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Abstract: This paper deals with the second order boundary value problem with inte-
gral boundary conditions on a half-line:

(p(t)x′(t))′ + g(t)f(t, x(t)) = 0, a.e. in(0,∞),

x(0) =
∫ ∞

0

x(s)g(s)ds, lim
t→∞

p(t)x′(t) = p(0)x′(0).

A new result on the existence of positive solutions is obtained. The in-
teresting points are: firstly, the boundary value problem involved in the
integral boundary condition on unbounded domains; secondly, we employ
a new tool – the recent Leggett-Williams norm-type theorem for coinci-
dences and obtain positive solutions. Also, an example is constructed to
illustrate that our result here is valid.
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1. Introduction

In this paper, we study the existence of positive solutions to the following boundary
value problem at resonance:

(1.1) (p(t)x′(t))′ + g(t)f(t, x(t)) = 0, a.e.in(0,∞),

(1.2) x(0) =

∫ ∞

0

x(s)g(s)ds, lim
t→∞

p(t)x′(t) = p(0)x′(0),

whereg ∈ L1[0,∞) with g(t) > 0 on [0,∞) and
∫∞

0
g(s)ds = 1, p ∈ C[0,∞) ∩

C1(0,∞), 1
p
∈ L1[0,∞),

∫∞
0

1
p(t)

dt ≤ 1 andp(t) > 0 on [0,∞).
Second-order boundary value problems (in short: BVPs) on infinite intervals,

arising from the study of radially symmetric solutions of nonlinear elliptic equations
and models of gas pressure in a semi-infinite porous medium [10], have received
much attention, to identify a few, we refer the readers to [9] – [11] and references
therein. For example, in [9], Lian and Ge studied the following second-order BVPs
on a half-line

x′′(t) = f(t, x(t), x′(t)), 0 < t < ∞,(1.3)

x(0) = x(η), lim
t→∞

x′(t) = 0(1.4)

and

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < ∞,(1.5)

x(0) = x(η), lim
t→∞

x′(t) = 0,(1.6)

By using Mawhin’s continuity theorem, they obtained the existence results.
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N. Kosmanov in [11] considered the second-order nonlinear differential equation
at resonance

(1.7) (p(t)u′(t))′ = f(t, u(t), u′(t)), a.e. in(0,∞)

with two sets of boundary conditions:

(1.8) u′(0) = 0,
n∑

i=1

κiui(Ti) = lim
t→∞

u(t)

and

(1.9) u(0) = 0,
n∑

i=1

κiui(Ti) = lim
t→∞

u(t).

The author established existence theorems by the coincidence degree theorem of
Mawhin under the condition that

∑n
i=1 κi = 1.

Although the existing literature on solutions of BVPs is quite wide, to the best
of our knowledge, only a few papers deal with the existence of positive solutions
to BVPs at resonance. In particular, there has been no work done for the boundary
value problems with integral boundary conditions on a half-line, such as the BVP
(1.1) – (1.2). Moreover, our main approach is different from the existing ones and
our main ingredient is the Leggett-Williams norm-type theorem for coincidences
obtained by O’Regan and Zima [4], which is a new tool used to study the existence
of positive solutions for nonlocal BVPs at resonance. An example is constructed to
illustrate that our result here is valid and almost sharp.
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2. Related Lemmas

For the convenience of the reader, we review some standard facts on Fredholm oper-
ators and cones in Banach spaces. LetX, Y be real Banach spaces. Consider a linear
mappingL : dom L ⊂ X → Y and a nonlinear operatorN : X → Y . Assume that
1◦ L is a Fredholm operator of index zero, i.e.,Im L is closed anddim Ker L =
codim Im L < ∞.

The assumption 1◦ implies that there exist continuous projectionsP : X → X
andQ : Y → Y such thatIm P = Ker L andKer Q = Im L. Moreover, since
dim Im Q = codim Im L, there exists an isomorphismJ : Im Q → Ker L. Denote
by Lp the restriction ofL to Ker P ∩ dom L. Clearly,Lp is an isomorphism from
Ker P ∩ dom L to Im L, we denote its inverse byKp : Im L → Ker P ∩ dom L. It
is known (see [3]) that the coincidence equationLx = Nx is equivalent to

x = (P + JQN)x + KP (I −Q)Nx.

