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ABSTRACT. In this paper, we introduce and study a new class of generalized strongly nonlinear
implicit quasivariational inequalities for set-valued mappings and construct some new iterative
algorithms for these kinds of generalized strongly nonlinear implicit quasivariational inequalities
by using the projection method and Nadler’s theorem. We prove some existence theorems of
solutions for these kinds of generalized nonlinear strongly implicit quasivariational inequalities
for set-valued mappings without compactness and convergence theorems of iterative sequences
generated by the algorithms.
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1. I NTRODUCTION

It is well known that variational inequality theory and complementarity problem theory are
very powerful tools of current mathematical technology. In recent years, the classical variational
inequality and complementarity problem have been extended and generalized in several direc-
tions to study a wide class of problems arising in mechanics, physics, optimization and control
theory, nonlinear programming, economics and transportation equilibrium and engineering sci-
ences, etc. For details, we refer the reader to [1] – [13], [15] – [27] and the references therein.

In 1991, Chang and Huang [4, 5] introduced and studied some new classes of quasi-(implicit)
complementarity problems and quasi-(implicit) variational inequalities for set-valued mappings
with compact values in Hilbert spaces, which included many kinds of complementarity prob-
lems and variational inequalities as special cases. In 1997, Huang [8] introduced and studied
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a new class of generalized nonlinear variational inequalities for set-valued mappings with non-
compact values and constructed some new iterative algorithms for this class of generalized non-
linear variational inequalities. For the some recent results, see [3, 10, 20, 26] and the references
therein.

Recently, Zeng [27] introduced and studied a class of general strongly quasi-variational in-
equalities for single-valued mappings which extends the general auxiliary variational inequality
considered by Noor [18].

In this paper, we introduce and study a new class of generalized strongly nonlinear implicit
quasivariational inequalities for set-valued mappings and construct some new iterative algo-
rithms for this kind of generalized strongly nonlinear implicit quasivariational inequalities by
using the projection method and Nadler’s theorem [14]. We also show the existence of so-
lutions for this class of generalized strongly nonlinear implicit quasivariational inequalities for
set-valued mappings without compactness and the convergence of iterative sequences generated
by the algorithms. Our results extend and improve the earlier and recent results of Noor [18],
Stampacchia [24] and Zeng [27].

2. PRELIMINARIES

Let H be a real Hilbert space endowed with the norm‖ · ‖, and inner product〈·, ·〉. Let K
be a nonempty closed convex subset ofH, PK be the projection ofH ontoK andf be a linear
continuous function onH.

Given single-valued mappingsg, T : H → H andN : H×H → H and set-valued mappings
F, G, S,K : H → 2H , we consider the following problem:

Findu ∈ H, x ∈ Fu, y ∈ Gu andz ∈ Su such thatg(u) ∈ K(u) and

(2.1) 0 ≥ 〈N(y, g(z)), v − g(u)〉 − ρ〈T (x)− f, v − g(u)〉
for all v ∈ K(u), whereρ > 0 is a constant. The problem (2.1) is called the generalized strongly
nonlinear implicit quasivariational inequality for set-valued mappings.

Example 2.1. To illustrate the applications and importance of the nonlinear implicit quasi-
variational inequality (2.1), we consider a elastoplasticity problem, which is mainly due to
Panagiotopoulos and Stavroulakis [21]. For simplicity, it is assumed that a general hyperelastic
material law holds for the elastic behaviour of the elastoplastic material under consideration.
Moreover, a nonconvex yield functionσ → F (σ) is introduced for the plasticity. For the basic
definitions and concepts, see [21]. Let us assume the decomposition

(2.2) E = Ee + Ep,

whereEe denotes the elastic andEp the plastic deformation of the three-dimensional elasto-
plastic body. We write the complementary virtual work expression for the body in the form

(2.3) 〈Ee, τ − σ〉+ 〈Ep, τ − σ〉 = 〈f, τ − σ〉
for all τ ∈ Z. Here, we have assumed that the body on a partΓU of its boundary has given
displacements, that is,µi = Ui on ΓU , and that on the rest of its boundaryΓF = Γ − ΓU , the
boundary tractions are given, that is,Si = Fi onΓF , where

