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1. I NTRODUCTION

Let f be a continuous and2π-periodic function and let

(1.1) f (x) ∼ a0

2
+

∞∑
n=1

(an cos nx + bn sin nx)

be its Fourier series. Denote bySn (x) = Sn (f, x) then-th partial sum of (1.1) and byω (f, δ)
the modulus of continuity off ∈ C2π.

The usual supremum norm will be denoted by‖·‖C .
Let ω (t) be a nondecreasing continuous function on the interval[0, 2π] having the properties

ω (0) = 0, ω (δ1 + δ2) ≤ ω (δ1) + ω (δ2) .

Such a function will be called a modulus of continuity.
Denote byHω the class of functions

Hω := {f ∈ C2π; |f (x + h)− f (x)| ≤ Cω (|h|)} ,

whereC is a positive constant. Forf ∈ Hω, we define the norm‖·‖ω = ‖·‖Hω by the formula

‖f‖ω := ‖f‖C + ‖f‖C,ω ,

where

‖f‖C,ω = sup
h 6=0

‖f (·+ h)− f (·)‖C

ω (|h|)
,
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2 BOGDAN SZAL

and‖f‖C,0 = 0. If ω (t) = C1 |t|α (0 < α ≤ 1), whereC1 is a positive constant, then

Hα = {f ∈ C2π; |f (x + h)− f (x)| ≤ C1 |h|α , 0 < α ≤ 1}

is a Banach space and the metric induced by the norm‖·‖α onHα is said to be a Hölder metric.
Let A := (ank) (k, n = 0, 1, . . . ) be a lower triangular infinite matrix of real numbers satis-

fying the following condition:

(1.2) ank ≥ 0 (k, n = 0, 1, . . . ) , ank = 0, k > n and
n∑

k=0

ank = 1.

Let theA−transformation of(Sn (f ; x)) be given by

(1.3) tn (f) := tn (f ; x) :=
n∑

k=0

ankSk (f ; x) (n = 0, 1, . . . )

and the strongAr−transformation of(Sn (f ; x)) for r > 0 by

Tn (f, r) := Tn (f, r; x) :=

{
n∑

k=0

ank |Sk (f ; x)− f (x)|r
} 1

r

(n = 0, 1, . . . ) .

Now we define two classes of sequences ([3]).
A sequencec := (cn) of nonnegative numbers tending to zero is called the Rest Bounded

Variation Sequence, or brieflyc ∈ RBV S, if it has the property

(1.4)
∞∑

k=m

|cn − cn+1| ≤ K (c) cm

for all natural numbersm, whereK (c) is a constant depending only onc.
A sequencec := (cn) of nonnegative numbers will be called a Head Bounded Variation

Sequence, or brieflyc ∈ HBV S, if it has the property

(1.5)
m−1∑
k=0

|cn − cn+1| ≤ K (c) cm

for all natural numbersm, or only for allm ≤ N if the sequencec has only finite nonzero terms
and the last nonzero term iscN .

Therefore we assume that the sequence(K (αn))∞n=0 is bounded, that is, that there exists a
constantK such that

0 ≤ K (αn) ≤ K

holds for alln, whereK (αn) denote the sequence of constants appearing in the inequalities
(1.4) or (1.5) for the sequenceαn := (ank)

∞
k=0. Now we can give the conditions to be used later

on. We assume that for alln and0 ≤ m ≤ n,

(1.6)
∞∑

k=m

|ank − ank+1| ≤ Kanm

and

(1.7)
m−1∑
k=0

|ank − ank+1| ≤ Kanm

hold if αn := (ank)
∞
k=0 belongs toRBV S or HBV S, respectively.
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Let ω (t) andω∗ (t) be two given moduli of continuity satisfying the following condition (for
0 ≤ p < q ≤ 1):

(1.8)
(ω (t))

p
q

ω∗ (t)
= O (1) (t → 0+) .

In [4] R. Mohapatra and P. Chandra obtained some results on the degree of approximation
for the means (1.3) in the Hölder metric. Recently, T. Singh in [5] established the following two
theorems generalizing some results of P. Chandra [1] with a mediate functionH such that:

(1.9)
∫ π

u

ω (f ; t)

t2
dt = O (H (u)) (u → 0+) , H (t) ≥ 0

and

(1.10)
∫ t

0

H (u) du = O (tH (t)) (t → O+) .