Let C be a cone inX such that
(i) µx ∈ C for all x ∈ C andµ ≥ 0,
(ii) x,−x ∈ C impliesx = θ.

It is well known thatC induces a partial order inX by

x � y if and only if y − x ∈ C.

The following property is valid for every cone in a Banach spaceX.

Lemma 2.1 ([7]). Let C be a cone inX. Then for everyu ∈ C \ {0} there exists a
positive numberσ(u) such that

||x + u|| ≥ σ(u)||x|| for all x ∈ C.
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Let γ : X → C be a retraction, that is, a continuous mapping such thatγ(x) = x
for all x ∈ C. Set

Ψ := P + JQN + Kp(I −Q)N and Ψγ := Ψ ◦ γ.

In order to prove the existence result, we present here a definition.

Definition 2.2. f : [0,∞)× R → R is called ag-Carath́eodory function if

(A1) for eachu ∈ R, the mappingt 7→ f(t, u) is Lebesgue measurable on[0,∞),

(A2) for a.e.t ∈ [0,∞), the mappingu 7→ f(t, u) is continuous onR,

(A3) for eachl > 0 andg ∈ L1[0,∞), there existsαl : [0,∞) → [0,∞) satisfying∫∞
0

g(s)αl(s)ds < ∞ such that

|u| ≤ l implies |f(t, u)| ≤ αl(t) for a.e. t ∈ [0,∞).

We make use of the following result due to O’Regan and Zima.

Theorem 2.3 ([4]). Let C be a cone inX and letΩ1, Ω2 be open bounded subsets
of X with Ω1 ⊂ Ω2 and C ∩ (Ω2 \ Ω1) 6= ∅. Assume that1◦ and the following
conditions hold.

2◦ N is L-compact, that is,QN : X → Y is continuous and bounded andKp(I−
Q)N : X → X is compact on every bounded subset ofX,

3◦ Lx 6= λNx for all x ∈ C ∩ ∂Ω2 ∩ Im L andλ ∈ (0, 1),

4◦ γ maps subsets ofΩ2 into bounded subsets ofC,

5◦ degB{[I − (P + JQN)γ]|Ker L, Ker L ∩ Ω2, 0} 6= 0, wheredegB denotes the
Brouwer degree,
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6◦ there existsu0 ∈ C \ {0} such that||x|| ≤ σ(u0)||Ψx|| for x ∈ C(u0) ∩ ∂Ω1,
whereC(u0) = {x ∈ C : µu0 � x for someµ > 0} and σ(u0) such that
||x + u0|| ≥ σ(u0)||x|| for everyx ∈ C,

7◦ (P + JQN)γ(∂Ω2) ⊂ C,

8◦ Ψγ(Ω2 \ Ω1) ⊂ C.
Then the equationLx = Nx has a solution in the setC ∩ (Ω2 \ Ω1).

For simplicity of notation, we set

(2.1) ω :=

∫ ∞

0

(∫ s

0

1

p(τ)
dτ

)
g(s)ds

and

G(t, s) =



1
ω

∫ t

0
1

p(τ)
dτ

[∫∞
s

1
p(τ)

∫∞
τ

g(r)drdτ

−
∫∞

0
1

p(τ)

∫∞
τ

g(r)dr
∫ τ

0
g(r)drdτ

]
+1 +

∫ t

0
1

p(τ)

∫ τ

0
g(r)drdτ −

∫ t

s
1

p(τ)
dτ, 0 ≤ s < t < ∞,

1
ω

∫ t

0
1

p(τ)
dτ

[∫∞
s

1
p(τ)

∫∞
τ

g(r)drdτ

−
∫∞

0
1

p(τ)

∫∞
τ

g(r)dr
∫ τ

0
g(r)drdτ

]
+1 +

∫ t

0
1

p(τ)

∫ τ

0
g(r)drdτ, 0 ≤ t ≤ s < ∞.

Note thatG(t, s) ≥ 0 for t, s ∈ [0, 1], and set

(2.2) 0 < κ ≤ min

1,
1

sup
t,s∈[0,∞)

G(t, s)

 .
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3. Main Result

We work in the Banach spaces

(3.1) X =
{

x ∈ C[0,∞) : lim
t→∞

x(t) exists
}

and

(3.2) Y =

{
y : [0,∞) → R :

∫ ∞

0

g(t)|y(t)|dt < ∞
}

with the norms||x||X = sup
t∈[0,∞)

|x(t)| and||y||Y =
∫∞

0
g(t)|y(t)|dt, respectively.

