
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 2, Article 22, 2002

MULTIDIMENSIONAL EXTENSION OF L.C. YOUNG’S INEQUALITY

NASSER TOWGHI

RAYTHEON SYSTEM COMPANY

528 BOSTONPOST ROAD MAIL STOP 2-142,
SUDBURY, MA 01776.

Nasser_M_Towghi@res.raytheon.com

Received 10 April, 2001; accepted 16 November, 2001.
Communicated by L. Losonczi

ABSTRACT. A classical inequality of L. C. Young is extended to higher dimensions, and using
this extension sufficient conditions for the existence of integral

∫
[0,1]n

fdg are given, where both
f andg are functions of finite higher variations.
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1. I NTRODUCTION

In this paper we consider the existence of the integral
∫

[0,1]n
fdg, wheref andg are functions

of bounded higher variations. In the sequel we explain the meaning of this integral and we
will also define the higher variations of functions of several variables. Such integrals occur
naturally in the study of stochastic differential equations. In 1935 a paper that appeared in
Acta Mathematica [6], L. C. Young gave sufficient conditions for the existence of Riemann-
Stieltjes integral

∫ 1

0
f(x)dg(x), wheref is a function of boundedp-variation,g is a functions of

boundedq-variation, and1
p
+ 1

q
> 1 (see Theorem 1.1). This result of L. C. Young has received

considerable attention to understand the Ito map, and to develop a stochastic integration theory
based on his techniques. Using Young’s integral T. Lyon solved a differential equation drived by
rough signals that are of boundedp-variation withp < 2 [2, 3]. Since almost surely Brownian
motion paths are not functions of boundedp-variation for p < 2, it appears that stochastic
differential equations driven by white noise may be well beyond the setting of Young’s theory.
However, it turns out that a certain set function associated with the Brownian motion process
can be viewed as functions of bounded-p variation in two variables [4]. Therefore, Young’s
ideas can still be used to construct stochastic integrals with respect to processes with rough
sample paths such as the Brownian motion. In order to construct multiple stochastic integrals
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2 NASSERTOWGHI

similar to the 1-dimensional construction described in [4], an exactn-dimensional analogue of
L. C. Young’s result is needed.

Although the motivation behind extended L. C. Young’s inequality to higher dimension is
to construct multiple stochastic integrals, the extension may be of independent interest. Inter-
ested reader may consult [4, 2] and [3] for application of L. C. Young’s inequality in stochastic
integration.

The key to Young’s integration theorem is a discrete inequality. On the main we are inter-
ested in extending Young’s discrete inequality to higher dimensions. Using the inequality one
can establish an analogous Stieltjes type integration theorem. In this paper we do not strive to
find the most general integration result, that is, we do not push the integration result to obtain
Lebesgue-Stiletjes type integrals by removing conditions on continuity of the functions. Inter-
ested reader may consult Young’s original work [6] – [8] for further developing or extending
the integration theorems of this paper.

The main ingredients in the proof ofn-dimensional result are still the techniques originally
employed by L. C. Young to prove his one dimensional result. However, some modification of
his techniques and a judicious choice of exponents which appear in the proof is required. To un-
derscore this point, we should mention that, in his 1937 paper L. C. Young gave sufficient con-
ditions for the existence of double Stieltjes integral

∫ 1

0

∫ 1

0
f(x, y)dg(x, y) ([8, Theorem 6.3]).

However, L. C. Young’s 2-dimensional result is not the exact analogue of the one dimensional
result, in the sense that, the conditions thatf andg must satisfy in order for the double integral
to exist (in Young-Stieltjes sense), are somewhat complicated. In the appendix of this paper we
have stated a version of Young’s theorem in this paper (see Theorem 3.1 in the Appendix). In
particular, there is no obvious way of generalizing the two-dimensional version of L. C. Young’s
result to higher dimensions. Our main result is to prove an exactn-dimensional version of L. C.
Young’s one dimensional result. We also show that L. C. Young’s 2-dimensional result follows
from ourn-dimensional result.

Functions of finite higher variations seem to have been considered for the first time by N.
Wiener. His ideas were developed by L.C. Young and E. R. Love (for a complete detail see
[1, 6, 7] and [8].

L.C. Young considered thep-th variation of a functionf(x), defined as

(1.1) Vp(f, [a, b]) = Vp(f) =

[
sup

τ

{
n∑

j=1

|f(tj)− f(tj−1)|p
}] 1

p

,

whereτ denotes the partitiona = t0 ≤ t1 ≤ · · · ≤ tn = b of [a, b]. Existence proof of Riemann-
Stieltjes integrals

∫ 1

0
fdg where bothf andg are functions of finite higher variations, was given

by Young [6]:
Theorem 1.1(L.C. Young’s Theorem/Inequality). If Vp(f) < ∞, Vq(g) < ∞, 1

p
+ 1

q
> 1, and

f andg have no common discontinuities, then the Riemann-Stieltjes integral
∫ 1

0
fdg exists and

(1.2)

∣∣∣∣∫ 1

0

f dg

∣∣∣∣ ≤ (1 + ζ

(
1

p
+

1

q

))
[|f(0)|+ Vp(f)]Vq(g),

whereζ(s) =
∑∞

n=1
1
ns .

