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ABSTRACT. A classical inequality of L. C. Young is extended to higher dimensions, and using
this extension sufficient conditions for the existence of inteQBall} . fdg are given, where both
f andg are functions of finite higher variations.
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1. INTRODUCTION

In this paper we consider the existence of the integqu]n fdg, wheref andg are functions

of bounded higher variations. In the sequel we explain the meaning of this integral and we
will also define the higher variations of functions of several variables. Such integrals occur
naturally in the study of stochastic differential equations. In 1935 a paper that appeared in
Acta Mathematical [6], L. C. Young gave sufficient conditions for the existence of Riemann-

Stieltjes integrayo1 f(x)dg(x), wheref is a function of boundeg-variation,g is a functions of

bounded;-variation, and}l—) + 1> 1 (see Theore .1). This result of L. C. Young has received
considerable attention to understand the Ito map, and to develop a stochastic integration theory
based on his techniques. Using Young’s integral T. Lyon solved a differential equation drived by

rough signals that are of boundgéevariation withp < 2 [2,(3]. Since almost surely Brownian
motion paths are not functions of boundgdariation forp < 2, it appears that stochastic

differential equations driven by white noise may be well beyond the setting of Young'’s theory.
However, it turns out that a certain set function associated with the Brownian motion process

can be viewed as functions of boundedariation in two variables |4]. Therefore, Young’s

ideas can still be used to construct stochastic integrals with respect to processes with rough
sample paths such as the Brownian motion. In order to construct multiple stochastic integrals
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2 NASSERTOWGHI

similar to the 1-dimensional construction described In [4], an exatitnensional analogue of
L. C. Young’s result is needed.

Although the motivation behind extended L. C. Young’s inequality to higher dimension is
to construct multiple stochastic integrals, the extension may be of independent interest. Inter-
ested reader may consuli [4, 2] and [3] for application of L. C. Young’s inequality in stochastic
integration.

The key to Young’s integration theorem is a discrete inequality. On the main we are inter-
ested in extending Young’s discrete inequality to higher dimensions. Using the inequality one
can establish an analogous Stieltjes type integration theorem. In this paper we do not strive to
find the most general integration result, that is, we do not push the integration result to obtain
Lebesgue-Stiletjes type integrals by removing conditions on continuity of the functions. Inter-
ested reader may consult Young’s original wark [6] + [8] for further developing or extending
the integration theorems of this paper.

The main ingredients in the proof efdimensional result are still the techniques originally
employed by L. C. Young to prove his one dimensional result. However, some modification of
his techniques and a judicious choice of exponents which appear in the proof is required. To un-
derscore this point, we should mention that, in his 1937 paper L. C. Young gave sufficient con-
ditions for the existence of double Stieltjes integfﬁl-,dfo1 f(z,y)dg(z,y) ([8, Theorem 6.3]).
However, L. C. Young's 2-dimensional result is not the exact analogue of the one dimensional
result, in the sense that, the conditions thaindg must satisfy in order for the double integral
to exist (in Young-Stieltjes sense), are somewhat complicated. In the appendix of this paper we
have stated a version of Young's theorem in this paper (see Th¢orem 3.1 in the Appendix). In
particular, there is no obvious way of generalizing the two-dimensional version of L. C. Young’s
result to higher dimensions. Our main result is to prove an exaiinensional version of L. C.
Young’s one dimensional result. We also show that L. C. Young’s 2-dimensional result follows
from ourn-dimensional result.

Functions of finite higher variations seem to have been considered for the first time by N.
Wiener. His ideas were developed by L.C. Young and E. R. Love (for a complete detail see
[1,16,7] and [8].

L.C. Young considered theth variation of a functiory(z), defined as

P

(1.1) Vo(f:[a, b) = Vo (f) = [Sgp {Z () = f(tj—l)lp}] ,

wherer denotes the partitiom = t, < t; < --- <t, = bof[a, b]. Existence proof of Riemann-
Stieltjes integral%1 fdg where bothf andg are functions of finite higher variations, was given
by Young [6]:

Theorem 1.1(L.C. Young's Theorem/Inequality}f V,(f) < oo, Vy(g) < o0, 2 + 1 > 1, and

f andg have no common discontinuities, then the Riemann-Stieltjes intﬁoby“aig exists and

/olf dff‘ = (1 ¢ (]% + 3)) 17 O]+ Vo(£)Val9).

where((s) = > | L.