Theorem 1.1.LetA = (ank) satisfy the condition (1.2) andank ≤ ank+1 for k = 0, 1, . . . , n−1,
andn = 0, 1, . . . . Then forf ∈ Hω, 0 ≤ p < q ≤ 1,

(1.11) ‖tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

×
{(

H
(π

n

))1− p
q
ann

(
n

p
q + a

− p
q

nn

)}]
+ O

(
annH

(π

n

))
,

if ω (f ; t) satisfies (1.9) and (1.10), and

(1.12) ‖tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

]
×

{(
ω

(π

n

))1− p
q

+ annn
p
q

(
H

(π

n

))1− p
q

}
+ O

{
ω

(π

n

)
+ annH

(π

n

)}
,

if ω (f ; t) satisfies (1.9), whereω∗ (t) is the given modulus of continuity.

Theorem 1.2.LetA = (ank) satisfy the condition (1.2) andank ≤ ank+1 for k = 0, 1, . . . , n−1,
andn = 0, 1, . . . . Also, letω (f ; t) satisfy (1.9) and (1.10). Then forf ∈ Hω, 0 ≤ p < q ≤ 1,

(1.13) ‖tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

×
{

(H (an0))
1− p

q an0

(
n

p
q + a

− p
q

n0

)}]
+ O (an0H (an0)) ,

whereω∗ (t) is the given modulus of continuity.

The next generalization of another result of P. Chandra [2] was obtained by L. Leindler in
[3]. Namely, he proved the following two theorems

Theorem 1.3. Let (1.2) and (1.9) hold. Then forf ∈ C2π

(1.14) ‖tn (f)− f‖C = O
(
ω

(π

n

))
+ O

(
annH

(π

n

))
.

If, in additionω (f ; t) satisfies the condition (1.10), then

(1.15) ‖tn (f)− f‖C = O (annH (ann)) .

Theorem 1.4.Let (1.2), (1.9) and (1.10) hold. Then forf ∈ C2π

(1.16) ‖tn (f)− f‖C = O (an0H (an0)) .
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In the present paper we will generalize (and improve) the mentioned results of T. Singh [5]
to strong summability with a mediate functionH defined by the following conditions:

(1.17)
∫ π

u

ωr (f ; t)

t2
dt = O (H (r; u)) (u → 0+) , H (t) ≥ 0 andr > 0,

and

(1.18)
∫ t

0

H (u) du = O (tH (r; t)) (t → O+) .

We also apply a generalization of Leindler’s type [3].
Throughout the paper we shall use the following notation:

φx (t) = f (x + t) + f (x− t)− 2f (x) .

By K1, K2, . . . we shall designate either an absolute constant or a constant depending on the
indicated parameters, not necessarily the same at each occurrence.

2. M AIN RESULTS

Our main results are the following.

Theorem 2.1. Let (1.2), (1.7) and (1.8) hold. Supposeω (f ; t) satisfies (1.17) forr ≥ 1. Then
for f ∈ Hω,

(2.1) ‖Tn (f, r)‖ω∗ = O
(
{1 + ln (2 (n + 1) ann)}

p
q

×
{

((n + 1) ann)r−1 annH
(
r;

π

n

)} 1
r (1− p

q )
)

.

If, in additionω (f ; t) satisfies the condition (1.18), then

(2.2) ‖Tn (f, r)‖ω∗ = O
(
{1 + ln (2 (n + 1) ann)}

p
q

×
{
(ln (2 (n + 1) ann))r−1 annH (r; ann)

} 1
r (1− p

q )
)

.

Theorem 2.2. Under the assumptions of above theorem, if there exists a real numbers > 1
such that the inequality

(2.3)


2k−1∑

i=2k−1

(ani)
s


1
s

≤ K1

(
2k−1

) 1
s
−1

2k−1∑
i=2k−1

ani

for anyk = 1, 2, . . . ,m, where2m ≤ n + 1 < 2m+1 holds, then the following estimates

(2.4) ‖Tn (f, r)‖ω∗ = O

({
annH

(
r;

π

n

)} 1
r (1− p

q )
)

and

(2.5) ‖Tn (f, r)‖ω∗ = O
(
{annH (r; ann)}

1
r (1− p

q )
)

are true.
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Theorem 2.3.Let (1.2), (1.6), (1.8) and (1.17) forr ≥ 1 hold. Then forf ∈ Hω

(2.6) ‖Tn (f, r)‖ω∗ = O

({
an0H

(
r;

π

n

)} 1
r (1− p

q )
)

.

If, in addition,ω (f ; t) satisfies (1.18), then

(2.7) ‖Tn (f, r)‖ω∗ = O
(
{an0H (r; an0)}

1
r (1− p

q )
)

.

