Tn Tp . Tn+l, Tnt2 Tn T+l Tn
Ty xn—l—l xn+2 < Ty "L‘n—&-l ‘/En+2 31‘” "L‘n—&-l ‘/En+2'

In particular,

Tim [(ar 4+ 2300+ 45) — (! + 21 4 )] = oo

: T Tn+1 Tn42 _ pTn4l In+2 Tp o
lim [y a0 — apr e, e o] = oo.

n—oo

In fact, the inequalitied (211),[ (2.2) are not dependent on binary sequences, at all. A much
more general statement is true. Take permutation, which is a product of disjoioyclic
(translations by a fixed numbet;) = i + t) permutations.

Theorem 2.4.Letn > 2andl < z; < 25 < ... < x, a strictly increasing sequence. Then

n

(2.6) D a < Zn: y,
=1

i=1
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and

(2.7) H Yot < Hx

=1
with strict inequality ifo is not the identity.

Proof. If ¢ is the identity permutation, the equality is obvious. Now, assumestfiat= ¢ + ¢.
We take the case af= 1 (the others are similar). We prove (R.6) by inductionronf n = 2,
we need
ot + a3 <of +af
which is equivalent to
xy! (x? ol 1) < x5t (xg2 ol 1).

The last inequality is certainly valid, sineg' < x5! andz7>"" — 1 < 23?7 — 1.
Assuming the statement holds true fgrwe prove it forn + 1. We need
n+1 n+1

(2.8) oyt <y
=1 i=1
wherez,, 1, 1= x;. We re-write [[2.8) as
(@ +ag” 4 bt Fant F e, — et <o eyt e by S ey

and using induction, it suffices to prove that

Tn+41

2?+1 Tl

The previous inequality is equivalent to

1 Tn+1—T1 __ xr1 Tn4+1—T1 )
x, (xn" 1) < T,k (xn+1 1),

which is obviously true, since, < x,.1.
The inequality[(2.]7) (wher () = i + t) can be proved by induction, as well.7if= 2, then

rPayt < xitay? = o <axrtt,

which is true sincer; < z,. Assuming the inequality holds true for we prove it forn + 1.
We need

T2 L pTntl 1 T2 Tpt1=T1 g, ¥l
Ty T, =y a:n 1517 tan n+1<331 Ty -

Using the induction step, it suffices to prove

Tpn+1— (El Tn+1 2 : Tp4+1—T1 Tn+1—T1
L n+1 < ’rnJrl T <z n+1 ’

which is valid sincer,, < x,, .

Now, take the general permutatienidentity, which is a product of disjoint cyclic permu-
tations. Thusg can be written as a product of disjoint cyclessas= C; x Cy X -+ x C,.
Recall thatr was taken such that all of its cyclég are translations by a fixed number, say
Take(', a cycle of lengthe,, and choose an index i, sayi,. Sinceo is not the identity, then
there is an indeX such thak,, # 1. We write the inequalitie$ (2.6) and (R.7) as

m ep—1 m erp—1
oI+l oJ (ig,)
DDy <D D
k=1 j=0 k=1 j=0
m er—1 m ep—1
[T < T2
O'J(’Lk Lo (i)’
k=1 j=0 k=1 j=0
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Therefore, it suffices to prove that, for ahywith ¢, # 1, we have

ekl ekl

UJ+1 (¢ 03(7, )
k k
Z Loi(iy) < Z Loi(iy)

j=0
er—1 er—1
Cf-7+1 (¢ 03(7, )
k k
|| EX H Toi(in)
j=0
that is,
er—1 er—1
crj(zk)+tk U](Lk)
Z U](Zk <Z 07 (ix) 7
7=0
er—1 er—1
Uj(zk)+tk JJ(%)
H UJ (i) < H UJ (i) ~
7=0

For k fixed, the above inequalities are just applications of the previous stepi(of i + t), by
taking a sequencg to bex,;;,) in increasing order (we could take from the beginniptp be
the minimum index in each cyclg,). 0J

We can slightly extend the previous result (for a similar permutatioin the following (we
omit the proof).

Theorem 2.5. For any increasing sequenée< z; < --- < x,, we have

n n

To(i .
E a;r; " < E a;x;', and
[Jou ™ < Tt

(2.9)

wherea; > 0.
A parallel result involving logarithms is also true (s a permutation as before).

Theorem 2.6. For any finite increasing sequende< r; < x3 < --- < x,, and any positive
real numbers:;, we have

Za To () log(z;) Zalxl log(z;), and

Ha T (i log x;) Ha x; log(x

The second identity is easily true since eveyyr; andlog x; occurs in both sides. We omit
the proof of the first inequality, since it can be deduced easily (as the referee observed) from the
known fact (se€ [3, p. 261])

Theorem 2.7.Given two increasing sequences< us < --- < u, andw; < wsy < -+ < w,,

then
n n n
Z UiWpy1—i < ZUT(i)wU(i) < Z U Wi,
i—1 i—1 i—1

for any permutations, 7.
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3. FURTHER COMMENTS

We believe that other inequalities of the type occurring in our theorems can also be con-
structed. LetF’ : R — R be a function, with the properties
(3.1) Ifrx; <wypi=1,...,n, then F(zy,...,z,) < F(y1, .-, Yn),
with strict inequality if there is an indexsuch thatz; < ;.

and

(32) For0<uz <ay<---<uxy, then, F(a?, 2%, ... art) < Fa, a3, ..., x0").

As examples, we have the linear polynomilzy, ..., z,) = > ., a,z;, the linear form in
logarithmsF'(zy, ..., z,) = Y., a;log(x;), and the corresponding products.

We ask for more examples of functions satisfying|(3.1) (3.2), which cannot be derived
trivially from the previous examples (by raising each variable to the same power, for instance).
Is it true that any symmetric polynomial satisfigs [3.1) gnd](3.2)? In addition to more exam-
ples, it might be worth investigating the general form of polynomial functions that satisfy these
properties.

This looks like a mathematical version of the philosophy saying:

Going one step at the time it is far better than jumping too fast and then at the end falling to the
bottom.
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