Define the linear operatorL : dom L ⊂ X → Y and the nonlinear operator
N : X → Y with

(3.3) dom L =
{

x ∈ X : lim
t→∞

p(t)x′(t) exists, x, px′ ∈ AC[0,∞)

and gx, (px′)′ ∈ L1[0,∞), x(0) =

∫ ∞

0

x(s)g(s)ds

and lim
t→∞

p(t)x′(t) = p(0)x′(0)
}

by Lx(t) = − 1
g(t)

(p(t)x′(t))′ andNx(t) = f(t, x(t)), t ∈ [0,∞), respectively. Then

Ker L = {x ∈ dom L : x(t) ≡ c on [0,∞)}

and

Im L =

{
y ∈ Y :

∫ ∞

0

g(s)y(s)ds = 0

}
.
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Next, define the projectionsP : X → X by (Px)(t) =
∫∞

0
g(s)x(s)ds andQ :

Y → Y by

(Qy)(t) =

∫ ∞

0

g(s)y(s)ds.

Clearly, Im P = Ker L andKer Q = Im L. So dim Ker L = 1 = dim Im Q =
codim Im L. Notice thatIm L is closed,L is a Fredholm operator of index zero.

Note that the inverseKp : Im L → dom L ∩Ker P of Lp is given by

(Kpy)(t) =

∫ ∞

0

k(t, s)g(s)y(s)ds,

where

(3.4) k(t, s) :=


1
ω

∫ t

0
1

p(τ)
dτ

∫∞
s

∫ τ

s
1

p(r)
drg(τ)dτ −

∫ t

s
1

p(τ)
dτ, 0≤s<t<∞,

1
ω

∫ t

0
1

p(τ)
dτ

∫∞
s

∫ τ

s
1

p(r)
drg(τ)dτ, 0≤ t≤s<∞.

It is easy to see that|k(t, s)| ≤ 2
∫∞

0
1

p(s)
ds.

In order to apply Theorem2.3, we have to prove thatN is L-compact, that is,QN
is continuous and bounded andKp(I −Q)N is compact on every bounded subset of
X. Since the Arzelà-Ascoli theorem fails in the noncompact interval case, we will
use the following criterion.

Theorem 3.1 ([10]). Let M ⊂
{

x ∈ C[0,∞) : lim
t→∞

x(t) exists
}

. ThenM is rela-

tively compact if the following conditions hold:

(B1) all functions fromM are uniformly bounded,

(B2) all functions fromM are equicontinuous on any compact interval of[0,∞),
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(B3) all functions fromM are equiconvergent at infinity, that is, for any givenε > 0,
there exists aT = T (ε) > 0 such that|f(t) − f(∞)| < ε for all t > T and
f ∈ M .

Lemma 3.2. If f : [0,∞) × R → R is a g-Carathéodory function, thenN is L-
compact.

Proof. Suppose thatΩ ⊂ X is a bounded set. Then there existsl > 0 such that
||x||X ≤ l for x ∈ Ω. Sincef is a g-Carathéodory function, there existsαl ∈
L1[0,∞) satisfyingαl(t) > 0, t ∈ (0,∞) and

∫∞
0

g(s)αl(s)ds < ∞ such that for
a.e.t ∈ [0,∞), |f(t, x(t))| ≤ αl(t) for x ∈ Ω. Then forx ∈ Ω,

||QNx||Y =

∫ ∞

0

g(t)

∣∣∣∣∫ ∞

0

g(s)f(s, x(s))ds

∣∣∣∣ dt ≤
∫ ∞

0

g(s)αl(s)ds < ∞,

which implies thatQN is bounded onΩ.
Next, we show thatKp(I − Q)N is compact, i.e.,Kp(I − Q)N maps bounded

sets into relatively compact ones. Furthermore, denoteKP,Q = KP (I − Q)N (see
[9], [11]). For x ∈ Ω, one gets

|(KP,Qx)(t)| ≤
∫ ∞

0

∣∣∣∣k(t, s)g(s)