(2.4) 〈E, σ〉 =

∫
Ω

εijσij dΩ,

(2.5) 〈f, σ〉 =

∫
ΓU

UiSi dΓ and
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(2.6) Z = {τ : τij ,j + fi = 0 on Ω, i, j = 1, 2, 3, Ti = Fi on ΓF , i = 1, 2, 3}

is the set of statically admissible stresses andΩ is the structure of the body.
Let us assume that the material of the structureΩ is hyperelastic such that

(2.7) 〈Ee, τ − σ〉 ≤ 〈W ′
m(σ), τ − σ〉

for all τ ∈ R6, whereWm is the superpotential which produces the constitutive law of the
hyperelastic material and is assumed to be quasidifferentiable [21], that is, there exist convex
and compact subsets∂′Wm and∂′Wm such that

(2.8) 〈W ′
m(σ), τ − σ〉 = max

W e
1∈∂′Wm

〈W e
1 , τ − σ〉+ min

W e
2∈∂′Wm

〈W e
2 , τ − σ〉.

We also introduce the generally nonconvex yield functionP ⊂ Z, which is defined by means
of the general quasidifferentiable functionF (σ), that is,

(2.9) P = {σ ∈ Z : F (σ) ≤ 0}.

Here Wm is a generally nonconvex and nonsmooth, but quasidifferentiable function for the
case of plasticity with convex yield surface and hyperelasticity. Combining (2.2) – (2.9), Pana-
giotopoulos and Stavroulakis [21] have obtained the following multivalued variational inequal-
ity problem:

Findσ ∈ P such thatW e
1 ∈ ∂′Wm(σ), W e

2 ∈ ∂′Wm(σ) and

(2.10) 〈W e
1 + W e

2 , τ − σ〉 ≥ 〈f, τ − σ〉

for all τ ∈ P , which is exactly the problem (2.1) withu = σ, x = W e
1 , y = −W e

2 , S = T =
g = I, ρ = 1, N(s, t) = s for all s, t ∈ H and

F (u) = ∂′Wm(σ), G(u) = −∂′Wm(σ), K(u) = P.

In a similar way, one can show that many problems in structural engineering can be studied in
the general framework of the set-valued variational inequalities (2.1) following the ideas and
techniques of quasidifferentiability (see [21]).

Special Cases of the problem (2.1):

(I) If A, B : H → H are both single-valued mappings andN(s, t) = Bs − At for all
s, t ∈ H, then the problem (2.1) is equivalent to findingu ∈ H, x ∈ Fu, y ∈ Gu and
z ∈ Su such thatg(u) ∈ K(u) and

(2.11) 〈A(g(z)), v − g(u)〉 ≥ 〈B(y), v − g(u)〉 − ρ〈T (x)− f, v − g(u)〉

for all v ∈ K(u), whereρ > 0 is a constant.
(II) If S is the identity mapping, then the problem (2.1) is equivalent to findingu ∈ H,

x ∈ Fu andy ∈ Gu such thatg(u) ∈ K(u) and

(2.12) 0 ≥ 〈N(y, g(u)), v − g(u)〉 − ρ〈T (x)− f, v − g(u)〉

for all v ∈ K(u), whereρ > 0 is a constant.
(III) If F andS are both the identity mappings, then the problem (2.1) is equivalent to finding

u ∈ H andy ∈ Gu such thatg(u) ∈ K(u) and

(2.13) 0 ≥ 〈N(y, g(u)), v − g(u)〉 − ρ〈T (u)− f, v − g(u)〉

for all v ∈ K(u), whereρ > 0 is a constant.
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(IV) If F , G andS are all the identity mappings, then the problem (2.1) is equivalent to
findingu ∈ H such thatg(u) ∈ K(u) and

(2.14) 0 ≥ 〈N(u, g(u)), v − g(u)〉 − ρ〈T (u)− f, v − g(u)〉

for all v ∈ K(u), whereρ > 0 is a constant.
(V) If F , G andS are the identity mappings,N(u, v) = Au − Av for all u, v ∈ H and

K(u) = m(u) + K, then the problem (2.1) is equivalent to findingu ∈ H such that
g(u) ∈ K(u) and

(2.15) 〈A(g(u)), v − g(u)〉 ≥ 〈A(u), v − g(u)〉 − ρ〈T (u)− f, v − g(u)〉

for all v ∈ K(u), whereρ > 0 is a constant, which is called the generalized strongly
quasivariational inequality, considered by Zeng [27].