Multidimensional extension of Young’s theorem is the main result of this paper. The multi-
dimensional integral will be defined as limits ofStieltjessums, and the integral will be referred
to as theYoung-Stieltjes integral.

1.1. Young-Stieltjes integral of functions. For the sake of clarity we define Young-Stieltjes
integral of functions of two variables. Letf andg be functions defined on[0, 1]2 andπ =:
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MULTIDIMENSIONAL INTEGRATION 3

{xi}n
i=0×{yj}m

j=0 be a partition of[0, 1]2. That is,π =: {xi}n
i=0×{yj}m

j=0 with (xi, yj) ∈ [0, 1]2.
Let

(1.3) L(f, g, π) =
n∑

i=1

m∑
j=1

f(ηi, νj)∆
2
i,jπ(g),

where(ηi, νi) ∈ [xi−1, xi]× [yj−1, yj], and

∆2
i,jπ(g) = g(xi, yj)− g(xi−1, yj)− g(xi, yj−1) + g(xi−1, yj−1).

Note that the above sum depends on the choice of intermediate values(ηi, νj). We say that
theYoung-Stieltjes integral of f with respect tog exists, if there is a scalarI(f, g) such that

(1.4) lim
||π||→0

|L(f, g, π)− I(f, g)| = 0.

Here ||π|| = sup{1≤i≤n,1≤j≤n} {max{|xi − xi−1|, |yj − yj−1|}}. That is, the Young-Stieltjes
integral exists if and only if there exists a scalarI(f, g), such that|L(f, g, π)− I(f, g)| < ε for
any given positiveε, provided that the partitionπ has norm||π|| < δ, whereδ depends only on
ε. If (1.4) holds, we say thatI(f, g) is the Young-Stieltjes integral off with respect tog.

To state the 2-dimensional version of our result, we need to introduce the notion ofp-variation
and mixedp− q variation of functions of two variables.

Henceforth, whenever we deal withp−variation or mixedp−q-variations, we always assume
thatp’s andq’s are never smaller than 1. Letp, q ≥ 1, then theL(p−q)− variationof a function
f(x, y) on [0, 1]2 is defined to be

(1.5) LV
(2)
(p,q)(f, [0, 1]2) = LV

(2)
(p,q)(f) = sup

π


 n∑

i=1

[
m∑

j=1

∣∣∆2
i,jπ(f)

∣∣p]( q
p)


1
q

 ,

whereπ =: {0 = x0 ≤ x1 ≤ · · · ≤ xn = 1} × {0 = y0 ≤ y1 ≤ · · · ≤ ym = 1} is apartition of
[0, 1]2, and

∆2
i,jπ(f) = f(xi, yj)− f(xi, yj−1)− f(xi−1, yj) + f(xi−1, yj−1).

Similarly R(p− q)-variationof a functionf(x, y) on [0, 1]2 is defined to be

(1.6) RV
(2)
(p,q)(f, [0, 1]2) = RV

(2)
(p,q)(f) = sup

π


 n∑

j=1

[
m∑

i=1

∣∣∆2
i,jπ(f)

∣∣p]( q
p)


1
q

 .

We define the left and right Wiener class-p− q to be the space of functions defined as follows,

LW
(2)
(p,q) = {f : [0, 1]2 → C : LV

(2)
(p,q)(f) + Vp(f(·, 0), [0, 1]) + Vq(f(0, ·), [0, 1]) < ∞},

whereVp(f(·, 0), [0, 1]) is thep-th variation of the functionx → f(x, 0) as defined by (1.1).
Similarly

RW
(2)
(p,q) =

{
f : [0, 1]2 → C : RV

(2)
(p,q)(f) + Vq(f(·, 0), [0, 1]) + Vp(f(0, ·), [0, 1]) < ∞

}
.

We define the left and rightp− q-Wiener norm off ∈ LW 2
(p,q) or f ∈ RW(p,q) as follows:

(1.7) ‖f‖LW(p,q)
= LV

(2)
(p,q)(f) + Vp(f(·, 0), [0, 1]) + Vq(f(0, ·), [0, 1]) + |f(0, 0)|

and

(1.8) ‖f‖RW(p,q)
= RV

(2)
(p,q)(f) + Vq(f(·, 0), [0, 1]) + Vp(f(0, ·), [0, 1]) + |f(0, 0)|.
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4 NASSERTOWGHI

We also define the Wiener class-p of functions of one variable, that is,

(1.9) Wp[0, 1] = {f : [0, 1] → C : Vp(f, [0, 1])) < ∞}.

Whenp = q thenLV(p,p) = RV(p,p), consequently we writeWp, Vp andp-variation instead of
LW(p,p), LV(p,p) etc.

