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1. INTRODUCTION

Let f be a continuous angir-periodic function and let

Qo > .
(1.1) f(x)~ 5 Z (ay, cosnx + by, sinnw)

n=1

be its Fourier series. Denote By, (z) = S, (f, ) then-th partial sum of[(1]1) and by (f,d)
the modulus of continuity of € Cj,.

The usual supremum norm will be denoted|jy,. .
Letw (¢) be a nondecreasing continuous function on the intétvalr| having the properties

W(O):O, w(51+52)§w(51)+w(52).

Such a function will be called a modulus of continuity.
Denote byH“ the class of functions

HY :={f € Cor; |[(x+h) = [ ()] < Cw(lh])},
where('is a positive constant. Fgi € H*, we define the nornj-||, = ||-|| 5. by the formula
11l = 1l + 11l »

where

IS C+h) = FOle
w (|hl) ’

1fllc = sup
h£0
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and||fllco = 0. Ifw(t) = C1 [t|* (0 < a < 1), whereC, is a positive constant, then
HY={f € Co; [f(x+h) = f(x)] <Ci]h|", 0 <a <1}

is a Banach space and the metric induced by the rjejfmon H* is said to be a Holder metric.
Let A := (an) (k,n=0,1,...) be alower triangular infinite matrix of real numbers satis-
fying the following condition:

(1.2) >0 (k,n=0,1,...), aw=0, k>n and > an=1
k=0
Let the A—transformation of S, (f;x)) be given by
(1.3) tn (f) i=tn (f52) := ) annSk (f; ) (n=0,1,...)
k=0

and the strong!, —transformation of S,, (f; x)) for » > 0 by

T, (f,r):=T,(f,r;z) = {Za”k 1Sk (f;x) — f(ZL’)|T} (n=0,1,...).
k=0

Now we define two classes of sequences ([3]).

A sequence: := (c¢,) of nonnegative numbers tending to zero is called the Rest Bounded

Variation Sequence, or brieftye RBV S, if it has the property
(1.4) Z len — eng1| < K (¢) o
k=m

for all natural numbers:, whereK (c) is a constant depending only en
A sequence: := (¢,) of nonnegative numbers will be called a Head Bounded Variation
Sequence, or briefly € HBV S, if it has the property

m—1
(1.5) Z len — ena1| < K (¢) o
k=0

for all natural numbers:, or only for allm < N if the sequence has only finite nonzero terms
and the last nonzero termds.
Therefore we assume that the sequef€éc.,)), -, is bounded, that is, that there exists a
constantk” such that
0< K (o) <K

holds for alln, where K («,,) denote the sequence of constants appearing in the inequalities
(1.4) or [1.5) for the sequence, := (a.x);-,. Now we can give the conditions to be used later
on. We assume that for alland0 < m < n,

(16) Z |ank - ank+1| S Kanm
k=m

and
m—1

(17) Z |ank’ - ank+1| S Kanm
k=0

hold if v, := (an),e, belongs taRBV S or HBV S, respectively.
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Letw (t) andw™ (¢) be two given moduli of continuity satisfying the following condition (for
0<p<g<l)

(1.8) (w(®))

—0(1)  (t—0.).

In [4] R. Mohapatra and P. Chandra obtained some results on the degree of approximation
for the meand (1]3) in the Holder metric. Recently, T. Singhlin [5] established the following two
theorems generalizing some results of P. Chandra [1] with a mediate fudttsuch that:

(1.9) /Ww(té;t)dt—O(H(u)) (w—0,), H{)>0
and
(1.10) /tH (W) du=OFH ) (t— 0.).

Theorem 1.1.LetA = (a,,;) satisfy the conditio (1}2) and,, < a1 fork =0,1,...,n—1,
andn =0,1,.... Thenforf € HY,0<p<q <1,

(L12) [tn () = fllo- = O [{w (= gD} {" (o =y}

(@) o () 0 ot ().
if w (f;t) satisfies[(1)9) and (1.10), and
(112) [tu (f) = fll.- = O [{e (lx =y} {w (o =y} ]

)t (1 () p oo () it ()}
if w (f;t) satisfies[(1]9), where* (¢) is the given modulus of continuity.