[
f(s, x(s))−

∫ ∞

0

g(τ)f(τ, x(τ))dτ

]∣∣∣∣ ds

≤ 2

∫ ∞

0

1

p(τ)
dτ

[∫ ∞

0

g(s)|f(s, x(s))|ds

+

∫ ∞

0

g(s)

∫ ∞

0

g(τ)|f(τ, x(τ))|dτds

]
≤ 4

∫ ∞

0

1

p(τ)
dτ

∫ ∞

0

g(s)αl(s)ds < ∞,
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that is,KP,Q(Ω) is uniformly bounded. Meanwhile, for anyt1, t2 ∈ [0, T ] with T a
positive constant,

|(KP,Qx)(t1)− (KP,Qx)(t2)|

=

∣∣∣∣ 1

ω

∫ ∞

0

∫ ∞

s

∫ τ

s

1

p(r)
drg(τ)dτg(s)

[
f(s, x(s))

−
∫ ∞

0

g(τ)f(τ, x(τ))dτ

]
ds

∫ t1

t2

1

p(τ)
dτ

−
{∫ t1

0

∫ t1

s

1

p(τ)
dτg(s)

[
f(s, x(s))−

∫ ∞

0

g(τ)f(τ, x(τ))dτ

]
ds

−
∫ t2

0

∫ t2

s

1

p(τ)
dτg(s)

[
f(s, x(s))−

∫ ∞

0

g(τ)f(τ, x(τ))dτ

]
ds

}∣∣∣∣
≤ 1

ω

[∫ ∞

0

g(s)

∫ s

0

1

p(τ)

∫ τ

0

g(r)|f(r, x(r))|drdτds +

∫ ∞

0

g(τ)|f(τ, x(τ))|dτ

·
∫ ∞

0

g(s)

∫ s

0

1

p(τ)

∫ τ

0

g(r)drdτds] ·
∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣
+

∣∣∣∣∫ t1

t2

1

p(s)

[∫ s

0

g(τ)|f(τ, x(τ))|dτ +

∫ s

0

g(τ)

∫ ∞

0

g(r)|f(r, x(r))|drdτ

]
ds

∣∣∣∣
≤

[∫ ∞

0

g(r)|f(r, x(r))|dr +

∫ ∞

0

g(τ)|f(τ, x(τ))|dτ ·
∫ ∞

0

g(r)dr

] ∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣
+ 2

∫ ∞

0

g(r)|f(r, x(r))|dr

∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣
≤ 4

∫ ∞

0

g(s)αl(s)ds ·
∣∣∣∣∫ t1

t2

1

p(τ)
dτ

∣∣∣∣ → 0, uniformly as|t1 − t2| → 0,
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which means thatKP,Q(Ω) is equicontinuous. In addition, we claim thatKP,Q(Ω) is
equiconvergent at infinity. In fact,

|(KP,Qx)(∞)− (KP,Qx)(t)|

≤ 1

ω

∫ ∞

0

∫ ∞

s

∫ τ

s

1

p(r)
drg(τ)dτg(s)

[
|f(s, x(s))|+

∫ ∞

0

g(τ)|f(τ, x(τ))|dτ

]
ds·

∫ ∞

t

1

p(τ)
dτ

+

∫ ∞

t

1

p(s)
ds

[∫ s

0

g(τ)|f(τ, x(τ)|dτ +

∫ s

0

g(τ)

∫ ∞

0

g(r)|f(r, x(r))|drdτ

]
ds

≤ 4

∫ ∞

0

g(s)αl(s)ds ·
∫ ∞

t

1

p(τ)
dτ → 0, uniformly ast →∞.

Hence, Theorem3.1 implies thatKp(I − Q)N(Ω) is relatively compact. Further-
more, sincef satisfiesg-Carathéodory conditions, the continuity ofQN andKp(I−
Q)N on Ω follows from the Lebesgue dominated convergence theorem. This com-
pletes the proof.

Now, we state our main result on the existence of positive solutions for the BVP
(1.1) – (1.2).