Before we can state our main result (Theorem 1.2), we need to define the notion ofjump
point of functions of several variables. We stay in a two-dimensional setting.

Let f(x, y) be a function such thatV (2)
p (f) < ∞. For~x = (x1, x2) and~y = (y1, y2), we let

(1.10) d(~x, ~y) = max{|x1 − y1|, |x2 − y2|},

(1.11) ∆~yf(~x) = f(x1, x2)− f(x1, y2)− f(y1, x2) + f(y1, y2).

For~x ∈ [0, 1]2, we let

(1.12) J(f, ~x) = lim
δ→0

sup{∆~yf(~x) : d(~x, ~y) < δ}.

We say thatf has ajump at~x if J(f, ~x) > 0. It can be shown that ifV (2)
p (f) < ∞ thenf has at

most a countable number of jump points. Iff is continuous at~x then~x cannot be a jump point
of f , but the converse is not true. Our main result is

Theorem 1.2(a). Let f ∈ W
(2)
p , V

(2)
q (g) < ∞ and 1

p
+ 1

q
> 1. If f and g do not have any

common jump points then the Young-Stieltjes integral off with respect tog exists, and

(1.13)

∣∣∣∣∫ 1

0

∫ 1

0

f(x, y)dg(x, y)

∣∣∣∣ ≤ c(p, q) ‖f‖Wp
V (2)

q (g),

where

(1.14) c(p, q) ≤ 2

(
1 + ζ

(
1

p
+

1

q

))
+ inf

{
(1 + ζ(α))

(
1 + ζ

(
1

αp
+

1

αq

))α

: 1 < α <
1

p
+

1

q

}
.

We also have the following result.

Theorem 1.2(b). Let f ∈ RW
(2)
(p1,p2), RV

(2)
(q1,q2)(g) < ∞ and fori = 1, 2, 1

pi
+ 1

qi
> 1. If f and

g do not have any common jump points then the Young-Stieltjes integral off with respect tog
exists, and

(1.15)

∣∣∣∣∫ 1

0

∫ 1

0

f(x, y)dg(x, y)

∣∣∣∣ ≤ c ‖f‖RW(p1,p2)
RV

(2)
(q1,q2)(g),

where

(1.16) c ≤
(

1 + ζ

(
1

p1

+
1

q1

))
+

(
1 + ζ

(
1

p2

+
1

q2

))
+ min

{
inf

{1<α< 1
p2

+ 1
q2
}

{
(1 + ζ(α))

(
1 + ζ

(
1

αp1

+
1

αq1

))α

1

}
+ inf

{
(1 + ζ(α))(

(
1 + ζ

(
1

αp2

+
1

αq2

))α

: 1 < α <
1

p1

+
1

q1

}}
.

The theorem holds if we replaceRW andRV with LW andLV throughout.
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MULTIDIMENSIONAL INTEGRATION 5

Note that, whenp1 = p2 and q1 = q2, 1.2(b) reduces to 1.2(a). And finally to state the
n-dimensional version, we define the correspondingW n

p and V n
p classes of functions ofn-

variables.
Let p ≥ 1 andf be a function defined on[0, 1]n. Let

V (n)
p (f, [0, 1]n) =

(
sup

π1,...,πn

∑
i1,i2,···in

|∆π1,...,πn

i1,...,in
f |p
)1/p

.

Here πi is a partition of[0, 1] and ∆π1,...,πn

i1,...,in
f is the nth-difference off . The nth-difference

is a straightforward generalization of the 2nd-difference introduced prior to the statement of
Theorem 1.2. LetW (n)

p ([0, 1]n) = W
(n)
p denote the class of functionsf on [0, 1]n, such that,

V
(n)
p (f, [0, 1]n) < ∞, and for each positive integerk less thann; the function on[0, 1]n−k

obtained by keeping anyk coordinates of arguments off to the fixed value of 0, belongs to
W n−k

p ([0, 1]n−k). For instance whenn = 3, f ∈ W
(3)
p ([0, 1]3) if and only if

‖f‖W 3
p

= V (3)
p (f, [0, 1]3) + V (2)

p (f(0, ·, ·), [0, 1]2) + V (2)
p (f(·, 0, ·), [0, 1]2)

+V (2)
p (f(·, ·, 0), [0, 1]2) + Vp(f(·, 0, 0), [0, 1]) + Vp(f(0, ·, 0), [0, 1])

+Vp(f(0, 0, ·), [0, 1]) + |f(0, 0, 0)|
is finite. Stated below is then-dimensional version of Theorem 1.2(a).