Remark 2.4. We can observe, that for the caser = 1 under the condition (1.8) the first part of
Theorem 1.1 (1.11) and Theorem 1.2 are the corollaries of the first part of Theorem 2.1 (2.1)
and the second part of Theorem 2.3 (2.7), respectively. We can also note that the mentioned
estimates are better in order than the analogical estimates from the results of T. Singh, since
ln (2 (n + 1) ann) in Theorem 2.1 is better than(n + 1) ann in Theorem 1.1. Consequently, if
nann is not bounded our estimate (2.7) in Theorem 2.3 is better than (1.13) from Theorem 1.2.

Remark 2.5. If in the assumptions of Theorem 2.1 or 2.3 we takeω (|t|) = O (|t|q), ω∗ (|t|) =
O (|t|p) with p = 0, then from (2.1), (2.2) and (2.7) we have the same estimates such as (1.14),
(1.15) and (1.16), respectively, but for the strong approximation (withr = 1).

3. COROLLARIES

In this section we present some special cases of our results. From Theorems 2.1, 2.2 and 2.3,

puttingω∗ (|t|) = O
(
|t|β

)
, ω (|t|) = O (|t|α),

H (r; t) =


trα−1 if αr < 1,

ln π
t

if αr = 1,

K1 if αr > 1

wherer > 0 and0 < α ≤ 1, and replacingp by β andq by α, we can derive Corollaries 3.1,
3.2 and 3.3, respectively.

Corollary 3.1. Under the conditions (1.2) and (1.7) we have forf ∈ Hα, 0 ≤ β < α ≤ 1 and
r ≥ 1,

‖Tn (f, r)‖β =


O

(
{ln (2 (n + 1) ann)}1+ 1

r (1− β
α) {ann}α−β

)
if αr < 1,

O

(
{ln (2 (n + 1) ann)}1+α−β

{
ln

(
π

ann

)
ann

}α−β
)

if αr = 1,

O
(
{ln (2 (n + 1) ann)}1+ 1

r (1− β
α) {ann}

α−β
αr

)
if αr > 1.

Corollary 3.2. Under the assumptions of Corollary 3.1 and (2.3) we have

‖Tn (f, r)‖β =


O

(
{ann}α−β

)
if αr < 1,

O

({
ln

(
π

ann

)
ann

}α−β
)

if αr = 1,

O
(
{ann}

α−β
αr

)
if αr > 1.
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Corollary 3.3. Under the conditions (1.2) and (1.6) we have, forf ∈ Hα, 0 ≤ β < α ≤ 1 and
r ≥ 1,

‖Tn (f, r)‖β =


O

(
{an0}α−β

)
if αr < 1,

O

({
ln

(
π

an0

)
an0

}α−β
)

if αr = 1,

O
(
{an0}

α−β
αr

)
if αr > 1.

4. L EMMAS

To prove our theorems we need the following lemmas.

Lemma 4.1. If (1.17) and (1.18) hold withr > 0 then

(4.1)
∫ s

0

ωr (f ; t)

t
dt = O (sH (r; s)) (s → 0+) .

Proof. Integrating by parts, by (1.17) and (1.18) we get∫ s

0

ωr (f ; t)

t
dt =

[
−t

∫ π

t

ωr (f ; u)

u2
du

]s

0

+

∫ s

0

dt

∫ π

t

ωr (f ; u)

u2
du

= O (sH (r; s)) + O (1)

∫ s

0

H (r; t) dt

= O (sH (r; s)) .

This completes the proof. �

Lemma 4.2([7]). If (1.2), (1.7) hold, then forf ∈ C2π andr > 0,

(4.2) ‖Tn (f, r)‖C ≤ O




[n+1
4 ]∑

k=0

an,4kE
r
k (f) +

(
E[n+1

4 ] (f) ln (2 (n + 1) ann)
)r


1
r

 .

If, in addition, (2.3) holds, then

(4.3) ‖Tn (f, r)‖C ≤ O




[n+1
2 ]∑

k=0

an,2kE
r
k (f)


1
r

 .

Lemma 4.3([7]). If (1.2), (1.6) hold, then forf ∈ C2π andr > 0,

(4.4) ‖Tn (f, r)‖C ≤ O

{
n∑

k=0

ankE
r
k (f)

} 1
r

 .

Lemma 4.4. If (1.2), (1.7) hold andω (f ; t) satisfies (1.17) withr > 0 then

(4.5)

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
= O

(
annH

(
r;

π

n

))
.