Theorem 1.2.Let A = (a,,;) satisfy the conditio (1}2) and,, < a1 fork =0,1,...,n—1,
andn =0,1,.... Also, letw (f;¢) satisfy [1.9) and (1.10). Then fgre H~,0<p < ¢ <1,

(L13) [ltn (/) = fllo = O [{e (Jx = yD} {e" (f = y)} ™

o {(H (@n0)' ™ ano (0 + 0, ) }] + O (anoH (an0)).

wherew* (t) is the given modulus of continuity.

The next generalization of another result of P. Chandra [2] was obtained by L. Leindler in
[3]. Namely, he proved the following two theorems

Theorem 1.3. Let (1.2) and[(1.9) hold. Then fgt € Cs,

(1.14) Ita (£) = Fle =0 (w (%)) +0 (amt (£)).
If, in additionw (f; ¢) satisfies the conditiof (1..0), then

(1.15) It (F) = Fllc = O (amnH (ann))
Theorem 1.4.Let (1.2), (1.9) and (1.10) hold. Then fére Cs,

(1.16) It (f) = flle = O (anoH (ano)) -
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In the present paper we will generalize (and improve) the mentioned results of T. Singh [5]
to strong summability with a mediate functiéh defined by the following conditions:

(1.17) /7r o (f;t)dt =0O(H (r;u)) (u—04), H(t)>0andr >0,

t2
and
(1.18) /tH (W) du=O(tH (1) (t— O4).

We also apply a generalization of Leindler’s typée [3].
Throughout the paper we shall use the following notation:

¢u (t) = fx+ 1)+ [z —t) = 2f ().

By K, K, ... we shall designate either an absolute constant or a constant depending on the
indicated parameters, not necessarily the same at each occurrence.

2. MAIN RESULTS

Our main results are the following.

Theorem 2.1. Let (1.2), [(1.7) and (1]8) hold. Suppaséf;t) satisfies[(1.17) for > 1. Then
for f € H¥,

(2.1) T, (f,7)]l,. = O ({1 FIn(2(n+1) ap)}s
<A+ D) ) (137 }3“(1_5)) .
If, in additionw (f;t) satisfies the Conditi08), then
22) T (f)le = O ({1 + 02 (n+ 1) ap)}
x (1021 + 1) )" gl (T;ann)}i(l‘Y)) .

Theorem 2.2. Under the assumptions of above theorem, if there exists a real numbet
such that the inequality

(2.3) { X_: (am‘)s} < K (21{71)%71 Z i

|
%)
>
|
—

i=2k—1 et
foranyk =1,2,...,m, where2™ < n + 1 < 2™*! holds, then the following estimates
ryyH0-0
(2.4) \T, (1)l = O ({annH ) >
and
(25) ”Tn <f7 r) w* = 0 <{annH (T§ ann)}?(l_g))
are true.
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Theorem 2.3. Let (1.2), (1.6),[(1]8) and (1.17) fer> 1 hold. Then forf € H

™ F(1-%)
w*—O({anoH (T,E>} )
If, in addition,w (f;t) satisfies[(1.1]8), then

(2.7) 1T (£ ) = O ({anoH (15000} 9)))

Remark 2.4. We can observe, that for the case- 1 under the conditior (1]8) the first part of
Theoren] 1.A[(1.71) and Theor¢gm]1.2 are the corollaries of the first part of Theorem 2.1 (2.1)
and the second part of Theor¢m|Z2.372.7), respectively. We can also note that the mentioned
estimates are better in order than the analogical estimates from the results of T. Singh, since
In (2 (n+ 1) a,,) in Theoren] 21 is better tham + 1) a,,,, in Theoren| 1JL. Consequently, if

na,, i1s not bounded our estimafe (2.7) in Theofenj 2.3 is better fhan (1.13) from Thieofem 1.2.

Remark 2.5. If in the assumptions of Theor.12.3 we takgt|) = O (|t|?), w* (Jt]) =
I (2

O (|t|") with p = 0, then from [2.1.),[(2]2) andl (2.7) we have the same estimates such gs (1.14),
(1.13) and[(1.16), respectively, but for the strong approximation (withl).

(2.6) 1T (f;7)

3. COROLLARIES
In this section we present some special cases of our results. From Théorgmg 2.1[ 2.2 and 2.3,
putting ([t]) = O (1t1”), w (1t) = O (I11°),
tre=l if ar < 1,
H(rit)=¢ In% ifar=1,

K, if ar > 1

wherer > 0 and0 < a < 1, and replacing by 5 andq by «, we can derive Corollarigs 3.1,

[3.9 and 3., respectively.

