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ABSTRACT. In this paper, we introduce and study a new class of generalized strongly nonlinear
implicit quasivariational inequalities for set-valued mappings and construct some new iterative
algorithms for these kinds of generalized strongly nonlinear implicit quasivariational inequalities
by using the projection method and Nadler's theorem. We prove some existence theorems of
solutions for these kinds of generalized nonlinear strongly implicit quasivariational inequalities
for set-valued mappings without compactness and convergence theorems of iterative sequences
generated by the algorithms.
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1. INTRODUCTION

It is well known that variational inequality theory and complementarity problem theory are
very powerful tools of current mathematical technology. In recent years, the classical variational
inequality and complementarity problem have been extended and generalized in several direc-
tions to study a wide class of problems arising in mechanics, physics, optimization and control
theory, nonlinear programming, economics and transportation equilibrium and engineering sci-
ences, etc. For details, we refer the readerto [1] - [13], [15] - [27] and the references therein.

In 1991, Chang and Huang [4, 5] introduced and studied some new classes of quasi-(implicit)
complementarity problems and quasi-(implicit) variational inequalities for set-valued mappings
with compact values in Hilbert spaces, which included many kinds of complementarity prob-
lems and variational inequalities as special cases. In 1997, Huang [8] introduced and studied
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a new class of generalized nonlinear variational inequalities for set-valued mappings with non-
compact values and constructed some new iterative algorithms for this class of generalized non-
linear variational inequalities. For the some recent results| seel[3,110, 20, 26] and the references
therein.

Recently, Zeng [27] introduced and studied a class of general strongly quasi-variational in-
equalities for single-valued mappings which extends the general auxiliary variational inequality
considered by Noor [18].

In this paper, we introduce and study a new class of generalized strongly nonlinear implicit
guasivariational inequalities for set-valued mappings and construct some new iterative algo-
rithms for this kind of generalized strongly nonlinear implicit quasivariational inequalities by
using the projection method and Nadler’s theorem [14]. We also show the existence of so-
lutions for this class of generalized strongly nonlinear implicit quasivariational inequalities for
set-valued mappings without compactness and the convergence of iterative sequences generated
by the algorithms. Our results extend and improve the earlier and recent results of Noor [18],
Stampacchia [24] and Zeng [27].

2. PRELIMINARIES

Let H be a real Hilbert space endowed with the ndrm||, and inner product-, -). Let K
be a nonempty closed convex subsetQfPy be the projection off onto K and f be a linear
continuous function ot/

Given single-valued mappingsT : H — H andN : H x H — H and set-valued mappings
F.G,S,K : H— 2" we consider the following problem:

Findu € H, z € Fu,y € Guandz € Su such thay(u) € K(u) and

(2.1) 0= (N(y,9(2),v—g(uw) — p{T(x) — fv—g(u))
forallv € K(u), wherep > 0is a constant. The problein (2.1) is called the generalized strongly
nonlinear implicit quasivariational inequality for set-valued mappings.

Example 2.1. To illustrate the applications and importance of the nonlinear implicit quasi-
variational inequality[(2]1), we consider a elastoplasticity problem, which is mainly due to
Panagiotopoulos and StavroulaKis![21]. For simplicity, it is assumed that a general hyperelastic
material law holds for the elastic behaviour of the elastoplastic material under consideration.
Moreover, a nonconvex yield functien— F'(o) is introduced for the plasticity. For the basic
definitions and concepts, sée[21]. Let us assume the decomposition

(2.2) E = E° + E”,

where E€ denotes the elastic an@’ the plastic deformation of the three-dimensional elasto-
plastic body. We write the complementary virtual work expression for the body in the form

(2.3) (E°, 1 —0)+ (EP, T —0) = (f,T—0)

for all 7 € Z. Here, we have assumed that the body on a Parof its boundary has given
displacements, that ig,;, = U; onI'y;, and that on the rest of its bounddry: = I' — 'y, the
boundary tractions are given, thatis,= F; onI', where

(2.4) @w:/%%m,
Q
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2.6 Z=Ar:1.,;+fi=0o0n Q, ij=123, T;,=F, on I'p, 1=1,2,3
5]

is the set of statically admissible stresses @rid the structure of the body.
Let us assume that the material of the structuiie hyperelastic such that