Theorem 1.2(c). Let f ∈ W
(n)
p , V

(n)
q (g) < ∞ and 1

p
+ 1

q
> 1. If f and g do not have any

common jump points then the Young-Stieltjes integral off with respect tog exists, and

(1.17)

∣∣∣∣∫
[0,1]n

f(x1, · · · , xn)dg(x1, · · · , xn)

∣∣∣∣ ≤ c(p, q) ‖f‖W n
p

V (n)
q (g),

where

c(p, q) ≤ 2n−1

(
1 + ζ

(
1

p
+

1

q

))
(1.18)

+ 2n−2

[
(1 + ζ(α1))

(
1 + ζ

(
1

α1p
+

1

α1q

))α1
]

+ 2n−3

[
(1 + ζ(α1))(1 + ζ(α2))

α1

(
1 + ζ

(
1

α1α2p
+

1

α1α2q

))α1α2
]

+ · · ·

+

[
(1 + ζ(α1))(1 + ζ(α2))

α1 · · · (1 + ζ(αn−1))
α1···αn−2

×
(

1 + ζ

(
1

α1α2 · · ·αn−1p
+

1

α1α2 · · ·αn−1q

))α1α2···αn−1
]

where for each1 ≤ j ≤ n− 1, 1 < αj, andα1α2 · · ·αn−1 < 1
p

+ 1
q
.

2. H IGHER VARIATIONS OF SEQUENCES

In this section we will prove a discrete version of Theorem 1.2. We define thep-th variation
of sequence of scalars.

Let θ =: {ki}n
i=0 be a increasing sequence of positive integers. Apartition of θ denoted by

π(θ) is an increasing sequence of integers{ji}m
i=0 such that{ji}m

i=0 ⊂ {ki}n
i=0, j0 = k0 and

jm = kn. We note that ifθ =: {ki}n
i=0 is a increasing sequence of integers andπ(θ) is partition

of θ, then any partition ofπ(θ) is also a partition ofθ. If θ =: {0, 1, 2, ..., n}, then we write
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6 NASSERTOWGHI

π(n) instead ofπ(θ). That is,π(n) denotes a partition of{0, 1, 2, ..., n}. For a given sequence
a = {ai}n

i=0 and a partitionπ =: {ji}m
i=1 of {0, 1, 2, ..., n}, π(a) denotes the sequence{aji

}m
i=0.

2.1. p−variation of Sequences.Let a =: {ai}n
i=0 be a finite sequence of scalars. For any

partition π = π(n) = {ji}k
i=0, where{ji}m

i=0 ⊂ {0, 1, 2, ..., n}, we defineπ(a) to be the
sequence{aji

}k
i=0, and∆i(π(a)) = aji

−aji−1
. Let∆π(a) denote the sequence{aji

−aji−1
}k

i=1.

Let p > 0 andVp(a, π) = [
∑

i |∆i(π(a))|p]
1
p . We define thep-variation of{ai} to beVp(a) =

supπ Vp(a, π).
We now consider the variation of two-dimensional sequences.

Definition 2.1. Let θ =: {kj}m
j=0 × {lj}n

j=0, where{kj}m
j=0 and{lj}n

j=0 are two increasing
sequences of positive integers. Apartition of θ denoted byπ(θ) is a two-dimensional sequence
{k′j}m′

j=0×{l′j}n′
j=0 such that{k′j}m′

j=0 is a partition of{kj}m
j=0 as defined above in 2.1 and{l′j}n′

j=0

is a partition of{lj}n
j=0. If θ = {0, 1, ..., n}× {0, 1, ...,m}, then a partition ofθ will be denoted

by π(n×m).

2.2. Variation of 2-Dimensional Sequences.Let a = {ai,j}i=n,j=m
i=0,j=0 be a two dimensional

sequence of scalars andπ =: {kj}m′
j=0 ×{lj}n′

j=0 be a partition. Thenπ(a) denotes the sequence

{aki,lj}
i=m′,j=n′

i=0,j=0 . In particular,π(a)i,j = aki,lj .
We define∆1,i,jπ(a) = aki,lj − aki−1,lj , ∆2,i,jπ(a) = aki,lj − aki,lj−1

, and

∆2
i,jπ(a) = aki,lj − aki−1,lj − aki,lj−1

+ aki−1,lj−1
.

Let ∆2π(a) denote the sequence{∆2
i,jπ(a)}i=m′,j=n′

i=0,j=0 , ∆1,jπ(a) denote the sequence
{∆1,i,jπ(a)}m′

i=1, and∆2,iπ(a) denote the sequence{∆2
2,i,jπ(a)}n′

j=1. For p > 0, we define

V
(2)
p (a, π) = [

∑
i,j |∆2

i,j(π(a))|p]
1
p .

We define thep-variation of {ai,j}i=n,j=m
i=0,j=0 to be V

(2)
p (a) = supπ V

(2)
p (a, π), and thep-

variation normof {ai,j}i=n,j=m
i=0,j=0 to be

(2.1) ‖a‖Wp
= V (2)

p (a) + Vp({a0,j}j) + Vp({ai,0}i) + |a0,0|.
Given two partitionsπ andθ, we sayθ refinesπ, if π is a partition ofθ, and we writeθ < π.
Let

(2.2) V
(2)
p,θ(π)(a) = sup

θ<τ<π
V (2)

p (a, τ).