Corollary 3.1. Under the conditiond (1}2) anf (1.7) we have foe H*, 0 < f <« < 1 and
r=1,

(O ({m (2 (1 4 1) aye) YT (175) {am}a—ﬂ) if ar < 1,

T (fir)lls =<4 O ({ln (2(n+1) ann)}Ha—ﬂ {ln (ﬁ) ann}a_ﬁ) if ar =1,

8 ({m (2(n + 1) ap)}H(2) {am}“&@) if ar > 1.

Corollary 3.2. Under the assumptions of Corolldry B.1 afd {2.3) we have

(0 ({ann}a_6> if ar <1,

T (f, 7“)||g =49 O ({ln (#) ann}a_ﬁ> if ar =1,

\ O ({am}%f> if ar > 1.
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Corollary 3.3. Under the conditiong (1]2) anfl (1.6) we have, foe H*,0 < <a < 1and
r>1,

(0 ({ano}a—ﬁ) if ar < 1,
IT. (f,7)ls =% O <{1n (L) ano}o‘_ﬁ) if ar — 1,
|0 ({ano}a&") if ar > 1.

4. LEMMAS

To prove our theorems we need the following lemmas.
Lemma 4.1. If (1.17) and [(1.1IB) hold witlr > 0 then

(4.1) /03 o ({’ t) dt =0 (sH (r;s)) (s —04).

Proof. Integrating by parts, by (1.17) arld (1118) we get
/ o (fit) gy {_t/ w (f;U)du] +/ dt/ o (fru)
0 t t u? 0 0 t u?

:O(sH(r;s))—{—O(l)/OSH(r;t)dt

=0 (sH (r;5)).
This completes the proof. O
Lemma 4.2([7]). If (T.2), (I.7) hold, then foy € C», andr > 0,

1
p

(=4 )
(42) T (£l <O |8 anuBi () + (Epn) ()2 (0 + 1) an))

If, in addition, (2.3) holds, then

(4.3) 1T (fr)lle <O [ D anani (f)

Lemma 4.3([7]). If (L.2), (I.6) hold, then foy € C5, andr > 0,

(4.4) 17 (f;r)lle < O ({ZankEZ (f)} ) :
k=0
Lemma 4.4. If (1.2), (1.7) hold andv (f; ¢) satisfies[(1.1]7) with > 0 then

24

N R I
(4.5) kz:; U, 41 W (f, T 1) O (annH (r, n)> )
If, in addition,w (f;¢) satisfies[(1.18) then

24

(46) kz:; an,4kwr <f7 k+ 1) =0 (annH (T7 ann)) .

J. Inequal. Pure and Appl. Matt9(1) (2008), Art. 28, 13 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

RATE OF STRONG SUMMABILITY BY MATRIX MEANS 7

Proof. First we prove[(4.5). Ifi(1]7) holds then

m—1
anu — Qpm S |a'nu - anm| S Z |ank - ank+1| S Kanm
k=p
foranym > p > 0, whence we have

From this and using (1.17) we get

[n+1

1 ] n
% an,4kw7“ <f, ]{J——i—l) < (K+ 1) CLnn%wT (f7 ]{7—|— 1>

n+1 T
S K ann/ w" .f7 — ) dt
e < t)

T u2

n+1

0wt (7))

Now we prove[(4.6). Since

(K+1)(n+1) apm > Y an =1,
k=0

we can see that

[LH

1 ] T [m]fl T
(4.8) ]; i ax” (f; = 1) < D) (f; P 1>

k=0

n

m
+ Z 6Ln,4k’u}7ﬂ (f’ L + 1)

=
== 21 —+ 22.

1
4(K+1)ann ]71

Using again[(4]7)[ (1]2) and the monotonicity of the modulus of continuity, we can estimate the
guantitiesy; and:, as follows

s )
4.9 Y1 < (K 41) ann e
@9) SO e S ()

1
A(K+Dann
S KQQHn/ W' <f7 %) dt
1

— nEya, / W (fiu) o
4

m(K4+1Dann u?
™ wT ‘U
< ﬂKga,m/ Ldu
ann

u2
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and

(410) 22 S ngT (f, 47T (K + 1) am) zn: an74k
|

< Ky (87 (K + 1)) w" (f; ann)
< K3(327 (K +1))"w" (f; %)

< 2K, (327 (K + 1)) / W (fi)

ann t
ann T t
0 t

1
4(K+1)ann ] -1

dt

If (1.17) and [(1.1B) hold then from (4.8) - (4]10) we obtain|(4.6). This completes the priabf.
Lemma 4.5. If (1.2), (1.7) hold andv (f; ) satisfies[(1.1]7) with > 1 then

4.11) w (f, ni 1> I (2(n + 1) ap) = O ({(n F1) a7 {amH (r; g) }) .