(2.7) (B¢, 7 — o) < (W] (o), 7 —0)

for all 7 € RS, wherelV,, is the superpotential which produces the constitutive law of the
hyperelastic material and is assumed to be quasidifferentiable [21], that is, there exist convex
and compact subse®lV,, andod’WV,,, such that
(2.8) (W! (o), 7 —0)= max (Wf,7—0o)+ min (W5 7—o0).
Wied' W W5€d Wi,
We also introduce the generally nonconvex yield funcfiba 7, which is defined by means
of the general quasidifferentiable functiéfio), that is,

(2.9) P={oceZ:F(o) <0}

Here WW,, is a generally nonconvex and nonsmooth, but quasidifferentiable function for the
case of plasticity with convex yield surface and hyperelasticity. Combifing (2[2)}- (2.9), Pana-
giotopoulos and Stavroulakis [21] have obtained the following multivalued variational inequal-
ity problem:

Findo € P such thatVy € 9W,, (o), W5 € OW,,(c) and

(2.10) (W +Ws t—0o)>(f,7—0)

for all 7 € P, which is exactly the probleni (2.1) with= 0, x = W,y = —W§, S =T =
g=1,p=1,N(s,t)=sforall s,t € H and
F(u) = 0Wpu(o), Gu)=—-0Wy,(o), K(u)=P.
In a similar way, one can show that many problems in structural engineering can be studied in
the general framework of the set-valued variational inequalitie$ (2.1) following the ideas and
techniques of quasidifferentiability (see [21]).
Special Cases of the problem (2.1):

() If A,B : H — H are both single-valued mappings aids,t) = Bs — At for all
s,t € H, then the problen] (2/1) is equivalent to finding= H, z € Fu, y € Gu and
z € Su such thay(u) € K(u) and

(2.11) (A(g(2)),0 = g(u)) = (B(y),v — g(u)) — p(T'(x) — f,v—g(u))

forall v € K(u), wherep > 0 is a constant.
(Il) If S is the identity mapping, then the problem (2.1) is equivalent to finding H,
x € Fuandy € Gu such thay(u) € K(u) and

(2.12) 0> (N(y,g9(u),v—g(uw)) — p(T(z) = f,v—g(u))

for all v € K(u), wherep > 0 is a constant.
(i) If F andS are both the identity mappings, then the problem|(2.1) is equivalent to finding
u € H andy € Gu such thay(u) € K(u) and

(2.13) 0= (N(y,g(w),v—yg(u) —p(T(u) = f,v—g(u))
forallv € K(u), wherep > 0 is a constant.
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(IV) If F', G andS are all the identity mappings, then the probldm]|(2.1) is equivalent to
findingu € H such thayy(u) € K(u) and

(2.14) 0> (N(u,g(w)),v = g(u)) = p{T'(w) = f,v—=g(u))

forall v € K(u), wherep > 0 is a constant.

(V) If F, G andS are the identity mappingsy (u,v) = Au — Av for all w,v € H and
K(u) = m(u) + K, then the problen] (2/1) is equivalent to findinge H such that
g(u) € K(u)and

(2.15) (Alg(w), v —g(u)) = (A(u),v — g(u)) — p(T(u) = f,v = g(u))

for all v € K(u), wherep > 0 is a constant, which is called the generalized strongly
guasivariational inequality, considered by Zeng [27].

(VI) If K(u) = K forall uw € H and we denotg(u) by w, then the problenj (2.15) becomes
the general auxiliary variational inequality considered by Noor [18], which is to find
w € K, for someu € K such that

(2.16) (A(w), v —w) = (A(u),v —w) = p(T'(u) = f,v —w)

forallv € K(u), wherep > 0 is a constant.
(Vi) If F, g, G andS are all the identity mappingsy = 0 and K (u) = K forallu € H,
then the problen (2/1) is equivalent to findinge H such that

(T'(w), v —u) = (f,v—u)

forall v € K(u), which is known as a variational inequality introduced by Stampacchia
[24] and was also studied by Noadr [18] by introducing the above auxiliary problem
(2.18).
Itis clear that the generalized strongly nonlinear implicit quasivariational inequality problem
(2.7) includes many kinds of quasivariational inequalities, variational inequalities, complemen-
tarity and quasicomplementarity problems as special cases.