Multidimensional extension of Young's theorem is the main result of this paper. The multi-
dimensional integral will be defined as limits $fieltjessums, and the integral will be referred
to as theYoung-Stieltjes integral.

(1.2)

1.1. Young-Stieltjes integral of functions. For the sake of clarity we define Young-Stieltjes
integral of functions of two variables. Lét and g be functions defined oft), 1]> and 7 =:
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{zi}io x {y;}72, be apartition of0, 1]. Thatis,m =: {z;}7_o < {y;}72o With (z4,5;) € [0, 1]%.
Let

m

(13) fgv sz 77171/] )a

=1 j=1

Whel’e(m, I/i) & [.fi,l, .CL’I] X [yjfl, yj]! and

A m(g) = g(xiy;) — 9(mim,y;) — 9(i,yj-1) + 9(Tim1, Y1)
Note that the above sum depends on the choice of intermediate yglues. We say that
the Young-Stieltjes integral of f with respectdexists, if there is a scaldl( f, g) such that

(1.4) m |L(f,g,7) = I(f,9)| = 0.

|| || —0

Here [|7|| = supp<icn1<j<ny tmax{|z; — zi 1], ly; —y;-1|}}. Thatis, the Young-Stieltjes
integral exists if and only if there exists a scal@f, g), such thatL(f, g, 7) — I(f, g)| < e for
any given positive, provided that the partition has norm||x|| < §, wheres depends only on
e. If (L.4) holds, we say that(f, g) is the Young-Stieltjes integral of with respect tgy.

To state the 2-dimensional version of our result, we need to introduce the notieradétion
and mixedp — ¢ variation of functions of two variables.

Henceforth, whenever we deal with-variation or mixet — ¢g-variations, we always assume
thatp’s andqg’s are never smaller than 1. Letq > 1, then thelL(p— ¢q)— variation of a function

f(x,y) on|0,1]? is defined to be

\E

i i=1

(H)W%MMMM&ﬁ>wp[

wherer = {0 =2 <21 <<z, =1} x{0=yo < y; <--- <y, = 1} is apartition of
[0,1]2, and

A?,jﬂ-(f) = f(xi,y;) — f(@i,y5-1) — @iy, y5) + f(@i1,95-1)-
Similarly R(p — ¢)-variation of a functionf(z, y) on|[0, 1]* is defined to be

q

m (£)]
Z!Azmmp] ]

i=1

n

(L6)  RViy (f [0,1%) = RV, (f) = sup Fj

J=1

We define the left and right Wiener clags- ¢ to be the space of functions defined as follows,
LW = {f 0,1 = C: LV (f) + Vo(f(,0), [0, 1]) + Vy(£(0, ), [0,1]) < oo},

whereV,(f(-,0),[0,1]) is thep-th variation of the function: — f(x,0) as defined by[ (1]1).
Similarly

RW((PQQ - {f : [0’ 1] —C: R‘/éfq (f) + %(f(70)7 [07 1]) + V;;(f((), '), [0, 1]) < OO} .
We define the left and right — g-Wiener norm off € Lwéq) or f € RW,) as follows:
@) W llpw,, = V() + Vol £(0),10,1]) + Vo(£(0,-), [0,1]) + [ £(0,0)]

and
(1.8) Hf”RW(pm = RV'(S?D(f) + Vl](f(v O), [07 1]) + Vp(f(07 ’)7 [07 1]) + |f(07 0)|
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We also define the Wiener clagf functions of one variable, that is,
(1.9) Wpl0,1] = {f - [0,1] = C: V,(/,[0,1])) < oo}

Whenp = q thenLV,,,, = RV, ), consequently we writél/,, V,, andp-variation instead of
LW p)s LVip,p) €IC. _ i )

Before we can state our main result (Theofenj 1.2), we need to define the nofiompf
point of functions of several variables. We stay in a two-dimensional setting.

Let f(z,y) be a function such that® (f) < co. FOrz = (z1,25) andyj = (y1,y»), we let

(1.10) d(Z,y) = max{|z1 — v, [v2 — 2|},

(1.11) Agf(Z) = f(z1,22) — f(@1,92) — f(y1,22) + f(y1,92)-
ForZ € [0, 1]%, we let

(1.12) J(f, %) = limsup{Ayf (7) : d(7.§) < 5}.