If, in addition,w (f;t) satisfies[(1.18) then

(4.12) w < ) In(2(n+1)an,) =0 ({ln (2(n+1) am)}l_% {an H (1; ann)}%) :

T
f’n—i—l

Proof. Letr = 1. Using the monotonicity of the modulus of continuity

w (f, nL—l—l) In(2(n+1)an) < 2ap,w (f, %) (n+1)

T n+1
<4 nn ) dt
= w(f n+1>/1

n+1 T
< Z
_4a,m/1 w(f, 2f)dzﬁ
:47Tann/ Mdu

x u?

n+1

and by [1.1r) we obtain thdt (4]11) holds. Now we prgve (4.12). Ffom (1.2) arjd (1.7) we get

7(K+1)ann 1

w (f, nL%—l) In2(n+1)a,) < Kjw (f, nL—l—l) /11 gdt,

m(K+1)ann ¢ ann
Kl/ w(;]:, )dtSQKl(K—i—l)ﬂ'/ w(f,u_)du
u

1
n+1 (K+1D)(n+1)

§K2/ mw(f)
0 u

and by Lemma 4|1 we obtaip (4]12).
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Assumingr > 1 we can use the Hoélder inequality to estimate the following integrals

1

sl ] [ )

n+1 n+1 n+1

() [ )

n+1

Gnn w (f, u) Qnn W (f, u) r ann 1 1=
[ af b {7

and

=

1
p

(K+1)1(n+1) (K+1)1(n+1) (K+1)1(n+1
1
ann r s
<@+ oy [
0 u

From this, if [1.1¥) holds then

w (ﬁ%) In(2(n+1)an) < 4ran, (n;rl) N {/i wrfj;’u)du}T

n+1

=0 ({(n +1) am}l_% {annH <r; %) }i)
and if (1.17) and[(1.18) hold then

w(f,nj_l)ln(Q(n—l—l)am)

=0 ({ln 2(n+1)am)} 7 {annH (r; g)}i) ‘

This ends our proof.

Lemma 4.6. If (1.2), (1.6) hold andv (f;¢) satisfies|(1.1]7) with > 0 then
o (5T - T

(4.13) ;ankw (f, T 1) =0 (anoH (r, n>) .

If, in addition,w (f;t) satisfies[(1.1]8), then

(4.14) ;ankw" (f; kL—l-l) = O (anoH (r;an0)) -

Proof. First we prove[(4.13). If (1]6) holds then

Ann — Apm S ’anm - ann|
n—1
< Z |Gk — it |
k=m

[
S Z |ank - ankJrl‘ S Kanm

k=m
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for anyn > m > 0, whence we have
(4.15) A < (K + 1) appm.
From this and using (1.17) we get

n . T n . T
Zankw (f?m) < (K—Fl)anogw (f;k:——f-l>

k=0
n+1 T
< KlanO/ w" (f7 ?> dt
1

T 'U,2

1

= 0wt (7)),

(K+1) (n—i—l)ang Z ankzl,
k=0

Now, we prove|[(4.14). Since

3

we can see that
n - | @b |1 -
Sans (1) s Y ow (515
— k+1 p k+1
n . 7]'
—+ Z A W <f,k+1).

b= eryams 1
Using again[(1,]2)] (1}6) and the monotonicity of the modulus of continuity, we get

n [ eetyans ) -
(4.16) kzzoankwr (f; kL—l—l) < (K +1)ap Z w" (f§ k:j—l)

k=0

+ KW (fim (K41 an) > aw

b= ety !

(K+i)an0 s
< Koo [ (135 e K (i (4 D)
1

<o [ L )

According to

an0 T t ano r t
gy < (152) <oow [ o [N

5 0

2

(I.17), [1.18) and (4.16) lead us o (4.14).
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5. PROOFS OF THE THEOREMS
In this section we shall prove Theorems|2.1] 2.2[an{ 2.3.