(VI) If K(u) = K for all u ∈ H and we denoteg(u) by w, then the problem (2.15) becomes
the general auxiliary variational inequality considered by Noor [18], which is to find
w ∈ K, for someu ∈ K such that

(2.16) 〈A(w), v − w〉 ≥ 〈A(u), v − w〉 − ρ〈T (u)− f, v − w〉

for all v ∈ K(u), whereρ > 0 is a constant.
(VII) If F , g, G andS are all the identity mappings,N = 0 andK(u) = K for all u ∈ H,

then the problem (2.1) is equivalent to findingu ∈ H such that

〈T (u), v − u〉 ≥ 〈f, v − u〉

for all v ∈ K(u), which is known as a variational inequality introduced by Stampacchia
[24] and was also studied by Noor [18] by introducing the above auxiliary problem
(2.16).

It is clear that the generalized strongly nonlinear implicit quasivariational inequality problem
(2.1) includes many kinds of quasivariational inequalities, variational inequalities, complemen-
tarity and quasicomplementarity problems as special cases.

3. I TERATIVE ALGORITHMS

In this section, we construct some new iterative algorithms for finding approximate solu-
tions of the generalized strongly nonlinear implicit quasivariational inequalities (2.1), (2.11)
and (2.12) by using the projection method and Nadler’s theorem [14]. We need the following
lemmas:

Lemma 3.1. u ∈ H, x ∈ Fu, y ∈ Gu andz ∈ Su are a solution of the generalized strongly
nonlinear implicit quasivariational inequality (2.1) if and only ifu ∈ H, x ∈ Fu, y ∈ Gu and
z ∈ Su satisfyg(u) ∈ K(u) and

〈u− ϕ(u, x, y, z), v − g(u)〉 ≥ 0

for all v ∈ K(u), whereϕ(u, x, y, z) ∈ H satisfies

(3.1) 〈ϕ(u, x, y, z), v〉 = 〈u, v〉+ 〈N(y, g(z)), v〉 − ρ〈T (x)− f, v〉

for all v ∈ H.

Proof. The conclusion immediately follows from (2.1). �

Lemma 3.2. [13]. If K is a closed convex subset ofH andz ∈ H is a given point, thenu ∈ K
satisfies the inequality

〈u− z, v − u〉 ≥ 0
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for all v ∈ K if and only if

(3.2) u = PKz.

Lemma 3.3. [13]. The mappingPK defined by (3.2) is nonexpansive, that is,

‖PKu− PKv‖ ≤ ‖u− v‖
for all u, v ∈ H.

From Lemmas 3.1 and 3.2, we have the following lemma:

Lemma 3.4. Let K : H → 2H be a set-valued mapping such that, for eachu ∈ H, K(u)
is a nonempty closed convex set ofH. Thenu ∈ H, x ∈ Fu, y ∈ Gu and z ∈ Su are the
solution of the generalized strongly nonlinear implicit quasivariational inequality (2.1) if and
only if u ∈ H, x ∈ Fu, y ∈ Gu andz ∈ Su satisfy the relation

(3.3) u = (1− λ)u + λ[u− g(u) + PK(u)(g(u)− u + ϕ(u, x, y, z))],

where0 < λ < 1 is a constant andϕ(u, x, y, z) is defined as in (3.1).

Based on Lemma 3.4, we now propose some algorithms for the generalized strongly nonlin-
ear implicit quasivariational inequality (2.1).