We say thalf has gump at® if J(f,Z) > 0. It can be shown that N‘/,,(Q)(f) < oo thenf has at
most a countable number of jump points.flfs continuous at’ thenx’ cannot be a jump point
of f, but the converse is not true. Our main result is

Theorem 1.2(a). Let f € W2, V¥ (g) < oo andl+1 > 1. If f andg do not have any
common jump points then the Young-Stieltjes integrglwith respect tgy exists, and

(1.13) [ e idsten| < o) 1, V20,
0 0

where

(1.14) c(p,q) <2 (1 +¢ (% " %))

+inf{(1+§(a)) (1+§<aip+aiq>)a:1<a<%+$}.

We also have the following result.

Theorem 1.2(b). Let f € RWp 22) Rv(ffl)q )(g) <ooandfori =1,2, - + 4~ >1.If fand
g do not have any common jump points then the Young- Stleltjes mtegfaA/mlh respect tqgy

exists, and

(1.15)

[ sdoten| < e, BYE,(0)

where

@i o (¢ (Lo D))o (rc(L4 1))
P q1 P2 42
. 1 1 ¢
*mm{um?il}{(”“a” (e (o an)) 1

P2 92

1 1 “ 1 1
—i—inf{(l—i—((oz))((l—i—((——i——)) :1<a<——i——}}.
apz Qg2 P G
The theorem holds if we repladdd and RV with LW and LV throughout.
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Note that, wherp, = p, andg; = g, [1.4(b) reduces tp 1.2(a). And finally to state the
n-dimensional version, we define the correspondifig and V" classes of functions of-
variables.

Letp > 1 andf be a function defined off, 1]". Let

1/p
V(S [0,1]")=<sup Z AT f|”> :

TG g,
Here 7; is a partition of[0,1] and A" f is the nth difference of f. The n'"-difference
is a straightforward generallzatlon of the 2nd-difference introduced prior to the statement of

Theore. Lety" ([O, ") = W™ denote the class of functionson [0,1]", such that,

Vi (f,0,1]") < oo, and for each positive integér less thann; the function on[0, 1]
obtained by keeping an¥ coordinates of arguments gfto the fixed value of 0, belongs to
Wr=%([0,1]*%). For instance when = 3, f € W ([0, 1]%) if and only if

||f||W3 = ( )(f [O 1] ) + ‘/;)(2)(][(0, ) ')7 [07 1]2) + ‘/p(z)(f(" 0, ')7 [07 1]2>
+vp (f(7 ) 0)7 [07 1]2) + Vp(f(v 07 0)7 [07 1]) + V;?(f(ov ) 0)? {07 1])
+Vp<f<07 0, ')7 [07 1]) + ‘f(()? 0, 0)‘
is finite. Stated below is the-dimensional version of Theorgm 1..2(a).

Theorem 1.2(c). Let f € W™, V" (g) < oo and% + % > 1. If f andg do not have any
common jump points then the Young-Stieltjes integrdl with respect tgy exists, and

(1.17) fla, - aa)dg(ey, - x0)| < e(paa) | fllw, Vi (9),

‘ [0,1]™
where

(1.18) c(p,q) < 2" (1 +¢ (1 + l))
p q

+on2 [(1 + () (1 +¢ (%p + o%q))a]
43 [(1 + C(an)) (1 + (o)™ <1 +C( —+— ))am}

Q1Gop Qpaiq

+ [(1 + C(an)) (1 + C(a2) -+ - (1 + C(ay_y ) )22 om=2

1 1 Q12 Qp—1
x | 14+¢ +
a1 - - Qp_1p Qg - Op_1(q

where foreach < j <n -1, 1 <aj,andajay - a,1 <, + ¢.

2. HIGHER VARIATIONS OF SEQUENCES

In this section we will prove a discrete version of Theofem 1.2. We defing-thevariation
of sequence of scalars.