5.1. Proof of Theorem[2.]. Setting
Ry (z+h,x) =T, (f,riz+h) =T (f,r;7)
and

gn(x) = f(x+h) = f(x)
and using the Minkowski inequality for > 1, we get
|R,, (z + h, )|

1
T

{Zanmsk(f;xm)—f<x+h>|r} —{Zanmsk(f;x)—f(m)r}

k=0 k=0

Sl=

3=

< {Z i | Sk (g3 ) — g (x)|r}

By (4.2) we have

R, (z+ h,z)|
( (2] )
< K3 >t (o) + (Bpasa) (00) 0 (2 (04 1) ann))

k=0
\

&=

T T "
< K, Z U 4" (gm k——l—l) + (w (gh, s 1) In(2(n+1) ann)>

k=0

1
p

\

Since
lgn (@ +1) —gn (@) < |fx+1+h) = f+h)|[+]|f(@+])— f(2)
and
lgn (@ + 1) —gn (@) <[f@+l+h)—fa+D]+][f(@+h)— f(z)] <2w(h]),
therefore, fol) < k < n,

5 o (i) <2 (1)
andf € HY
(5.2) w(gh,kj_l) < 2w (|h]) .
From (5.2) and[(1]2)
=] :
(5.3) Ry (2 + hy )| < 2Kow (1) $ Y~ anar + (0 (2 (n+ 1) ann))”
k=0

<2Kw (Jh)) (14+In(2(n+ 1) any,)) -
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On the other hand, by (8.1),

(5.4) |R,(z+h,z)|
2] N
< 2K, g A ap " (f’ k—+1> + <w (f, - 1) In(2(n+1) am))
Using (5.3) and[(5]4) we get
55 u
&85 o (D)
R CAHRANDT i et
<K;(1+In(2(n+1)am))
2] ] ] A
X ; A 4" (f’ k‘—+1) + (w (f ?) In(2(n+1) ann))
Similarly, by (4.2) we have
(5.6) (70 (f:)lle
([TLTH T\ 1
<1y S (1377 + (4 (77T e Dew)
(=] ] ] A
< K4 % Qp 4kW (f, ]{Z—I— 1) + ( (f ?> In (2 (Tl+ 1) ann))
ey R
X 2 A g (f’k+1>+<w <f,n+1>ln(2(n+1)a,m))
<Ks(1+In(2(n+1)amm))
H1-2)

k=0

(2.7) and[(2.R) hold. This completes our proof.

5.2. Proof of Theorem[2.2. Using [4.3) and the same method as in the proof of Lenma 4.4

we can show that

(5.7)

[241]
Zan2kw < k+1)—0(annH(

holds, ifw (t) satlsflesl(l ]17) and (1.18), and

J. Inequal. Pure and Appl. Mat}9(1) (2008), Art. 28, 13 pp.
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s’ (127 ) + (0 (572 )@+ Daw)

Collecting our partial result$ (5.5, ($.6) and using Lenima 4.4 and Lemma 4.5 we obtain that

http://jipam.vu.edu.au/

O


http://jipam.vu.edu.au/

RATE OF STRONG SUMMABILITY BY MATRIX MEANS 13

2
(58) kz_o an,2kwr (f7 k+ 1) =0 (annH (T, ann))

it w(t) satisfies[(T.47).
The proof of Theorer 2|2 is analogously to the proof of Thedrem 2.1. The only difference

being that instead of (4.2)] (4.5) arid (4.6) we Use]|(4[3), (5.7) and (5.8) respectlvely This

completes the proof.

5.3. Proof of Theorem[2.3. Using the same notations as in the proof of Theorem 2.1, from
(4.4) and[(5.p) we get

(5.9) IR, (v +h,7)| < K, {ZankE,’; (gh)}T

k=0

m
< KQ {Z ankw (gha > }
P k+1

On the other hand, by (4.4) arid (b.1), we have

=S =

T
5.10 R, (x + h, <K n ,
( ) ‘ (z 33)‘ 2{%@ o' | gh, —— 1

< 2K2 {Zankw f7

Similarly, we can show that

n

(5.11) 1T (fsm)lle < K {Z " k n 1
k=0

Finally, using the same method as in the proof of Thedrein 2.1 and Lémina 4|6, (2. mnd (2.7)
follow from (5.9) — [5.11).
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