Let K : H → 2H be a set-valued mapping such that, for eachu ∈ H, K(u) is a nonempty
closed convex set ofH. Let T, g : H → H, N : H ×H → H be mappings andF, G, S : H →
CB(H) be set-valued mappings, whereCB(H) is the family of all nonempty bounded closed
subsets ofH. For givenu0 ∈ H, we takex0 ∈ Fu0, y0 ∈ Gu0 andz0 ∈ Su0, and let

u1 = (1− λ)u0 + λ[u0 − g(u0) + PK(u0)(g(u0)− u0 + ϕ(u0, x0, y0, z0))].

SinceFu0 ∈ CB(H), Gu0 ∈ CB(H) andSu0 ∈ CB(H), by Nadler’s theorem [14], there
existx1 ∈ Fu1, y1 ∈ Gu1 andz1 ∈ Su1 such that

‖x0 − x1‖ ≤ (1 + 1)H(Fu0, Fu1),

‖y0 − y1‖ ≤ (1 + 1)H(Gu0, Gu1),

‖z0 − z1‖ ≤ (1 + 1)H(Su0, Su1),

whereH(·, ·) is the Hausdorff metric onCB(H). Let

u2 = (1− λ)u1 + λ[u1 − g(u1) + PK(u1)(g(u1)− u1 + ϕ(u1, x1, y1, z1))].

By induction, we can obtain the algorithm for the generalized strongly nonlinear implicit qua-
sivariational inequality (2.1) as follows:

Algorithm 3.1. Let K : H → 2H be a set-valued mapping such that, for eachu ∈ H, K(u) is
a nonempty closed convex set ofH. Let T, g : H → H, N : H × H → H be mappings and
F, G, S : H → CB(H) be set-valued mappings. For givenu0 ∈ H, we can get the sequences
{un}, {xn}, {yn} and{zn} such that

(3.4)

xn ∈ Fun, ‖xn − xn−1‖ ≤
(
1 + 1

n

)
H(Fun, Fun−1),

yn ∈ Gun, ‖yn − yn−1‖ ≤
(
1 + 1

n

)
H(Gun, Gun−1),

zn ∈ Sun, ‖zn − zn−1‖ ≤
(
1 + 1

n

)
H(Sun, Sun−1),

un+1 = (1− λ)un + λ[un − g(un) + PK(un)(g(un)− un + ϕ(un, xn, yn, zn))]

for n = 0, 1, 2, · · · , where0 < λ < 1 is a constant andϕ(u, x, y, z) is defined as (3.1).

If A, B : H → H are both single-valued mappings andN(s, t) = Bs − At for all s, t ∈ H,
then, from Algorithm 3.1, we have the algorithm for the problem (2.11) as follows:
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Algorithm 3.2. Let K : H → 2H be a set-valued mapping such that, for eachu ∈ H, K(u) is
a nonempty closed convex set ofH. Let A, B, T, g : H → H be mappings andF, G, S : H →
CB(H) be set-valued mappings. For givenu0 ∈ H, we can obtain the sequences{un}, {xn},
{yn} and{zn} such that

(3.5)

xn ∈ Fun, ‖xn − xn−1‖ ≤
(
1 + 1

n

)
H(Fun, Fun−1),

yn ∈ Gun, ‖yn − yn−1‖ ≤
(
1 + 1

n

)
H(Gun, Gun−1),

zn ∈ Sun, ‖zn − zn−1‖ ≤
(
1 + 1

n

)
H(Sun, Sun−1),

un+1 = (1− λ)un + λ[un − g(un) + PK(un)(g(un)− un + ϕ(un, xn, yn, zn))]

for n = 0, 1, 2, · · · , where0 < λ < 1 is a constant andϕ(u, x, y, z) is defined by

〈ϕ(u, x, y, z), v〉 = 〈u, v〉+ 〈B(y)− A(g(z)), v〉 − ρ〈T (x)− f, v〉
for all v ∈ H.