Letd =: {k;}_, be a increasing sequence of positive integergadition of ¢ denoted by
7(6) is an increasing sequence of integéyst™, such that{j;}, C {ki}", jo = ko and
Jjm = kn. We note that ity =: {k;}", is a increasing sequence of integers al) is partition
of 4, then any partition ofr(6) is also a partition of). If 6§ =: {0,1,2,...,n}, then we write
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7(n) instead ofr (). That is,n(n) denotes a partition of0, 1,2, ...,n}. For a given sequence
a = {a;}I-, and a partitiont =: {j;}7, of {0,1,2,...,n}, 7(a) denotes the sequenée;, } .
2.1. p—variation of Sequences.Let a =: {a;}, be a finite sequence of scalars. For any
partitonm = w(n) = {ji}r,, where{j;}, C {0,1,2,...,n}, we definer(a) to be the
sequencéa;, }¥_o, andA,(r(a)) = a;, —aj,_,. LetAn(a) denote the sequende;, —a;, , }¥ ;.
Letp > 0 andV,(a,m) = [>_, |Ai(7r(a))|1’]%. We define the-variation of{a;} to beV,(a) =
sup, Vy(a, ).

We now consider the variation of two-dimensional sequences.
Definition 2.1. Let 0 =: {k;}7L, x {l;}}_, Where{k;}7., and{l;}}_, are two increasing
sequences of positive integerspArtition of ¢ denoted byr(0) is a two-dimensional sequence
{k}m ) x {1;}n_, such that{k}}7" is a partition of{k;}, as defined above |n 2.1 aft} }",
is a partition of{/;}7_,. If 0 = {0,1,...,n} x {0,1,...,m}, then a partition o will be denoted
by 7(n x m).

2.2. Variation of 2-Dimensional SequencesLet a = {ai,j}jjgjjgl be a two dimensional
sequence of scalars and=: {k; };”:/0 X {lj};?'zo be a partition. Them(a) denotes the sequence
{ar,a, Yizo'Ze™ - Inparticularm(a);; = ag, ;-

We defineA, ; jm(a) = ax,1;, — ax Agjjm(a) = ag,y, — ak,,_,, and

i—15050 i-1

A?JJT(CL) = Ak l; — Akl — Qkyliq + Ay 1,051
Let A’r(a) denote the sequencfA? r(a)}=r"75", Ay m(a) denote the sequence
{Ay;m(a)},,  and A ;w(a) denote the sequended}; .m(a)}7,. Forp > 0, we define

j=1"
‘/})(2)(%”) = [Zzg |Azz,j(7r(a))|p]5- o
We define thep-variation of {a;;};—"/=;" to be V@) = sup, V?(a, ), and thep-

variation normof {a; ;}:=/=}" to be
(2.1) lallw, = V(@) + Vip({aos}) + Vo{aio}i) + laogl-

Given two partitionsr andfd, we sayé refinesr, if 7 is a partition ofd, and we writed < 7.
Let

(2.2) v (a) = sup Vp(z)(a, ).
’ o<r<m

Supposéa) = {a,-J}jjg;fom' is a sequence of scalars and= {k;};, x {l;}7L, a partition of
{0,1,...,n}x{0,1,2,...,m}. Letd < 7, then every subdivision point afis also a subdivision
point of 6. Thereforef can be viewed as a product of two, two-dimensional sequences, that is,

0 = {ci;} o0z < {dishizoise™s
where for each fixed > 1,

kioi =cip <cin < <y =k,

licy =dip < din < -+ < djs =1l
We now prove a discrete version of Theorenj 1.2(a).
Theorem 2.1. Leta =: {a;;}i—p?=" andb =: {b;;};=y7=;" be two sequences of scalars. Let
p,q>0,5 4+, > 1 Let

(23) L(CL, b) = i i (l@jA?’jb.

i=1 j=1
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Then
(2.4) |L(a,b) = ao,0(bnm — bom — buo + boo)| < c(p.q) lallyy, V2 (B),

wherec(p, ¢) < inf{(l + ¢(a)) <1 +¢ (L - O%q))a l<a< l + l}.

Proof. By consecutive application of summation by parts we obtain

(2.5) Zzai,jAmb = ZZZZA 1007 D

i=1 j=1 i=1 j=1 k=1 I=1
+ Z Z(Clz,o — a1-1,0)(bim — bio — bi—1m + biz1)

i=1 =i
+ Z Z(Clo,l — ag,-1)(bnj — boj — bnj—1 +boj-1)

Jj=11=j

+a0,0(bnm — bo.m — bno + boo)
= [+ I1IT+1IT+1V.
We now estimatéd. For eachl < < n, let

(2.6) Z ZAM )AZ (D),

j=1 [l=1

(2.7) ZZ ‘ ZA

Choose, with 1 < iy < n — 1 so that for eachh < n — 1, the following holds:
(2.8) 1Q(0,40)| < |Q(0,7)].
Foreachl <i<n—1,let
i if 7 <o
(2.9) el =
1+1 if ig<i<n-—1.