3. ITERATIVE ALGORITHMS

In this section, we construct some new iterative algorithms for finding approximate solu-
tions of the generalized strongly nonlinear implicit quasivariational inequalfties (2.1)] (2.11)
and [2.12) by using the projection method and Nadler’s theorem [14]. We need the following
lemmas:

Lemma3.1l.v € H,z € Fu,y € Guandz € Su are a solution of the generalized strongly
nonlinear implicit quasivariational inequality (2.1) if and only:ife H, z € Fu, y € Gu and
z € Su satisfyg(u) € K(u) and
<u - QD(U, Ty, Z),?} - g<u)> Z 0
forall v € K(u), wherep(u,x,y, z) € H satisfies

(31) <90(U7$7y7 Z)7U> = <U7U> + (N(y,g(z)),v> —p<T(ZL’) - 7U>
forallv € H.
Proof. The conclusion immediately follows frorf (2.1). O

Lemma 3.2. [13]. If K is a closed convex subsetMfandz € H is a given point, them € K
satisfies the inequality

(u—z,v—u) >0
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forall v € K if and only if

(3.2) u= Pgz.

Lemma 3.3. [13]. The mapping’x defined by[(3]2) is nonexpansive, that is,
[ Pru— Prol| < [Ju— v

forall u,v € H.

From Lemmas 3]1 arid 3.2, we have the following lemma:
Lemma 3.4.Let K : H — 2H be a set-valued mapping such that, for eacke H, K(u)
is a nonempty closed convex setfof Thenu € H, x € Fu,y € Gu andz € Su are the
solution of the generalized strongly nonlinear implicit quasivariational inequdlity (2.1) if and
onlyifue H,z € Fu,y € Guandz € Su satisfy the relation
(3.3) u=(1—=XNu+Au—g(u) + Pgw(g(u) —u+o(u,z,y,2)),
where0 < X < 1is a constant ang(u, z,y, z) is defined as irf (3]1).

Based on Lemmia 3.4, we now propose some algorithms for the generalized strongly nonlin-
ear implicit quasivariational inequality (2.1).

Let K : H — 2! be a set-valued mapping such that, for each H, K (u) is a nonempty
closed convex setdfl. LetT,g: H — H, N : H x H — H be mappings and,G,S : H —
CB(H) be set-valued mappings, whetd3(H) is the family of all nonempty bounded closed
subsets of{. For givenuy € H, we takery € Fug, yo € Gug andzy € Sug, and let

up = (1 = Nug + Alug — g(uo) + Prug)(9(uo) — uo + (o, o, Yo, 20))]-
SinceFuy € CB(H), Guy € CB(H) andSu, € CB(H), by Nadler's theorem [14], there
existr; € Fuy, y; € Guy andz; € Suy such that
Hon — le S (1 + 1)H(FUO, F’Ul),

lyo — w1ll < (1 4+ 1) H(Guo, Gua),
20 = 21 < (1 + 1)H(Sug, Sur),
whereH (-, -) is the Hausdorff metric o6'B(H). Let
up = (1 = Nur + Alur — g(u1) + Py (9(ur) — ur + @(ur, 21,91, 21))]-
By induction, we can obtain the algorithm for the generalized strongly nonlinear implicit qua-
sivariational inequality{ (2]1) as follows:

Algorithm 3.1. Let K : H — 2 be a set-valued mapping such that, for each H, K (u) is
a nonempty closed convex sethbf LetT,g: H — H, N : H x H — H be mappings and
F,G,S : H— CB(H) be set-valued mappings. For given € H, we can get the sequences

{un}, {zn}, {yn} and{z,} such that
Ty € Funu ||mn - xn—l” S (]- + %) H(Funa Fun—l))

Yn € Gy, |y — Y|l < (14 2) H(Gun, Gup—y),
(3.4)
2 € Stn, 20 — 2o || < (L4 1) H(Suwy,, Su,),

forn=0,1,2,---, where0 < X < 1is a constant ang(u, z, y, z) is defined aq (3]1).

