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Abstract:

This paper deals with the second order boundary value problem with inte-
gral boundary conditions on a half-line:

(p(1)2' (1)) + g(8)f(1,2(1)) = 0, a.e. in(0,00),
20) = [ alslgo)ds, Jim p)a’ () = p(0)2'(0).

0
A new result on the existence of positive solutions is obtained. The in-
teresting points are: firstly, the boundary value problem involved in the
integral boundary condition on unbounded domains; secondly, we employ
a new tool — the recent Leggett-Williams norm-type theorem for coinci-
dences and obtain positive solutions. Also, an example is constructed to
illustrate that our result here is valid.
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1. Introduction

In this paper, we study the existence of positive solutions to the following boundary
value problem at resonance:

(1.1) (p(t)2'(t)) + g(t) f(t,z(t)) =0, a.e.in(0,00),
A2)  a0)= [ aleads Jim pe)e'() = pO)0)

whereg € L'[0,00) with g(t) > 0 on[0,00) and [, g(s)ds = 1, p € C[0,00) N
C'(0,00), ; € L'[0,00), [~ 5idt < 1andp(t) > 00on|0, c0).

Second-order boundary value problems (in short: BVPS) on infinite intervals,
arising from the study of radially symmetric solutions of nonlinear elliptic equations
and models of gas pressure in a semi-infinite porous mediln lhave received
much attention, to identify a few, we refer the readers9o{[11] and references
therein. For example, irf], Lian and Ge studied the following second-order BVPs
on a half-line

(1.3) 2"(t) = f(t,z(t),2'(t)), 0<t< oo,
(1.4) 2(0) = 2(n), Jim 2'(t) =0

and

(1.5) 2"(t) = f(t,z(t),2'(t)) + e(t), 0<t< oo,
L8 a0 =x(n), Jima(t)=0,

By using Mawhin’s continuity theorem, they obtained the existence results.
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N. Kosmanov in 1] considered the second-order nonlinear differential equation
at resonance

(1.7) (p(W)d' (1)) = f(t,ult), (1), ae.in(0,o0)

with two sets of boundary conditions:
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The author established existence theorems by the coincidence degree theorem of
Mawhin under the condition that " , x; = 1.

Although the existing literature on solutions of BVPs is quite wide, to the best < 4
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2. Related Lemmas

For the convenience of the reader, we review some standard facts on Fredholm oper-
ators and cones in Banach spaces.Xet” be real Banach spaces. Consider a linear
mappingL : dom L. C X — Y and a nonlinear operatd¥ : X — Y. Assume that

1° L is a Fredholm operator of index zero, i.em L is closed andlim Ker L =
codimIm L < oc.

The assumption©°limplies that there exist continuous projectiais X — X
and@ : Y — Y such thattm P = Ker L andKer @@ = Im L. Moreover, since
dim Im ) = codim Im L, there exists an isomorphish: Im ) — Ker L. Denote
by L, the restriction ofL to Ker P N dom L. Clearly, L, is an isomorphism from
Ker P N dom L to Im L, we denote its inverse b, : Im L — Ker P N dom L. It
is known (seeJ]) that the coincidence equatidic = Nz is equivalent to

r=(P+JQN)x+ Kp(I —Q)Nzx.

Let C be a cone inX such that
() px € Cforallx € C'andu > 0,
(il) z, —z € C'impliesz = 0.
It is well known thatC' induces a partial order iX by

x =y ifandonlyif y—zeC.
The following property is valid for every cone in a Banach sp&ce

Lemma 2.1 ([7]). LetC be a cone inX. Then for every, € C'\ {0} there exists a
positive numbes (u) such that

||z +ul| > o(u)||z|| forall zeC.
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Lety : X — C be aretraction, that is, a continuous mapping such-that = x
forallz € C'. Set

UV:=P+JON+K,(I -Q)N and VU, :=Vo~.
In order to prove the existence result, we present here a definition.
Definition 2.2. f : [0,00) x R — R is called ag-Carathéodory function if
(Al) for eachu € R, the mapping — f(¢,u) is Lebesgue measurable {ih o),
(A2) for a.e.t € [0, 00), the mapping: — f(t,u) is continuous orR,

(A3) for eachl > 0 andg € L'[0, ), there existsy, : [0, 00) — [0, 00) satisfying
I~ 9(s)au(s)ds < oo such that

lul <1 implies |f(t,u)] < at) fora.e. te[0,00).

We make use of the following result due to O’'Regan and Zima.

Theorem 2.3 ({]). LetC be a cone inX and let(2,, (2, be open bounded subsets
of X with Q; € Qy, andC' N (2, \ ;) # (. Assume thal® and the following
conditions hold.