Letm =: {c/}ioy x {j}1, be a partition of{o, 1,..,n} x{0,1,2,..m} and let

—_

n— 7

(2.10) => > ZAkm )AZ i (b).

i=1 j=1 k=1 I=1
The following equation is verified:
(2.11) 5(0) = S(1) = Q(0,4).
. . 1 Q
We now estimat¢Q (0, i)|. Let1 < a < S+ & By )

1

1Q(0,0)| < <H \Q(o,m) :
i#ig
An application of geometric-arithmetic mean inequality gives us

(2.12) 1Q(0,4p)| < (ﬁ) (Z |Q(o,z'>\i) :

i#i0
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For eachl < j, letU(0,4,5) = A7, ;,,m(a)A7 mi(b). Forl < j <n—1,let

vton= (St i)

L
ap

and
(2.13) U(0,5) = W(b,q.5)W(a,p,j).
Choosej, with 1 < j, < m — 1 so that for each < m — 1, the following holds:
(2.14) 100, jo)| < U0, )I-
For0<j<m-—1,let

J if j <o
(2.15) d =

J
j+1 ifjo<j<m-—1.

Now my, =: {c;}1y x {d}}7-', is a partition which refines;. Let

m—1

(2.16) Q(1,i) = ZAZHW )AZ i (b).

=1 [=1

.

The following equation can be verified:

Therefore, by Minkowski’s inequality and the fact that> 1, we obtain

—_

n—1 n— n—1
(2.18) ST < ST + 3 1U(0,4, 5o, )|+
=1 =1

1

(2

We now estimateZ?;f |U(0, 1, jo, )|i. By ) and Hdlder's inequality with exponentg
andag, we obtain

n—1 n—1
Z ’U(07i7j07)‘a = Z‘A?+l,jo+1ﬂ-1( )A’Ljoﬂ-l(b)‘a'
i=1 =1
1 1 1
< Z |A?+1,jo+1771(a)|p] [Z A7, Go T ]
=1
= U(0,jo)l.

Therefore, by[(2.74)

1

(2.19) Z\U 0,7, j0)|= (HUOJ)WI

J#Jo
1

= (HW(b,q,j)>m (HWapj> 71-

J#jo J#jo

J. Inequal. Pure and Appl. Math3(2) Art. 22, 2002 http://jipam.vu.edu.au/
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Applying geometric-arithmetic mean inequality to right side of the previous inequality, we ob-
tain

1 (35+30) " [ &
Z|U(O,i,jg)|5§ (ﬁ) LZ(W(M,J'))W] [Z(W(mp,j))"‘p] :

#Jjo J#Jo
Now
aq m—1mn—1 ag 1
[Z(W(b q,5)) ] <[ |A3J7rz(b)|q] < (VP(v))"
j# o j=1 i=1
Similarly

730
Combining [2.1P) and the last three inequalities, we obtain

o] astag 1 1
(2.20) D _ U0, jo)|~ < (ﬁ) (V2 ®) " (V2 ()"

Combining inequalitieg (2.18) and (2]20), we obtain

n—1 n—1 oTp+qu 1
ez Y lR0 < Yl + ()" T VoY@

By a similar argument we break up(1,7) as the difference of two quantities (compare with
the equation following (2.17)), that is

where foreach < j <n — 2,
U(L Zv]) = A?Jrl,jJer?(a’)A?,jﬂ-?(b)’
andj; is chosen so that for eagh< m — 2,

1

n—1 ap aq
(Z |A12,j1+17r2(a)|p> <Z |Az jl >
i=1
n—1 o%p n—1 O%q
< (Z |A?,j+1ﬂz(a)|p> (Z |A?,ﬂ2(b)|q> :
i=1 1=1

(This last inequality is to be compared wifh (2.13) gnd (2.14)). By Minkowski’s inequality
n—1 -1 n—1

(2.23) S Qi) sz 2,0)|« + Y |U(1,i, 51
=1 =1 =1

The quantityS""'|U(1,4, |~ is estimated in exactly the same manner as we estimated
S |U(0,1, jo| = We obtain

n—1 ) ( + 1
(2.24) ; U(Li 5= < (ﬁ) V2 0)V,2(a)]" .