If, in addition,ω (f ; t) satisfies (1.18) then

(4.6)

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
= O (annH (r; ann)) .

J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 28, 13 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


RATE OF STRONG SUMMABILITY BY MATRIX MEANS 7

Proof. First we prove (4.5). If (1.7) holds then

anµ − anm ≤ |anµ − anm| ≤
m−1∑
k=µ

|ank − ank+1| ≤ Kanm

for anym ≥ µ ≥ 0, whence we have

(4.7) anµ ≤ (K + 1) anm.

From this and using (1.17) we get

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
≤ (K + 1) ann

n∑
k=0

ωr

(
f ;

π

k + 1

)
≤ K1ann

∫ n+1

1

ωr
(
f ;

π

t

)
dt

= πK1ann

∫ π

π
n+1

ωr (f ; u)

u2
du

= O
(
annH

(
r;

π

n

))
.

Now we prove (4.6). Since

(K + 1) (n + 1) ann ≥
n∑

k=0

ank = 1,

we can see that

[n+1
4 ]∑

k=0

an,4kω
r

(
f ;

π

k + 1

)
≤

[ 1
4(K+1)ann

]−1∑
k=0

an,4kω
r

(
f ;

π

k + 1

)
(4.8)

+
n∑

k=[ 1
4(K+1)ann

]−1

an,4kω
r

(
f ;

π

k + 1

)
= Σ1 + Σ2.

Using again (4.7), (1.2) and the monotonicity of the modulus of continuity, we can estimate the
quantitiesΣ1 andΣ2 as follows

Σ1 ≤ (K + 1) ann

[ 1
4(K+1)ann

]−1∑
k=0

ωr

(
f ;

π

k + 1

)
(4.9)

≤ K2ann

∫ 1
4(K+1)ann

1

ωr
(
f ;

π

t

)
dt

= πK2ann

∫ π

4π(K+1)ann

ωr (f ; u)

u2
du

≤ πK2ann

∫ π

ann

ωr (f ; u)

u2
du
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and

Σ2 ≤ K3ω
r (f ; 4π (K + 1) ann)

n∑
k=[ 1

4(K+1)ann
]−1

an,4k(4.10)

≤ K3 (8π (K + 1))r ωr (f ; ann)

≤ K3 (32π (K + 1))r ωr
(
f ;

ann

2

)
≤ 2K3 (32π (K + 1))r

∫ ann

ann
2

ωr (f ; t)

t
dt

≤ K4

∫ ann

0

ωr (f ; t)

t
dt.

If (1.17) and (1.18) hold then from (4.8) – (4.10) we obtain (4.6). This completes the proof.�

Lemma 4.5. If (1.2), (1.7) hold andω (f ; t) satisfies (1.17) withr ≥ 1 then

(4.11) ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) = O

(
{(n + 1) ann}1− 1

r

{
annH

(
r;

π

n

)} 1
r

)
.

If, in addition,ω (f ; t) satisfies (1.18) then

(4.12) ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) = O

(
{ln (2 (n + 1) ann)}1− 1

r {annH (r; ann)}
1
r

)
.

Proof. Let r = 1. Using the monotonicity of the modulus of continuity

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) ≤ 2annω

(
f,

π

n + 1

)
(n + 1)

≤ 4annω

(
f,

π

n + 1

) ∫ n+1

1

dt

≤ 4ann

∫ n+1

1

ω
(
f,

π

t

)
dt

= 4πann

∫ π

π
n+1

ω (f, u)

u2
du

and by (1.17) we obtain that (4.11) holds. Now we prove (4.12). From (1.2) and (1.7) we get

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) ≤ K1ω

(
f,

π

n + 1

) ∫ π(K+1)ann

π
n+1

1

t
dt,

K1

∫ π(K+1)ann

π
n+1

ω (f, t)

t
dt ≤ 2K1 (K + 1) π

∫ ann

1
(K+1)(n+1)

ω (f, u)

u
du

≤ K2

∫ ann

0

ω (f, u)

u
du

and by Lemma 4.1 we obtain (4.12).
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Assumingr > 1 we can use the Hölder inequality to estimate the following integrals∫ π

π
n+1

ω (f, u)

u2
du ≤

{∫ π

π
n+1

ωr (f, u)

u2
du

} 1
r
{∫ π

π
n+1

1

u2
du

}1− 1
r

≤
(

n + 1

π

)1− 1
r

{∫ π

π
n+1

ωr (f, u)

u2
du

} 1
r

and ∫ ann

1
(K+1)(n+1)

ω (f, u)

u
du ≤

{∫ ann

1
(K+1)(n+1)

ωr (f, u)

u
du

} 1
r
{∫ ann

1
(K+1)(n+1)

1

u
du

}1− 1
r

≤ {ln (2 (n + 1) ann)}1− 1
r

{∫ ann

0

ωr (f, u)

u
du

} 1
r

.