2° N is L-compact, that isp) N : X — Y is continuous and bounded ag,(/ —
Q)N : X — X is compact on every bounded subseXof

3 Lz # ANz forallz € CNnoQ,NImLandX € (0,1),
4° ~ maps subsets 61, into bounded subsets ©f,

5° degp{[l — (P + JQN)7]|ker 1, Ker L N Q5,0} # 0, wheredeg, denotes the
Brouwer degree,
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6° there exists,, € C'\ {0} such that|z|| < o(u)||Vz|| for z € C(uo) N <Yy,
whereC(ug) = {z € C : puy =< « for somey > 0} ando(ug) such that
||z + uol| > o(uo)||z|| for everyz € C,

7 (P + JQN)Y(09) C C,

8 W, (Q\ Q) CC. B
Then the equatiofz = Nz has a solution in the se&t' N (€2, \ Q). Positive Solutions for BVP at
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3. Main Result

We work in the Banach spaces

(3.1) X = {x € C[0,00) : tlgglo x(t) eXiStS}
and
(3.2) Y = {y :[0,00) = R : /000 g()|y(t)|dt < oo}

with the normg|z||x = sup |z(¢)| and||y|ly = [;° g(¢)|y(t)|dt, respectively.
te[0,00)
Define the linear operatat : dom L C X — Y and the nonlinear operator
N : X — Y with

(3.3) domL = {az e X: tlirgop(t)x’(t) exists, x,pz’ € AC|0,00)
and gz, (pz') € L'[0,00),2(0) = /OO z(s)g(s)ds
0
and . Jim p(t)a’(r) = p(0)2'(0) |
by Lz(t) = —ﬁ(p(t)x'(t))’ andNz(t) = f(t,z(t)), t € [0, 00), respectively. Then
KerL={z €domL:x(t)=c onl0,00)}

and

ImL = {y ey : /Ooog(s)y(s)ds - o} .
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Next, define the projection® : X — X by (Px)( fo s)ds and @ :
Y — Y by

(Qu)(t) = / oog(S)y(s)ds.

Clearly,Im P = Ker L andKer@ = Im L. SodimKerL = 1 = dimIm@Q =
codim Im L. Notice thatim L is closed,L is a Fredholm operator of index zero.
Note that the invers&, : Im L — dom L N Ker P of L, is given by
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(3.4) k(t,s):= X
5 fU md’?’ fs fs deQ(T)dT, 0<t<s<o0. <« »
Itis easy to see thak(, s)| < 2 [~ ;i ds. < >
~Inorderto apply Theorern.3, we have to prove thal is L-compact, that isp N Page 10 of 20
is continuous and bounded ahg,(/ — Q)N is compact on every bounded subset of
X. Since the Arzela-Ascoli theorem fails in the noncompact interval case, we will Go Back
use the following criterion. Full Screen
Theorem 3.1 (fLQ]). Let M C {x € C[0,00) : hrn x(t) exists}. ThenM is rela- Close
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(B3) all functions from\/ are equiconvergent at infinity, that is, for any giver- 0,
there exists & = T'(¢) > 0 such that|f(t) — f(c0)| < e forall t > T and
feM.

Lemma 3.2.If f : [0,00) x R — R is a g-Carathéodory function, theiV is L-
compact.

Proof. Suppose thaf2 C X is a bounded set. Then there exists 0 such that
l|z|]|x < I forz € Q. Sincef is ag-Carathéodory function, there exists €
L'[0, 00) satisfyinga,(t) > 0, ¢ € (0,00) and [ g(s)ay(s)ds < oo such that for
a.e.t € [0, 00), |f(t,x(t))| < qu(t) for z € Q. Then forz € Q,

QN ||y = ] / ())ds

dt < / g(s)ay(s)ds < 0,
0

which implies that) N is bounded or.

Next, we show thaf{,(/ — Q)N is compact, i.e.K,(I — Q)N maps bounded
sets into relatively compact ones. Furthermore, defigtg = Kp(I — Q)N (see
[9], [11]). Forz € , one gets

(Krgoiol < [ \k(t,sm(s) {f<s,x<s>) - Oogmf(w(r))dr] ds

<o [ s [ | st aopias
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that is,KRQ(ﬁ) is uniformly bounded. Meanwhile, for any, ¢,
positive constant,

[(Kpqr)(t) — (Kpgz)(t2)|

5[] sttt stsats)

- [Tanatatir] as [* s

A et [ftsston - [ otristoatrar) as
/%/‘ o s {@W@»—Awﬂﬂﬂﬂﬂﬂﬂﬂd%
/.