J. Inequal. Pure and Appl. Math3(2) Art. 22, 2002 http://jipam.vu.edu.au/
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Combining [2.211),[(2.22)[ (2.23) and (2]24) we obtain that,

n—1 ) n—1 L (aip+aiq)
(2.25) ) [Q0,4)]= < |Q2,4)|= + (—ml_ 1)

; (#) S e

m — 2

Continuing this process by breaking up the expresgi¢h i) and so on, we obtain

(2.26) o100l < ¢ o+ o) eV )
Consequently bﬂ?_T.Il]:(’Z_T]lZ) and (3.26), we obtain
(2.27) SO < IS(1)] + (ﬁ)ag (aip n O%q) VBV a).

Now expressiort (1) is similar to.S(0), thus it can be estimated in the same manner, i.e., we
can write

(2.28) S(1) =5(2) - Q(1,40),

whereS(2) andQ(1,,) are obtained in the same manner3) andQ(0, i,) were obtained
from S(0). Furthermore each < n — 2, (1, ;) satisfies the following inequality (compare

with (2:8)),

(2.29) 1Q(1,i1)] < 1Q(1,4)].
Estimating|Q(1,4,)| the way we estimatefd)(0, )|, we obtain
~ N (AL Y Yegve
(230 Qi< (525) <o+ ) WOR@,
Consequently by (2.27), (2.28) arid (2.30), we obtain
LY (LYY vogye
@31) 150 <1501+ (-25) ¢+ o) WerP

LN (LY vogye
+<n—2) <<04P+0461) VO a).

Continuing the above process by breakingsip), we obtain
1 1\“
_ < - Lt (2) @ (q).
(232) |S<o>r_<<a><(ap+aq> VA BV (@)

This gives the estimate ah To estimate/ [ and//1, we note that’ / and/I] are one dimen-
sional version of . It can be shown that (see e.gl [6]),

1 1 n "
(2.33) < ¢ (]; ; 5) VO (a0} VO (b — bio}i).
1 1
(2.34) 11 < ¢ (2—9 + 5) VIO ({ao,; Y DV ({bnyg — bos }Ty)-
It is easy to see that
VIO ({byy — bog}1ey) < V,A(b),
VI ({bim — bio}y) < V(D)
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Consequently + 11 + 111 < c(p, q) [|ally, V.2(b). This completes the proof of the Theorem
2.1. O

To prove Theorerp 1]2(a), a more general version of Theprem 2.1 must be proved, the proof
of which parallels the proof of Theorgm 2.1. This theorem is needed to show that the Young-
Stieltjes sums approximating the integralfoivith respect tgy form a Cauchy net.

Theorem 2 2.Leta =: {a;;} g 7" andb =: {b;;};="~;" be two sequences of scalars. Let

T =:{e;}i2y X {fj};2, be a partition of

{0,1,...,n} x{0,1,2,...m}.

Thismeansr =: {0 =¢y <e; < --- < ey, =n} X {O—fo < fi <--- < fm, =m}, where
ei's and f;’s are integers. Lel(a,b) = >, > a; ;A ;(b), and

L(a,b,m) ZZWU 7(b)).

(Recla"AliJ (W(b)) = beufj - bezwfjﬂ - bezel,fj + beiflvfjfl andﬂi,J'(a) = aei,fj)-
If = 4+ 2> 1, then
p q

(2.35)|L(a,b) — L(a,b,7)| < clp,q)V,2(a)V 2 (b)

q?Tr

ni m
+ E : E :aenj(beuj - be(iq),j - b€i7j—1 + be(iq),j—l)

i=1 j=1

mi n
F DN aig, (big, = bicig, = bigy, + bicig, )

=1 =1
= [+ 1II+1III,
wherec(p,q) < inf {(1+¢(0) (14+¢ (L +4)) s1<a<i+i}

Using Theoremis 2|1 afd 2.2, Theorgms 1.2(a) thrpugh 1.2(c) can be proved following closely
the proof of L. C. Young’s original result.

3. APPENDIX

As it was pointed out, in [8] Young considered the higher variations of functions of two
variables defined of, 1] and gave existence proof of the double Young -Stieltjes integral
fol fol fdg. In this appendix we show that Theor1.2 (by The 1.2 we mean Theorems
[1.2(a) and 1]J2(b).).