Suppose(a) = {ai,j}i=n′,j=m′

i=0,j=0 is a sequence of scalars andπ = {ki}n
i=0 × {lj}m

j=0 a partition of
{0, 1, ..., n}×{0, 1, 2, ...,m}. Let θ < π, then every subdivision point ofπ is also a subdivision
point ofθ. Therefore,θ can be viewed as a product of two, two-dimensional sequences, that is,

θ =: {ci,j}i=n,j=ri

i=0,j=0 × {di,j}i=m,j=si

i=0,j=0 ,

where for each fixedi ≥ 1,

ki−1 = ci,0 ≤ ci,1 ≤ · · · ≤ ci,ri
= ki,

li−1 = di,0 ≤ di,1 ≤ · · · ≤ di,si
= li.

We now prove a discrete version of Theorem 1.2(a).

Theorem 2.1. Let a =: {ai,j}i=n,j=m
i=0,j=0 andb =: {bi,j}i=n,j=m

i=0,j=0 be two sequences of scalars. Let
p, q > 0, 1

p
+ 1

q
> 1. Let

(2.3) L(a, b) =
n∑

i=1

m∑
j=1

ai,j∆
2
i,jb.

J. Inequal. Pure and Appl. Math., 3(2) Art. 22, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MULTIDIMENSIONAL INTEGRATION 7

Then

(2.4) |L(a, b)− a0,0(bn,m − b0,m − bn,0 + b0,0)| ≤ c(p, q) ‖a‖Wp
V (2)

q (b),

wherec(p, q) ≤ inf
{

(1 + ζ(α))
(
1 + ζ

(
1

αp
+ 1

αq

))α

: 1 < α < 1
p

+ 1
q

}
.

Proof. By consecutive application of summation by parts we obtain
n∑

i=1

m∑
j=1

ai,j∆
2
i,jb =

n∑
i=1

m∑
j=1

i∑
k=1

j∑
l=1

∆2
k,la∆2

i,jb(2.5)

+
n∑

i=1

n∑
l=i

(al,0 − al−1,0)(bi,m − bi,0 − bi−1,m + bi−1,0)

+
m∑

j=1

m∑
l=j

(a0,l − a0,l−1)(bn,j − b0,j − bn,j−1 + b0,j−1)

+a0,0(bn,m − b0,m − bn,0 + b0,0)

= I + II + III + IV.

We now estimateI. For each1 ≤ i ≤ n, let

(2.6) Q(0, i) =
m∑

j=1

j∑
l=1

∆2
i+1,l(a)∆2

i,j(b),

(2.7) S(0) =
n∑

i=1

m∑
j=1

i∑
k=1

j∑
l=1

∆2
k,l(a)∆2

i,j(b).

Choosei0 with 1 ≤ i0 ≤ n− 1 so that for eachi ≤ n− 1, the following holds:

(2.8) |Q(0, i0)| ≤ |Q(0, i)|.
For each1 ≤ i ≤ n− 1, let

(2.9) c1
i =

 i if i < i0

i + 1 if i0 ≤ i ≤ n− 1.

Let π1 =: {c1
i }n−1

i=0 × {j}m
j=0 be a partition of{0, 1, ..., n} × {0, 1, 2, ...m} and let

(2.10) S(1) =
n−1∑
i=1

m∑
j=1

i∑
k=1

j∑
l=1

∆2
k,lπ1(a)∆2

i,jπ1(b).

The following equation is verified:

(2.11) S(0) = S(1)−Q(0, i0).

We now estimate|Q(0, i0)|. Let 1 < α < 1
p

+ 1
q
. By (2.8)

|Q(0, i0)| ≤

(∏
i6=i0

|Q(0, i)|

) 1
n−1

.

An application of geometric-arithmetic mean inequality gives us

(2.12) |Q(0, i0)| ≤
(

1

n− 1

)α
(∑

i6=i0

|Q(0, i)|
1
α

)α

.
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For each1 ≤ j, let U(0, i, j) = ∆2
i+1,j+1π1(a)∆2

i,jπ1(b). For1 ≤ j ≤ n− 1, let

W (a, p, j) =

(
n−1∑
i=1

|∆2
i,j+1π1(a)|p

) 1
αp

, W (b, q, j) =

(
n−1∑
i=1

|∆2
i,jπ1(b)|q

) 1
αq

,

and

(2.13) Ũ(0, j) = W (b, q, j)W (a, p, j).

Choosej0 with 1 ≤ j0 ≤ m− 1 so that for eachj ≤ m− 1, the following holds:

(2.14) |Ũ(0, j0)| ≤ |Ũ(0, j)|.

For0 ≤ j ≤ m− 1, let

(2.15) d1
j =

 j if j < j0

j + 1 if j0 ≤ j ≤ m− 1.

Now π2 =: {ci}n
i=0 × {d1

j}m−1
j=1 , is a partition which refinesπ1. Let

(2.16) Q(1, i) =
m−1∑
j=1

j∑
l=1

∆2
i+1,lπ1(a)∆2

i,jπ1(b).