If A,B: H— H are both single-valued mappings aNds, t) = Bs — At for all s,t € H,
then, from Algorithnj 3.]1, we have the algorithm for the problem (2.11) as follows:
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Algorithm 3.2. Let K : H — 2! be a set-valued mapping such that, for each H, K (u) is
a nonempty closed convex setdf Let A, B,T,¢g : H — H be mappings and’ G, S : H —
CB(H) be set-valued mappings. For givepn € H, we can obtain the sequencgs, }, {z,},
{yn} and{z,} such that

Ty € Funa ||$n - mn—l” S (1 + %) H(Funa Fun—1)7

Yn € Guna ||yn - yn—1|| S (1 + %) H<Gun7 Gun—l)u

(3.5)
Zn € Sty 20 — 2zpma || < (14 1) H(Suwy,, Su,),
forn=0,1,2,---, whered < A < 1is a constant ang(u, x, y, z) is defined by
(p(u,z,y,2),v) = (u,v) + (B(y) — Alg(2)),v) — p(T(z) — [, v)
forallv € H.

If S'is the identity mapping, then, from Algoritim 8.1, we have the algorithm for the problem

(2.12) as follows:

Algorithm 3.3. Let K : H — 2! be a set-valued mapping such that, for each H, K (u) is

a nonempty closed convex setdt LetT,g: H — H, N : H x H — H be mappings and
F,G : H— CB(H) be set-valued mappings. For givepn € H, we can obtain the sequences
{un}, {z,} and{y,} such that

Ty € Funa ||xn - xn—l” S (1 + %) H(Funa Fun—1)7
(36) Yn € Guna ||yn - yn—1|| S (1 + %) H<Gun7 Gun—l)u

Upt1 = (1 = Nun + Ay, — g(un) + PK(un)(g(un) — Up + P(Un; Ty Yn))]
forn=0,1,2,---, whered < X\ < 1is a constant ang(u, x, y) is defined by

(p(u,z,y),v) = (u,v) + (N(y, (9(u)),v) = p(T(x) = f,v)
forallv e H.
Remark 3.1.
(i) For appropriate and suitable choices of the mappikigg, F, G, S, T and N, a num-
ber of algorithms for variational inequality, quasivariational inequality, complementarity
and quasicomplementarity problems can be obtained as special cases of Algorjthm 3.1.
(i) Algorithms([3.2 and 3.3 include several known algorithms of Noor [18] and Zeng [27]
as special cases.

4. EXISTENCE AND CONVERGENCE THEOREMS

In this section, we prove some existence theorems for solutions of the generalized strongly
nonlinear implicit quasivariational inequaliti¢s (2.1), (2.11) and (2.12) without compactness and
the convergence of iterative sequences generated by the algorithms.

Definition 4.1. Let g : H — H be a single-valued mapping agd: H — 2% be a set-valued
mapping. Then
(i) ¢ is called strongly monotone if there exists a number 0 such that

(gui — gug,uy — u) > rlluy — usl|®

forallu, € H,i=1,2.
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(i) g is called Lipschitz continuous if there exists a number 0 such that
lgur — gual| < sfjur — ua|
forallu, € H,i=1,2.
(i) G is calledH-Lipschitz continuous if there exists a number 0 such that
H(G(u), G(uz)) < 0llur — us|
forallu; e H,i=1,2.
(iv) G is called strongly monotone with respectgtd there exists a numbeyr > 0 such that
(gwi — gwa, ur — ug) > 7llur — ugl|’
forall u; € H andw; € Gu;,i =1, 2.
Definition 4.2. The mappingV : H x H — H is called Lipschitz continuous with respect to
the first argument if there exists a numiger- 0 such that
IN(u, ) = N(v, )| < Bllu— o
forall u,v € H.
In a similar way, we can define Lipschitz continuity@fwith respect to the second argument.

Definition 4.3. Let K : H — 2! be a set-valued mapping such that, for each H, K(z) is
a nonempty closed convex subsetrbf The projectionPx,) is said to be Lipschitz continuous
if there exists a numbey > 0 such that

1Prcayz = Pzl < nlle =y
forall x,y,z € H.
Remark 4.1. In many important applicationgs (u) has the following form:

K(u) = m(u) + K,

wherem : H — H is a single-valued mapping aridis a nonempty closed convex subsefhf
If m is Lipschitz continuous with constant it is easy to see thaty ) is Lipschitz continuous
with the Lipschitz constant = 2.