€ [0, T]with T a

<2 [a / ]% [ sttt atlararas + [ o) p6ratrlar
- /0 " 4(s) /O s}% /0 " g(r)drdrds) - /: }%dr
" / o { / g (ry ()T + / g(r) / Oog(r)lf(r,x(r))ldrdf] ds
<[ ["sonratepiar+ [~ soism i [ gorar] / L
+2/Ooog(7*)|f(r,a:(r))|dr /: ]%df
< 4/000g(s)al(s)ds- /tt1 ]%dr — 0, uniformly as|t; — to| — 0,

,.\,
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which means thakr (9) is equicontinuous. In addition, we claim thidp o (Q) is
equiconvergent at infinity. In fact,

(KPQJJ)( )|

o0

(K pox)(oo
|18 ol [ ot lar]as- [

< / g

of mds [ / sl + [ o) [ alfratniinar] a

< 4/ g(s)a(s)ds - / ——dr — 0, uniformly ast — oo.
0 ¢ p(7)

Hence, Theorens.1 implies thatK,(I — Q)N (Q) is relatively compact. Further-
more, sincef satisfiegj-Carathéodory conditions, the continuity@fV and K ,(1 —

Q)N on( follows from the Lebesgue dominated convergence theorem. This com-
pletes the proof. O

Now, we state our main result on the existence of positive solutions for the BVP
(1.D)—(1.2.

Theorem 3.3. Assume that
(H1) f:[0,00) x R — R is ag-Carathéodory function,
(H2) there exist positive constants, b,, bs, ¢1, co, B with

b b S|
(3.5) B>—+2<m+ﬁ>/-—%s
C1 b101 bl 0 p(S)

Positive Solutions for BVP at
Resonance on a Half-Line

Aijun Yang and Weigao Ge
vol. 10, iss. 1, art. 9, 2009

Title Page
Contents
44 44
< >
Page 13 of 20
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

such that
—kx < f(t, x),
flt,x) < —c1x + e,
f<t7$) < _bl|f(t7$)‘ + b2$ + bd
fort € [0,00), z € [0, B],
(H3) there existb € (0,B), t, € [0,00), p € (0,1] andé € (0,1). For each
t € [0,00), L2 js non-increasing on: € (0, b] with

xP

(3.6) /000 G(to, s)g(s)@ds > 15—_/)5.

Then theBVP (1.1) — (1.2) has at least one positive solution @i co).
Proof. Consider the cone
C={zeX:z(t)>0 on [0,00)}.

Let
O ={zr e X :d|z|]|x <|z(t)) <b on [0,00)}

and
Q ={zr e X :||z||x < B}.

Clearly,2; and(2, are bounded and open sets and
O ={r € X :i||z||x <|z(t)]<b on [0,00)} CQy

(see f]). Moreover,C' N (2 \ ) # 0. LetJ = I and(vyz)(t) = |(t)| for z € X.
Then~ is a retraction and maps subsets{if into bounded subsets @f, which
means that 4holds.
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In order to prove 3 suppose that there exig € 02 N C'Ndom L and )\, €
(0,1) such thatLzy = ANz, then(p(t)zi(t)) + Xog(t)f(t, zo(t)) = 0 for all
t € [0,00). In view of (H2), we have

1 Ly 1 o
~3os® (p(t)xo(1)) = f(t,20(t)) < —b1w|(p(t)%(t)) |+ byzo(t) + bs.
Hence,
B7)  —(p)5(t) < ~bal (p(0)x5(1))] + Aabag(t)zo(t) + Aabsg ().

Integrating both sides oB(7) from 0 to oo, one gets
0=— [ oy
0
s—m/‘KM@%@WW#%%@/’g@mQMVa&@/ g(t)dt,
0 0 0

which gives

= b2 b5
(39) |ty < 3 [ amar+ 3
Similarly, from (H2), we also obtain
o] Co
(3.9) | st < 2

On the other hand,
(3.10) Zo :/ g(t

(3.11) /Ooog

t)dt + /000 k(t,s)(p(s)xy(s)) ds
ﬁ+Awmme@@%@wm.
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Then, 3.9)-(3.9) yield

bQCQ b3> /oo 1
= ||z < — + 2 + = —ds,
= Ileollx (5101 bi) Jo p(s)

which contradicts{.5). B
To prove 5, considerr € Ker L N ,. Thenz(t) = con |0, 00). Let

H(e,\) =c— M| — )\/Ooog(s)f(s, |c|)ds

forc € [-B, Bl andX € [0, 1]. Itis easy to show thdt = H(c, ) impliesc > 0.
Supposé) = H (B, \) for some\ € (0,1]. Then, ¢8.5) leads to

0<B(l-)\) = )\/OO g(s)f(s,B)ds < A(—c1B + ¢2) <0,
0

which is a contradiction. In addition, ¥ = 0, then B = 0, which is impossible.