The following equation can be verified:

(2.17) Q(1, i) = Q(0, i)− U(0, i, j0).

Therefore, by Minkowski’s inequality and the fact thatα > 1, we obtain

(2.18)
n−1∑
i=1

|Q(1, i)|
1
α ≤

n−1∑
i=1

|Q(1, i)|
1
α +

n−1∑
i=1

|U(0, i, j0, )|
1
α .

We now estimate
∑n−1

i=1 |U(0, i, j0, )|
1
α . By (2.13) and Hölder’s inequality with exponentsαp

andαq, we obtain

n−1∑
i=1

|U(0, i, j0, )|
1
α =

n−1∑
i=1

|∆2
i+1,j0+1π1(a)∆2

i,j0
π1(b)|

1
α .

≤

[
n−1∑
i=1

|∆2
i+1,j0+1π1(a)|p

] 1
αp
[

n−1∑
i=1

|∆2
i,j0

π2(b)|q
] 1

αq

= |Ũ(0, j0)|.

Therefore, by (2.14)

(2.19)
n−1∑
i=1

|U(0, i, j0)|
1
α ≤

(∏
j 6=j0

Ũ(0, j)

) 1
m−1

=

(∏
j 6=j0

W (b, q, j)

) 1
m−1

(∏
j 6=j0

W (a, p, j)

) 1
m−1

.
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Applying geometric-arithmetic mean inequality to right side of the previous inequality, we ob-
tain

n−1∑
i=1

|U(0, i, j0)|
1
α ≤

(
1

m− 1

)( 1
αp

+ 1
αq )
[∑

j 6=j0

(W (b, q, j))αq

] 1
αq
[

m−1∑
j 6=j0

(W (a, p, j))αp

] 1
αp

.

Now [∑
j 6=j0

(W (b, q, j))αq

] 1
αq

≤

[
m−1∑
j=1

n−1∑
i=1

|∆2
i,jπ2(b)|q

] 1
αq

≤
(
V (2)

q (b)
) 1

α .

Similarly [∑
j 6=j0

(W (a, p, j))αp

] 1
αp

≤
(
V (2)

p (a)
) 1

α .

Combining (2.19) and the last three inequalities, we obtain

(2.20)
n−1∑
i=1

|U(0, i, j0)|
1
α ≤

(
1

m− 1

) 1
αp

+ 1
αq (

V (2)
q (b)

) 1
α
(
V (2)

p (a)
) 1

α .

Combining inequalities (2.18) and (2.20), we obtain

(2.21)
n−1∑
i=1

|Q(0, i)|
1
α ≤

n−1∑
i=1

|Q(1, i)|
1
α +

(
1

m− 1

) 1
αp

+ 1
αq [

V (2)
q (b)V (2)

p (a)
] 1

α .

By a similar argument we break upQ(1, i) as the difference of two quantities (compare with
the equation following (2.17)), that is

(2.22) Q(2, i) = Q(1, i)− U(1, i, j1),

where for each1 ≤ j ≤ n− 2,

U(1, i, j) = ∆2
i+1,j+1π2(a)∆2

i,jπ2(b),

andj1 is chosen so that for eachj ≤ m− 2,(
n−1∑
i=1

|∆2
i,j1+1π2(a)|p

) 1
αp
(

n−1∑
i=1

|∆2
i,j1

π2(b)|q
) 1

αq

≤

(
n−1∑
i=1

|∆2
i,j+1π2(a)|p

) 1
αp
(

n−1∑
i=1

|∆2
i,jπ2(b)|q

) 1
αq

.

(This last inequality is to be compared with (2.13) and (2.14)). By Minkowski’s inequality

(2.23)
n−1∑
i=1

|Q(1, i)|
1
α ≤

n−1∑
i=1

|Q(2, i)|
1
α +

n−1∑
i=1

|U(1, i, j1|
1
α .

The quantity
∑n−1

i=1 |U(1, i, j1|
1
α is estimated in exactly the same manner as we estimated∑n−1

i=1 |U(0, i, j0|
1
α . We obtain

(2.24)
n−1∑
i=1

|U(1, i, j1|
1
α ≤

(
1

m− 2

)( 1
αp

+ 1
αq ) [

V (2)
q (b)V (2)

p (a)
] 1

α .
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Combining (2.21), (2.22), (2.23) and (2.24) we obtain that,

(2.25)
n−1∑
i=1

|Q(0, i)|
1
α ≤

n−1∑
i=1

|Q(2, i)|
1
α +

(
1

m− 1

)( 1
αp

+ 1
αq ) [

V (2)
q (b)V (2)

p (a)
] 1

α

+

(
1

m− 2

)( 1
αp

+ 1
αq ) [

V (2)
q (b)V (2)

p (a)
] 1

α .

Continuing this process by breaking up the expressionQ(2, i) and so on, we obtain

(2.26)
n−1∑
i=1

|Q(0, i)|
1
α ≤ ζ

(
1

αp
+

1

αq

)[
V (2)

q (b)V (2)
p (a)

] 1
α .