If S is the identity mapping, then, from Algorithm 3.1, we have the algorithm for the problem
(2.12) as follows:
Algorithm 3.3. Let K : H → 2H be a set-valued mapping such that, for eachu ∈ H, K(u) is
a nonempty closed convex set ofH. Let T, g : H → H, N : H × H → H be mappings and
F, G : H → CB(H) be set-valued mappings. For givenu0 ∈ H, we can obtain the sequences
{un}, {xn} and{yn} such that

(3.6)

xn ∈ Fun, ‖xn − xn−1‖ ≤
(
1 + 1

n

)
H(Fun, Fun−1),

yn ∈ Gun, ‖yn − yn−1‖ ≤
(
1 + 1

n

)
H(Gun, Gun−1),

un+1 = (1− λ)un + λ[un − g(un) + PK(un)(g(un)− un + ϕ(un, xn, yn))]

for n = 0, 1, 2, · · · , where0 < λ < 1 is a constant andϕ(u, x, y) is defined by

〈ϕ(u, x, y), v〉 = 〈u, v〉+ 〈N(y, (g(u)), v〉 − ρ〈T (x)− f, v〉
for all v ∈ H.
Remark 3.1.

(i) For appropriate and suitable choices of the mappingsK, g, F, G, S, T andN , a num-
ber of algorithms for variational inequality, quasivariational inequality, complementarity
and quasicomplementarity problems can be obtained as special cases of Algorithm 3.1.

(ii) Algorithms 3.2 and 3.3 include several known algorithms of Noor [18] and Zeng [27]
as special cases.

4. EXISTENCE AND CONVERGENCE THEOREMS

In this section, we prove some existence theorems for solutions of the generalized strongly
nonlinear implicit quasivariational inequalities (2.1), (2.11) and (2.12) without compactness and
the convergence of iterative sequences generated by the algorithms.
Definition 4.1. Let g : H → H be a single-valued mapping andG : H → 2H be a set-valued
mapping. Then

(i) g is called strongly monotone if there exists a numberr > 0 such that

〈gu1 − gu2, u1 − u2〉 ≥ r‖u1 − u2‖2

for all ui ∈ H, i = 1, 2.
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(ii) g is called Lipschitz continuous if there exists a numbers > 0 such that

‖gu1 − gu2‖ ≤ s‖u1 − u2‖
for all ui ∈ H, i = 1, 2.

(iii) G is calledH-Lipschitz continuous if there exists a numberδ > 0 such that

H(G(u1), G(u2)) ≤ δ‖u1 − u2‖
for all ui ∈ H, i = 1, 2.

(iv) G is called strongly monotone with respect tog if there exists a numberγ > 0 such that

〈gw1 − gw2, u1 − u2〉 ≥ γ‖u1 − u2‖2

for all ui ∈ H andwi ∈ Gui, i = 1, 2.

Definition 4.2. The mappingN : H ×H → H is called Lipschitz continuous with respect to
the first argument if there exists a numberβ > 0 such that

‖N(u, ·)−N(v, ·)‖ ≤ β‖u− v‖
for all u, v ∈ H.

In a similar way, we can define Lipschitz continuity ofN with respect to the second argument.

Definition 4.3. Let K : H → 2H be a set-valued mapping such that, for eachx ∈ H, K(x) is
a nonempty closed convex subset ofH. The projectionPK(x) is said to be Lipschitz continuous
if there exists a numberη > 0 such that

‖PK(x)z − PK(y)z‖ ≤ η‖x− y‖
for all x, y, z ∈ H.

Remark 4.1. In many important applications,K(u) has the following form:

K(u) = m(u) + K,

wherem : H → H is a single-valued mapping andK is a nonempty closed convex subset ofH.
If m is Lipschitz continuous with constantλ, it is easy to see thatPK(x) is Lipschitz continuous
with the Lipschitz constantµ = 2λ.