Theorem 4.1.Let K : H — 2! be a set-valued mapping such that, for eackk H, K (u)

is a nonempty closed convex setfdf Let mappings’,g : H — H be Lipschitz continuous
with Lipschitz constantg and v, respectively, and be strongly monotone with constant

Let a mappingV : H x H — H be Lipschitz continuous with respect to the first and second
arguments with Lipschitz constantsand £, respectively. Let set-valued mappingsG, S :

H — CB(H) be H-Lipschitz continuous witli/-Lipschitz constants, o, €, respectively, and

G be strongly monotone with respectfowith constanto. Suppose that’x(,) is Lipschitz
continuous with the Lipschitz constantlf the following conditions hold:

v a?—B2n2k(2—k)

|p o ﬂ%l2| < 5%n? ’

(4.1) a > Bny/k(2 — k),
k=2/1=-20+72+pu+&vye+710 <1,

then there exist. € H, v € Fu, y € Gu andz € Su which are a solution of the generalized
strongly nonlinear implicit quasivariational inequality (2.1) and

un_>u7 'rn_)x7 yn_)y7 Zn—)z (n_>oo)’

where the sequencgs,, }, {z,}, {y.} and{z,} are defined by Algorithfn 3.1.
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Proof. From Algorithm[3.1, Lemma 3|3 and the Lipschitz continuity/f ., we have
[tnt1 — wnll < Mup — wn—1 — [g(un) — g(un-1)]||
+ (1 - /\)Hun - Un—1|| + /\“PK(un)Q(un) - PK(un—1)Q(un—1)H
< )‘Hun — Up—1 — [g(un) - g(un—l)]H
+ (1 = Mllun — tn-1 |l + M Pre(un) Q(un) — Pre(un)Q(Un—1)]|
(4.2) + M Pre () @(n—1) = Pre(uy 1)@ (Un—1) |l
< >‘Hun — Up—1 — [g(un> - g(unfl)]H
+ (1= Mlun = wna || + MQ(un) — Q(un—1)|| + Aptfltn — wns|]
< 2/\||un — Up—1 — [g(un) - g(un—l)]H + (1 - )‘)Hun - Un—1||
+ AM@(tn, T, Yn, 2n) — @(Un—1, Tn—1, Yn—1, Zn—1) || + Apt||n, — wn_1],
whereQ (u,,) = g(un) — wy + @(Un, Ty Yn, 2n). BY ), we have
10 (tns Ty Yns 20) — @(Un—1, Tn1, Yn—1, Zn-1)|?
= <S0(un7 Ty Yn, Zn) - QO(Un_l, Tp—1yYn—1, Zn—l)a Sp(una Ty Yn, Zn) - Qp(un—h Tp—15Yn—1, Zn—l))
S |<Un — Up—1 — p(T<xn> - T(xn—l))7 gD(’LLn, Lny Yn, Zn) - @(Un—la Tn—1,Yn—1, Zn—1)>|
+ ’<N<ym g(zn)) - N(yn—la g(un—l))7 Qp(um Lny Yn, Zn) - Sp(un—lu Tn—1,Yn-1, Zn—1>>|
< [Hun — Up—1 — p(T(:En) - T(xn—l))H
+ HN(ynag(zn)) - N(ynflag(znfl))m : ’l@(unv Ty Yn, Zn) - 90<un*17 Ln—15Yn—1, Zn*1>H
and so

(4.3) ||, Tn,y Yn, 20) — @(Un—1, Tr-1, Yn—1, Zn-1) ||
< g = tn—1 — p(T(2) = T(@n—1))|| + [|N(Un, 9(2n)) = N(Yn-1,9(2n-1))|-

SinceG and S are H-Lipschitz continuousg is Lipschitz continuous and/ is Lipschitz con-
tinuous with respect to the first and second arguments, respectively, we get

[N (Yns 9(20)) = N(Yn-1, 9(2n-1))|l
<INWns 9(20)) = N(Yn-1, 9| + [N (Yn-1,9(20)) = N(Yn-1,9(zn-1))||

< 7llYn = ynall +€ll9(2n) — 9(za-1)
(4.4)