Consequently by (2.11), (2.12) and (2.26), we obtain

(2.27) |S(0)| ≤ |S(1)|+
(

1

n− 1

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

Now expressionS(1) is similar toS(0), thus it can be estimated in the same manner, i.e., we
can write

(2.28) S(1) = S(2)−Q(1, i1),

whereS(2) andQ(1, i1) are obtained in the same manner asS(1) andQ(0, i0) were obtained
from S(0). Furthermore eachi ≤ n − 2, Q(1, i1) satisfies the following inequality (compare
with (2.8)),

(2.29) |Q(1, i1)| ≤ |Q(1, i)|.
Estimating|Q(1, i1)| the way we estimated|Q(0, i0)|, we obtain

(2.30) |Q(1, i1)| ≤
(

1

n− 2

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

Consequently by (2.27), (2.28) and (2.30), we obtain

(2.31) |S(0)| ≤ |S(2)|+
(

1

n− 2

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a)

+

(
1

n− 2

)α

ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

Continuing the above process by breaking upS(2), we obtain

(2.32) |S(0)| ≤ ζ(α)ζ

(
1

αp
+

1

αq

)α

V (2)
q (b)V (2)

p (a).

This gives the estimate onI. To estimateII andIII, we note thatII andIII are one dimen-
sional version ofI. It can be shown that (see e.g. [6]),

II ≤ ζ

(
1

p
+

1

q

)
V (1)

p ({ai,0}n
i=1})V (1)

q ({bi,m − bi,0}n
i=1),(2.33)

III ≤ ζ

(
1

p
+

1

q

)
V (1)

p ({a0,j}m
j=1})V (1)

q ({bn,j − b0,j}m
j=1).(2.34)

It is easy to see that

V (1)
q ({bn,j − b0,j}m

j=1) ≤ V (2)
q (b),

V (1)
q ({bi,m − bi,0}n

i=1) ≤ V (2)
q (b).
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ConsequentlyI + II + III ≤ c(p, q) ‖a‖Wp
V 2

q (b). This completes the proof of the Theorem
2.1. �

To prove Theorem 1.2(a), a more general version of Theorem 2.1 must be proved, the proof
of which parallels the proof of Theorem 2.1. This theorem is needed to show that the Young-
Stieltjes sums approximating the integral off with respect tog form a Cauchy net.

Theorem 2.2. Let a =: {ai,j}i=n,j=m
i=0,j=0 andb =: {bi,j}i=n,j=m

i=0,j=0 be two sequences of scalars. Let
π =: {ei}n1

i=0 × {fj}m1
j=0 be a partition of

{0, 1, ..., n} × {0, 1, 2, ...m}.

This meansπ =: {0 = e0 < e1 < · · · < en1 = n} × {0 = f0 < f1 < · · · < fm1 = m}, where
ei’s andfj ’s are integers. LetL(a, b) =

∑n1

i=1

∑m1

j=1 ai,j∆i,j(b), and

L(a, b, π) =
∑

i

∑
j

πi,j(a)∆i,j(π(b)).

(Recall∆i,j(π(b)) = bei,fj
− bei,fj−1

− bei−1,fj
+ bei−1,fj−1

andπi,j(a) = aei,fj
).

If 1
p

+ 1
q

> 1, then

|L(a, b)− L(a, b, π)| ≤ c(p, q)V (2)
p,π (a)V (2)

q,π (b)(2.35)

+

∣∣∣∣∣
n1∑
i=1

m∑
j=1

aei,j(bei,j − be(i−1),j − bei,j−1 + be(i−1),j−1)

∣∣∣∣∣
+

∣∣∣∣∣
m1∑
j=1

n∑
i=1

ai,fj
(bi,fj

− bi−1,fj
− bi,f(j−1)

+ bi−1,f(j−1)
)

∣∣∣∣∣
= I + II + III,

wherec(p, q) ≤ inf
{

(1 + ζ(α))
(
1 + ζ

(
1

αp
+ 1

αq

))α

: 1 < α < 1
p

+ 1
q

}
.

Using Theorems 2.1 and 2.2, Theorems 1.2(a) through 1.2(c) can be proved following closely
the proof of L. C. Young’s original result.

3. APPENDIX

As it was pointed out, in [8] Young considered the higher variations of functions of two
variables defined on[0, 1]2 and gave existence proof of the double Young -Stieltjes integral∫ 1

0

∫ 1

0
fdg. In this appendix we show that Theorem 1.2 (by Theorem 1.2 we mean Theorems