From this, if (1.17) holds then

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann) ≤ 4πann

(
n + 1

π

)1− 1
r

{∫ π

π
n+1

ωr (f, u)

u2
du

} 1
r

= O

(
{(n + 1) ann}1− 1

r

{
annH

(
r;

π

n

)} 1
r

)
and if (1.17) and (1.18) hold then

ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

≤ 2K1 (K + 1) π {ln (2 (n + 1) ann)}1− 1
r

{∫ ann

0

ωr (f, u)

u
du

} 1
r

= O

(
{ln (2 (n + 1) ann)}1− 1

r

{
annH

(
r;

π

n

)} 1
r

)
.

This ends our proof. �

Lemma 4.6. If (1.2), (1.6) hold andω (f ; t) satisfies (1.17) withr > 0 then

(4.13)
n∑

k=0

ankω
r

(
f ;

π

k + 1

)
= O

(
an0H

(
r;

π

n

))
.

If, in addition,ω (f ; t) satisfies (1.18), then

(4.14)
n∑

k=0

ankω
r

(
f ;

π

k + 1

)
= O (an0H (r; an0)) .

Proof. First we prove (4.13). If (1.6) holds then

ann − anm ≤ |anm − ann|

≤
n−1∑
k=m

|ank − ank+1|

≤
∞∑

k=m

|ank − ank+1| ≤ Kanm
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for anyn ≥ m ≥ 0, whence we have

(4.15) ann ≤ (K + 1) anm.

From this and using (1.17) we get
n∑

k=0

ankω
r

(
f ;

π

k + 1

)
≤ (K + 1) an0

n∑
k=0

ωr

(
f ;

π

k + 1

)
≤ K1an0

∫ n+1

1

ωr
(
f ;

π

t

)
dt

= πK1an0

∫ π

π
n+1

ωr (f ; u)

u2
du

= O
(
an0H

(
r;

π

n

))
.

Now, we prove (4.14). Since

(K + 1) (n + 1) an0 ≥
n∑

k=0

ank = 1,

we can see that

n∑
k=0

ankω
r

(
f ;

π

k + 1

)
≤

[
1

(K+1)an0

]
−1∑

k=0

ankω
r

(
f ;

π

k + 1

)

+
n∑

k=
[

1
(K+1)an0

]
−1

ankω
r

(
f ;

π

k + 1

)
.

Using again (1.2), (1.6) and the monotonicity of the modulus of continuity, we get

n∑
k=0

ankω
r

(
f ;

π

k + 1

)
≤ (K + 1) an0

[
1

(K+1)an0

]
−1∑

k=0

ωr

(
f ;

π

k + 1

)
(4.16)

+ K1ω
r (f ; π (K + 1) ano)

n∑
k=

[
1

(K+1)an0

]
−1

ank

≤ K2an0

∫ 1
(K+1)an0

1

ωr
(
f ;

π

t

)
dt + K1ω

r (f ; π (K + 1) ano)

≤ K3

(
an0

∫ π

an0

ωr (f ; u)

u2
du + ωr (f ; an0)

)
.

According to

ωr (f ; an0) ≤ 4rωr
(
f ;

an0

2

)
≤ 2 · 4r

∫ an0

an0
2

ωr (f ; t)

t
dt ≤ 2 · 4r

∫ an0

0

ωr (f ; t)

t
dt,

(1.17), (1.18) and (4.16) lead us to (4.14). �
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5. PROOFS OF THE THEOREMS

In this section we shall prove Theorems 2.1, 2.2 and 2.3.

5.1. Proof of Theorem 2.1. Setting

Rn (x + h, x) = Tn (f, r; x + h)− Tn (f, r; x)

and
gh (x) = f (x + h)− f (x)

and using the Minkowski inequality forr ≥ 1, we get

|Rn (x + h, x)|

=

∣∣∣∣∣∣
{

n∑
k=0

ank |Sk (f ; x + h)− f (x + h)|r
} 1

r

−

{
n∑

k=0

ank |Sk (f ; x)− f (x)|r
} 1

r

∣∣∣∣∣∣
≤

{
n∑

k=0

ank |Sk (gh; x)− gh (x)|r
} 1

r

.