In his paper, Young considered the more general type of variation in terms of Orlicz functions
rather tharp or p — ¢ variation and he uses the conceptpef and g—bivariations. However,
Young's generalization of Theorgm [L.1, is not the exact analogue of Théorem 1.1. In particular,
the conditionl/p + 1/¢ > 1 in the statement of Theorerhs 1.1 1.2 are replaced by a
stronger condition, roughly given by/p + 1/2¢ > 1. For the precise statement of Young’s
two dimensional extension we refer the reader to Theorem 6.3 in [8]. Below we state a special
case of Young's 2-dimensional result, so the reader can compare the result with Thedrem 1.2.
Young's result can be obtained frgm [1.2. We first define the conceptaofi ¢-bivariation of
a function of two variables. We say thAtx, y) is function of boundeg andg— bivariation if
there exists a pair of constantsand @ such that, for each fixed paif, y» € [0, 1], the total
p—Vvariation of the function of one variablg-, y1) — f(-, y2) is less thanP and for each fixed
pairzy, x5 € [0, 1], the totalg-variation of the functiory (xy,-) — f(z2,-) is less thar@.
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Theorem 3.1 (Special version of Theorem 6.3 inl[8]Let / be a function of boundeg —
and p,—bivariation such that for each andy in [0,1] f(x,0) = f(0,y) = 0. And for fixed

T1,22,Y1, Y2,

1 1
(AL) lg(z1,191) — g(@1,92) — 9(x2, 1) + 9(z2,92)| < |1 — 22|90 |y2 — 41|92

Then the Young-Stieltjes integral pfwvith respect tqy exists, provided that there exist positive
strictly increasing functiong andk, such that

0 womsm () () T () (2) =

To show that Theorem 1.2 implies Theofen 3.1, we must relate the congegihdf/-bivariation
to the concept gp — ¢ variation as defined by equatiorjs ([1.5) ahd[1.6). Following theorem is
the consequence of the results provefbjn(see Theorem 1.4 and Corollary 3.1[B]).

Theorem 3.2.[5]. If f is a function ofp; andp,-bivariation, then
(A2) LVia.pn) (f) + BVig ) (f) < 00

Further more ifp; < 2 thenRV|;, 2y is finite. Ifp; > 2 thenV,, (f) is finite. Similarly if
p2 < 2 then LV, 2y is finite. Ifp, > 2 thenV,,(f) is finite. Ifp; = p, = p < 2 then
V(Lp)(f) is finite. Ifp; = ps = p > 2 thenV,,(f) is finite.

24+p

W now examine the conditions given in Theorem 3.1. Condition,dhat is,

9(z1,91) — 9(21,y2) — (22, 1) + g(@2,92)| < |21 — 2| 7 [Y2 — V1|22
implies that
LV(QMIz)(g) + Rv((hm)(g) < Q.
The fact thatf vanishes on each axis implies that
11l = EVer (), [ fllmw,, = RV (F),

andHfHW(A) = V(,(f). Sinceh andk are decreasing functionﬂ (*) implies that

1 1 (%74%2)
(A3) h(n P2>§c - ,
n
wherec is a fixed universal constant. We also have,
_1 1 (%‘q%)
(A4) k(n m)gc — .
n

Sinceh(x)k(x) = z, (*) and the previous set of inequalities imply that,

1,1 pz_Lz) 141, m _Ll)

(E a1 ' praz  p1 (PQ CRETTTRR:
(#5) > (3) +3(3) < oo

n=1 n=1

On the other hand theorein (A2) implies that
(A6) L‘/(2,p1)(f) + R‘/(Q,p2)<f) < 0.

Consequently, if we want to use Theorem]| 1.2 to establish the existence of the Young-Stieltjes
integral of f with respect tg;, we must show that either

1 1 1 1
(A7) —+—>1 and -+ — > 1;

P G 2 @
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or
(A8) l+1>1 andl+l>1.

P2 G2 2 q
Sinceq; > andg, > 1, implies that1 + o> 1fori=1,2.If p; > 2then (A .) holds and
if py > 2 then H) holds. Also ift + 1 s 1, then ) holds. Suppose that< 2 fori = 1,2
and + L < 1. Now (A5 .) |mpI|es that

1 1
(A9) — 22y

P @1 P12 D1
This last inequality and the assumptionsanp. andg; (i.e.,1 < p; < 2 andi + qil <1),
imply that 5 + - > 1. Therefore) holds. This shows that Theo@ 1.2 implies Theorem

B.1.
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