Theorem 4.1. Let K : H → 2H be a set-valued mapping such that, for eachu ∈ H, K(u)
is a nonempty closed convex set ofH. Let mappingsT, g : H → H be Lipschitz continuous
with Lipschitz constantsβ and γ, respectively, andg be strongly monotone with constantδ.
Let a mappingN : H × H → H be Lipschitz continuous with respect to the first and second
arguments with Lipschitz constantsτ and ξ, respectively. Let set-valued mappingsF, G, S :
H → CB(H) beH-Lipschitz continuous withH-Lipschitz constantsη, σ, ε, respectively, and
G be strongly monotone with respect toT with constantα. Suppose thatPK(x) is Lipschitz
continuous with the Lipschitz constantµ. If the following conditions hold:

(4.1)

|ρ− α
β2η2 | <

√
α2−β2η2k(2−k)

β2η2 ,

α > βη
√

k(2− k),

k = 2
√

1− 2δ + γ2 + µ + ξγε + τσ < 1,

then there existu ∈ H, x ∈ Fu, y ∈ Gu andz ∈ Su which are a solution of the generalized
strongly nonlinear implicit quasivariational inequality (2.1) and

un → u, xn → x, yn → y, zn → z (n →∞),

where the sequences{un}, {xn}, {yn} and{zn} are defined by Algorithm 3.1.
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Proof. From Algorithm 3.1, Lemma 3.3 and the Lipschitz continuity ofPK(x), we have

‖un+1 − un‖ ≤ λ‖un − un−1 − [g(un)− g(un−1)]‖
+ (1− λ)‖un − un−1‖+ λ‖PK(un)Q(un)− PK(un−1)Q(un−1)‖

≤ λ‖un − un−1 − [g(un)− g(un−1)]‖
+ (1− λ)‖un − un−1‖+ λ‖PK(un)Q(un)− PK(un)Q(un−1)‖
+ λ‖PK(un)Q(un−1)− PK(un−1)Q(un−1)‖

≤ λ‖un − un−1 − [g(un)− g(un−1)]‖
+ (1− λ)‖un − un−1‖+ λ‖Q(un)−Q(un−1)‖+ λµ‖un − un−1‖

≤ 2λ‖un − un−1 − [g(un)− g(un−1)]‖+ (1− λ)‖un − un−1‖
+ λ‖ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1)‖+ λµ‖un − un−1‖,

(4.2)

whereQ(un) = g(un)− un + ϕ(un, xn, yn, zn). By (3.1), we have

‖ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1)‖2

= 〈ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1), ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1)〉

≤ |〈un − un−1 − ρ(T (xn)− T (xn−1)), ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1)〉|
+ |〈N(yn, g(zn))−N(yn−1, g(un−1)), ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1)〉|

≤ [‖un − un−1 − ρ(T (xn)− T (xn−1))‖
+ ‖N(yn, g(zn))−N(yn−1, g(zn−1))‖] · ‖ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1)‖

and so

(4.3) ‖ϕ(un, xn, yn, zn)− ϕ(un−1, xn−1, yn−1, zn−1)‖
≤ ‖un − un−1 − ρ(T (xn)− T (xn−1))‖+ ‖N(yn, g(zn))−N(yn−1, g(zn−1))‖.

SinceG andS areH-Lipschitz continuous,g is Lipschitz continuous andN is Lipschitz con-
tinuous with respect to the first and second arguments, respectively, we get

‖N(yn, g(zn))−N(yn−1, g(zn−1))‖
≤ ‖N(yn, g(zn))−N(yn−1, g(zn))‖+ ‖N(yn−1, g(zn))−N(yn−1, g(zn−1))‖

≤ τ‖yn − yn−1‖+ ξ‖g(zn)− g(zn−1)‖

≤ τσ(1 +
1

n
)‖un − un−1‖+ ξγε(1 +

1

n
)‖un − un−1‖

≤ (τσ + ξγε)(1 +
1

n
)‖un − un−1‖.

(4.4)

By the Lipschitz continuity and strong monotonicity ofg, we obtain

(4.5) ‖un − un−1 − (g(un)− g(un−1))‖2 ≤ (1− 2δ + γ2)‖un − un−1‖2.

Further, sinceT is Lipschitz continuous andF is H-Lipschitz continuous and strongly mono-
tone with respect toT , we get

(4.6) ‖un − un−1 − ρ(T (xn)− T (xn−1))‖2 ≤ (1− 2ρα + ρ2β2η2(1 +
1

n
)2)‖un − un−1‖2.