Thus,H (xz,\) # 0 for x € Ker L N 90, and X € [0, 1]. As a result,
degp{H(-,1),Ker LNy, 0} = degp{H(-,0),Ker L Ny, 0}.
However,
degp{H(-,0),Ker LNy, 0} =degg{l,Ker LNy, 0} = 1.
Then,

degp{[l — (P 4+ JOQN)Y|ker, Ker LN Qs 0} = degg{H(-, 1), Ker LNy, 0} # 0.
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Next, we prove 8 Letz € Q, \ ©; andt € [0, 00),

)0 = [ gls)lals >rds+/ ()5 la(s) s

+ {f g(7) f (7, |x(T)|)dT| ds
O
o0 Positive Solutions for BVP at
:/ g( )|£L‘( )|d8—|—/ G(t,S)g( ) ( ,|IL’( )|)d8 Resonance on a Half-Line
0 0o 0 Aijun Yang and Weigao Ge
Z / (1 _ IiG(t, S))g(S)|LL’(S)|dS Z O vol. 10, iss. 1, art. 9, 2009
0
Hence, ¥, (0 \ Q) C C,i.e. & holds. Title Page
Since forz € 0925,
o o Contents
(P+IQNy = [ gola(e)lds + [ g(s)1(s.la(s))ds S
0 0
> [ nglsslds 20, I
0 Page 17 of 20
then,(P + JQN)~x C C for x € 99,, and P holds. o Back
It remains to verify 6. Letuy(t) = 1 on[0,00). Thenuy € C'\ {0}, C(up) = 0 Bac
{z € C:z(t) >0 on [0,00)} and we can take(ug) = 1. Letz € C(ug) N 98;. Full Screen
Thenz(t) > 0on[0,00), 0 < ||z||x < bandz(t) > d||z||x on[0,c0). For every
z € C(ug) N Oy, by (H3) Close
&0 & journal of inequalities
(Wa)(to) = [ gl)aloyds + [ Gt s)al) (s, a(s))ds in pure and applied
0 o 0 F(5.2(5)) mathematics
> dlall+ [ Glto, ()T s)ds
0 zP(s)
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o b
> el + 8l [ Gl )g() 1 as
0

bP

bl=r o0 s, b
bl + #lells s [ 6 ot e

J(s,0
> el + lelly [ Glto,s)at) 75 s > falls
0 Positive Solutions for BVP at
Thus,||z||x < o(uo)||Pz||x forall z € C(ug) N L. reseema e
In addition, T holds and Lemma&.2yields 2. Then, by Theorer.3, the BVP “Iu'loa_"galn te;gzoog
(1.1) — (1.2) has at least one positive solutieh on [0, co) with b < ||z*]|x < B. OB R AR
This completes the proof of Theoreirs. O
Remarkl. Note that with the projectioP(x) = x(0), Conditions 7 and 8 of Title Page
Theorem2.3are no longer satisfied. Contents
To illustrate how our main result can be used in practice, we present here an py )
example.
Example3.1 Consider the following BVP < >
2(etx(t)) + e tf(t,z(t)) =0, a.e.in(0,0c0), Page 18 of 20
3.12
(312) 2'(0) = tlg& e'x'(t), x(0) = [ e *x(s)ds. Go Back
. Full Screen
Corresponding to the BVPL()) — (1.2), p(t) = 2¢', g(t) = e and f(t,z) =
(t — 3)e 'z + e~'z% We can gety = 1 and Close
(3.13) G(t,s) journal of inequalities
13 | 1(,—t _ q,—s 1(,-2t —25\ _ 1 _—(t+2s) < o< in pure and applied
_ 5 T gle 3e7%) + 3(e7 +2e7%) — ge , 0<s<t< o0, mathematics
% _ %6 + All(eth + 26725) _ %ef(tJrZs)7 0<t<s<o0. issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

Obviously, G(t,s) > 0 for t,s € [0,400). Choosex = 3, B = 5, ¢1 = £,
¢y = Le73, b = 1, by = 3 andby = 3e73 such that (H2) holds, and take= 2,
to=0,p=1andé = g such that (H3) is satisfied. Then thanks to TheoBefnthe

BVP (3.12) has a positive solution 0j0, co).
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