1 1
< 7o(L 4 S)llun = unafl + Eve(l + ) Jun — tni |

1
< (10 + 696)(1+ =) lun = .
By the Lipschitz continuity and strong monotonicity gfwe obtain

(4.5) |tn — tun—1 — (g(un) — g(“ﬂ—l))”2 <(1-25+ 72)”1% - un—1H2'

Further, sincdl is Lipschitz continuous andl' is H-Lipschitz continuous and strongly mono-
tone with respect t@’, we get

1
(4.6) lun = un1 = p(T(wn) = T(@n-))II* < (1= 2pa+ p*6°0* (1 + —)°)[Jun = una |I*
From (4.2) —[(4.B), it follows that

(4-7) ||un+1 - Un” < enHun - un—lu’
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where
1
Op = Nkp + (1 —X) + )\\/1 — 2pa + p?Pn?(1 + 5)27
1
k, =24/1 —25+’72+M+(f’76+70)(1+ﬁ).
Letting

0=\ + (1 —\) 4+ M1 —2pa + p22n2,
we know thatd,, \, # asn — oo. It follows from (4.1) thatY < 1. Hencef, < 1 for n
sufficiently large. Therefore| (4.7) implies thft,} is a Cauchy sequence ifi and we can
assume that,, — v € H.

Now we prove that,, — = € Fu, y, — y € Guandz, — z € Su, respectively. In fact, it
follows from Algorithm[3.] that

1

|Zn — 2| < {1+ n Nl tn — tn—1l,
1

Hyn_yn—ln S 1+E 0||un_un—1||7

1
o0 = 20t (14 1) llon = o]

and so{z, }, {y.} and{z,} are all Cauchy sequencesin Letz, — x,y, — yandz, — z
asn — oo. Further we have

d(x,Fu) = inf{||jz —z|: 2 € Fu}

< lz — x| + d(xy, Fu)
< |lw — x| + H(Fuy, Fu)
< lz =zl +nllun —ull =0 (n — oc).
Hence € Fu. Similarly, we havey € Gu andz € Su. This completes the proof. O

From Theorem 4|1, we can get the following results:

Theorem 4.2.Let K : H — 2! be a set-valued mapping such that for each H, K (u) is a
nonempty closed convex setrdf Let mappingd’, g, A, B : H — H be Lipschitz continuous
with Lipschitz constants, ~, £ andr, respectively, ang be strongly monotone with constant
Let set-valued mappings, G, S : H — C'B(H) be H-Lipschitz continuous witli-Lipschitz
constants), o ande, respectively, and: be strongly monotone with respectfowith constant
. Suppose thaPx,) is Lipschitz continuous with Lipschitz constantlf the condition [(4.]L)
in Theoreni 4/1 holds, then there exist H, z € Fu,y € Guandz € Su which is a solution
of the problem[(2.11) and

Up — Uy, Tp — Xy Yn 7Y, Zn 72 (n—>oo),

where the sequencés,, }, {z,}, {y.} and{z,} are defined by Algorithin 3.2.

Theorem 4.3.Let K : H — 2% be a set-valued mapping such that, for eackk H, K (u)

is a nonempty closed convex setfof Let mappings’,g : H — H be Lipschitz continuous
with Lipschitz constantg and ~, respectively, and be strongly monotone with constant

Let mappingN : H x H — H be Lipschitz continuous with respect to the first and second
arguments with Lipschitz constantand¢, respectively. Let set-valued mappingsG : H —
C'B(H) be H-Lipschitz continuous witli/ -Lipschitz constantg and o, respectively, and: be
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strongly monotone with respectTowith constanty. Suppose thaPx ) is Lipschitz continuous
with Lipschitz constant. If the condition[(4.]1) in Theorem 4.1 holds for

k=21-20+?+pu+&y+710<1,
then there exist € H, z € F'u andy € Gu which are a solution of the problern (2]12) and

Up = U, Ty — T, Yo =Y (n— 00),

where the sequencés,, }, {z,} and{y,} are defined by Algorithin 3.3.

Remark 4.2. For a suitable choice of the mappings ¢, F, G, S, T and N, we can obtain
several known results in [18], [24] and [27] as special cases of Thegoreém 4.1.
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