From (4.2) – (4.6), it follows that

(4.7) ‖un+1 − un‖ ≤ θn‖un − un−1‖,
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where

θn = λkn + (1− λ) + λ

√
1− 2ρα + ρ2β2η2(1 +

1

n
)2,

kn = 2
√

1− 2δ + γ2 + µ + (ξγε + τσ)(1 +
1

n
).

Letting

θ = λk + (1− λ) + λ
√

1− 2ρα + ρ2β2η2,

we know thatθn ↘ θ asn → ∞. It follows from (4.1) thatθ < 1. Henceθn < 1 for n
sufficiently large. Therefore, (4.7) implies that{un} is a Cauchy sequence inH and we can
assume thatun → u ∈ H.

Now we prove thatxn → x ∈ Fu, yn → y ∈ Gu andzn → z ∈ Su, respectively. In fact, it
follows from Algorithm 3.1 that

‖xn − xn−1‖ ≤
(

1 +
1

n

)
η‖un − un−1‖,

‖yn − yn−1‖ ≤
(

1 +
1

n

)
σ‖un − un−1‖,

‖zn − zn−1‖ ≤
(

1 +
1

n

)
ε‖un − un−1‖

and so{xn}, {yn} and{zn} are all Cauchy sequences inH. Let xn → x, yn → y andzn → z
asn →∞. Further we have

d(x, Fu) = inf{‖x− z‖ : z ∈ Fu}
≤ ‖x− xn‖+ d(xn, Fu)

≤ ‖x− xn‖+ H(Fun, Fu)

≤ ‖x− xn‖+ η‖un − u‖ → 0 (n →∞).

Hence,x ∈ Fu. Similarly, we havey ∈ Gu andz ∈ Su. This completes the proof. �

From Theorem 4.1, we can get the following results:

Theorem 4.2. LetK : H → 2H be a set-valued mapping such that for eachu ∈ H, K(u) is a
nonempty closed convex set ofH. Let mappingsT, g, A, B : H → H be Lipschitz continuous
with Lipschitz constantsβ, γ, ξ andτ , respectively, andg be strongly monotone with constantδ.
Let set-valued mappingsF, G, S : H → CB(H) beH-Lipschitz continuous withH-Lipschitz
constantsη, σ andε, respectively, andG be strongly monotone with respect toT with constant
α. Suppose thatPK(x) is Lipschitz continuous with Lipschitz constantµ. If the condition (4.1)
in Theorem 4.1 holds, then there existu ∈ H, x ∈ Fu, y ∈ Gu andz ∈ Su which is a solution
of the problem (2.11) and

un → u, xn → x, yn → y, zn → z (n →∞),

where the sequences{un}, {xn}, {yn} and{zn} are defined by Algorithm 3.2.

Theorem 4.3. Let K : H → 2H be a set-valued mapping such that, for eachu ∈ H, K(u)
is a nonempty closed convex set ofH. Let mappingsT, g : H → H be Lipschitz continuous
with Lipschitz constantsβ and γ, respectively, andg be strongly monotone with constantδ.
Let mappingN : H × H → H be Lipschitz continuous with respect to the first and second
arguments with Lipschitz constantsτ andξ, respectively. Let set-valued mappingsF, G : H →
CB(H) beH-Lipschitz continuous withH-Lipschitz constantsη andσ, respectively, andG be
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strongly monotone with respect toT with constantα. Suppose thatPK(x) is Lipschitz continuous
with Lipschitz constantµ. If the condition (4.1) in Theorem 4.1 holds for

k = 2
√

1− 2δ + γ2 + µ + ξγ + τσ < 1,

then there existu ∈ H, x ∈ Fu andy ∈ Gu which are a solution of the problem (2.12) and

un → u, xn → x, yn → y (n →∞),

where the sequences{un}, {xn} and{yn} are defined by Algorithm 3.3.

Remark 4.2. For a suitable choice of the mappingsK, g, F, G, S, T andN , we can obtain
several known results in [18], [24] and [27] as special cases of Theorem 4.1.
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