1.2(a) and 1.2(b).).
In his paper, Young considered the more general type of variation in terms of Orlicz functions

rather thanp or p − q variation and he uses the concept ofp− andq−bivariations. However,
Young’s generalization of Theorem 1.1, is not the exact analogue of Theorem 1.1. In particular,
the condition1/p + 1/q > 1 in the statement of Theorems 1.1 and 1.2 are replaced by a
stronger condition, roughly given by1/p + 1/2q ≥ 1. For the precise statement of Young’s
two dimensional extension we refer the reader to Theorem 6.3 in [8]. Below we state a special
case of Young’s 2-dimensional result, so the reader can compare the result with Theorem 1.2.
Young’s result can be obtained from 1.2. We first define the concept ofp andq-bivariation of
a function of two variables. We say thatf(x, y) is function of boundedp andq− bivariation if
there exists a pair of constantsP andQ such that, for each fixed pairy1, y2 ∈ [0, 1], the total
p−variation of the function of one variablef(·, y1) − f(·, y2) is less thanP and for each fixed
pairx1, x2 ∈ [0, 1], the totalq-variation of the functionf(x1, ·)− f(x2, ·) is less thanQ.
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Theorem 3.1 (Special version of Theorem 6.3 in [8]). Let f be a function of boundedp1−
andp2−bivariation such that for eachx andy in [0, 1] f(x, 0) = f(0, y) = 0. And for fixed
x1, x2, y1, y2,

(A1) |g(x1, y1)− g(x1, y2)− g(x2, y1) + g(x2, y2)| ≤ |x1 − x2|
1
q1 |y2 − y1|

1
q2 .

Then the Young-Stieltjes integral off with respect tog exists, provided that there exist positive
strictly increasing functionsh andk, such that

(*) h(x)k(x) = x and
∑

n

h

(
1

n
1

p1

)(
1

n
1
q1

)
+
∑

n

k

(
1

n
1

p2

)(
1

n
1
q2

)
< ∞.

To show that Theorem 1.2 implies Theorem 3.1, we must relate the concept ofp- andq-bivariation
to the concept ofp − q variation as defined by equations (1.5) and (1.6). Following theorem is
the consequence of the results proven in[5] (see Theorem 1.4 and Corollary 3.1 in[5]).

Theorem 3.2. [5]. If f is a function ofp1 andp2-bivariation, then

(A2) LV(2,p1)(f) + RV(2,p2)(f) < ∞.

Further more ifp1 ≤ 2 thenRV(p1,2)(f) is finite. If p1 > 2 thenVp1(f) is finite. Similarly if
p2 ≤ 2 thenLV(p2,2)(f) is finite. If p2 > 2 thenVp2(f) is finite. If p1 = p2 = p ≤ 2 then
V( 4p

2+p
)(f) is finite. Ifp1 = p2 = p > 2 thenVp(f) is finite.

W now examine the conditions given in Theorem 3.1. Condition ong, that is,

|g(x1, y1)− g(x1, y2)− g(x2, y1) + g(x2, y2)| ≤ |x1 − x2|
1
q1 |y2 − y1|

1
q2

implies that
LV(q1,q2)(g) + RV(q1,q2)(g) < ∞.

The fact thatf vanishes on each axis implies that

‖f‖LW(·,·)
= LV(·,·)(f), ‖f‖RW(·,·)

= RV(·,·)(f),

and‖f‖W(·)
= V(·)(f). Sinceh andk are decreasing functions, (*) implies that

(A3) h
(
n
− 1

p2

)
≤ c

(
1

n

)(
p1
p2
− p1

q1p2

)
,

wherec is a fixed universal constant. We also have,

(A4) k
(
n
− 1

p1

)
≤ c

(
1

n

)(
p2
p1
− p2

q2p1

)
.

Sinceh(x)k(x) = x, (*) and the previous set of inequalities imply that,

(A5)
∑
n=1

(
1

n

)(
1

p1
+ 1

q1
+

p2
p1q2

− p2
p1

)
+
∑
n=1

(
1

n

)(
1

p2
+ 1

q2
+

p1
p2q1

− p1
p2

)
< ∞.

On the other hand theorem (A2) implies that

(A6) LV(2,p1)(f) + RV(2,p2)(f) < ∞.

Consequently, if we want to use Theorem 1.2 to establish the existence of the Young-Stieltjes
integral off with respect tog, we must show that either

(A7)
1

p1

+
1

q1

> 1 and
1

2
+

1

q2

> 1;
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or

(A8)
1

p2

+
1

q2

> 1 and
1

2
+

1

q1

> 1.

Sinceq1 ≥ andq2 ≥ 1, (A5) implies that1
pi

+ 1
qi

> 1 for i = 1, 2. If p1 ≥ 2 then (A8) holds and
if p2 ≥ 2 then (A7) holds. Also if1

2
+ 1

q1
> 1, then (A8) holds. Suppose thatpi < 2 for i = 1, 2

and 1
2

+ 1
q1
≤ 1. Now (A5) implies that

(A9)
1

p1

+
1

q1

+
p2

p1q2

− p2

p1

> 1.

This last inequality and the assumptions onp1, p2 andq1 (i.e., 1 ≤ pi ≤ 2 and 1
2

+ 1
q1
≤ 1),

imply that 1
2

+ 1
q2

> 1. Therefore (A7) holds. This shows that Theorem 1.2 implies Theorem
3.1.
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