By (4.2) we have

|Rn (x + h, x)|

≤ K1


[n+1

4 ]∑
k=0

an,4kE
r
k (gh) +

(
E[n+1

4 ] (gh) ln (2 (n + 1) ann)
)r


1
r

≤ K2


[n+1

4 ]∑
k=0

an,4kω
r

(
gh,

π

k + 1

)
+

(
ω

(
gh,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r

.

Since
|gh (x + l)− gh (x)| ≤ |f (x + l + h)− f (x + h)|+ |f (x + l)− f (x)|

and

|gh (x + l)− gh (x)| ≤ |f (x + l + h)− f (x + l)|+ |f (x + h)− f (x)| ≤ 2ω (|h|) ,

therefore, for0 ≤ k ≤ n,

(5.1) ω

(
gh,

π

k + 1

)
≤ 2ω

(
f,

π

k + 1

)
andf ∈ Hω

(5.2) ω

(
gh,

π

k + 1

)
≤ 2ω (|h|) .

From (5.2) and (1.2)

|Rn (x + h, x)| ≤ 2K2ω (|h|)


[n+1

4 ]∑
k=0

an,4k + (ln (2 (n + 1) ann))r


1
r

(5.3)

≤ 2K2ω (|h|) (1 + ln (2 (n + 1) ann)) .
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On the other hand, by (5.1),

(5.4) |Rn (x + h, x)|

≤ 2K2


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r

.

Using (5.3) and (5.4) we get

sup
h 6=0

‖Tn (f, r; ·+ h)− Tn (f, r; ·)‖C

ω (|h|)
(5.5)

= sup
h 6=0

(‖Rn (·+ h, ·)‖C)
p
q

ω (|h|)
(‖Rn (·+ h, ·)‖C)1− p

q

≤ K3 (1 + ln (2 (n + 1) ann))
p
q

×


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r (1− p

q )

.

Similarly, by (4.2) we have
‖Tn (f, r)‖C(5.6)

≤ K4


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r

≤ K4


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r

p
q

×


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r (1− p

q )

≤ K5 (1 + ln (2 (n + 1) ann))
p
q

×


[n+1

4 ]∑
k=0

an,4kω
r

(
f,

π

k + 1

)
+

(
ω

(
f,

π

n + 1

)
ln (2 (n + 1) ann)

)r


1
r (1− p

q )

.

Collecting our partial results (5.5), (5.6) and using Lemma 4.4 and Lemma 4.5 we obtain that
(2.1) and (2.2) hold. This completes our proof. �

5.2. Proof of Theorem 2.2. Using (4.3) and the same method as in the proof of Lemma 4.4
we can show that

(5.7)

[n+1
2 ]∑

k=0

an,2kω
r

(
f,

π

k + 1

)
= O

(
annH

(
r;

π

n

))
holds, ifω (t) satisfies (1.17) and (1.18), and
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(5.8)

[n+1
2 ]∑

k=0

an,2kω
r

(
f,

π

k + 1

)
= O (annH (r; ann))

if ω (t) satisfies (1.17).
The proof of Theorem 2.2 is analogously to the proof of Theorem 2.1. The only difference

being that instead of (4.2), (4.5) and (4.6) we use (4.3), (5.7) and (5.8) respectively. This
completes the proof. �

5.3. Proof of Theorem 2.3. Using the same notations as in the proof of Theorem 2.1, from
(4.4) and (5.2) we get

|Rn (x + h, x)| ≤ K1

{
n∑

k=0

ankE
r
k (gh)

} 1
r

(5.9)

≤ K2

{
n∑

k=0

ankω
r

(
gh,

π

k + 1

)} 1
r

≤ 2K2ω (|h|) .

On the other hand, by (4.4) and (5.1), we have

|Rn (x + h, x)| ≤ K2

{
n∑

k=0

ankω
r

(
gh,

π

k + 1

)} 1
r

(5.10)

≤ 2K2

{
n∑

k=0

ankω
r

(
f,

π

k + 1

)} 1
r

.

Similarly, we can show that

(5.11) ‖Tn (f, r)‖C ≤ K3

{
n∑

k=0

ankω
r

(
f,

π

k + 1

)} 1
r

.

Finally, using the same method as in the proof of Theorem 2.1 and Lemma 4.6, (2.6) and (2.7)
follow from (5.9) – (5.11). �
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