Theorem 3.3.Assume that

(H1) f : [0,∞)× R → R is ag-Carathéodory function,

(H2) there exist positive constantsb1, b2, b3, c1, c2, B with

(3.5) B >
c2

c1

+ 2

(
b2c2

b1c1

+
b3

b1

) ∫ ∞

0

1

p(s)
ds
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such that

−κx ≤ f(t, x),

f(t, x) ≤ −c1x + c2,

f(t, x) ≤ −b1|f(t, x)|+ b2x + b3

for t ∈ [0,∞), x ∈ [0, B],

(H3) there existb ∈ (0, B), t0 ∈ [0,∞), ρ ∈ (0, 1] and δ ∈ (0, 1). For each
t ∈ [0,∞), f(t,x)

xρ is non-increasing onx ∈ (0, b] with

(3.6)
∫ ∞

0

G(t0, s)g(s)
f(s, b)

b
ds ≥ 1− δ

δρ
.

Then theBVP (1.1) – (1.2) has at least one positive solution on[0,∞).

Proof. Consider the cone

C = {x ∈ X : x(t) ≥ 0 on [0,∞)}.

Let
Ω1 = {x ∈ X : δ||x||X < |x(t)| < b on [0,∞)}

and
Ω2 = {x ∈ X : ||x||X < B}.

Clearly,Ω1 andΩ2 are bounded and open sets and

Ω1 = {x ∈ X : δ||x||X ≤ |x(t)| ≤ b on [0,∞)} ⊂ Ω2

(see [4]). Moreover,C ∩ (Ω2 \Ω1) 6= ∅. Let J = I and(γx)(t) = |x(t)| for x ∈ X.
Thenγ is a retraction and maps subsets ofΩ2 into bounded subsets ofC, which
means that 4◦ holds.
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In order to prove 3◦, suppose that there existx0 ∈ ∂Ω2 ∩ C ∩ dom L andλ0 ∈
(0, 1) such thatLx0 = λ0Nx0, then (p(t)x′0(t))

′ + λ0g(t)f(t, x0(t)) = 0 for all
t ∈ [0,∞). In view of (H2), we have

− 1

λ0g(t)
(p(t)x′0(t))

′ = f(t, x0(t)) ≤ −b1
1

λ0g(t)
|(p(t)x′0(t))

′|+ b2x0(t) + b3.

Hence,

(3.7) −(p(t)x′0(t))
′ ≤ −b1|(p(t)x′0(t))

′|+ λ0b2g(t)x0(t) + λ0b3g(t).

Integrating both sides of (3.7) from 0 to∞, one gets

0 = −
∫ ∞

0

(p(t)x′0(t))
′dt

≤ −b1

∫ ∞

0

|(p(t)x′0(t))
′|dt + λ0b2

∫ ∞

0

g(t)x0(t)dt + λ0b3

∫ ∞

0

g(t)dt,

which gives

(3.8)
∫ ∞

0

|(p(t)x′0(t))
′|dt <

b2

b1

∫ ∞

0

g(t)x0(t)dt +
b3

b1

.

Similarly, from (H2), we also obtain

(3.9)
∫ ∞

0

g(t)x0(t)dt ≤ c2

c1

.

On the other hand,

x0(t) =

∫ ∞

0

g(t)x0(t)dt +

∫ ∞

0

k(t, s)(p(s)x′0(s))
′ds(3.10)

≤
∫ ∞

0

g(t)x0(t)dt +

∫ ∞

0

|k(t, s)| · |(p(s)x′0(s))
′|ds.(3.11)
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Then, (3.8)-(3.9) yield

B = ||x0||X ≤ c2

c1

+ 2

(
b2c2

b1c1

+
b3

b1

) ∫ ∞

0

1

p(s)
ds,

which contradicts (3.5).
To prove 5◦, considerx ∈ Ker L ∩ Ω2. Thenx(t) ≡ c on [0,∞). Let

H(c, λ) = c− λ|c| − λ

∫ ∞

0

g(s)f(s, |c|)ds

for c ∈ [−B, B] andλ ∈ [0, 1]. It is easy to show that0 = H(c, λ) impliesc ≥ 0.
Suppose0 = H(B, λ) for someλ ∈ (0, 1]. Then, (3.5) leads to

0 ≤ B(1− λ) = λ

∫ ∞

0

g(s)f(s, B)ds ≤ λ(−c1B + c2) < 0,

which is a contradiction. In addition, ifλ = 0, thenB = 0, which is impossible.
Thus,H(x, λ) 6= 0 for x ∈ Ker L ∩ ∂Ω2 andλ ∈ [0, 1]. As a result,

degB{H(·, 1), Ker L ∩ Ω2, 0} = degB{H(·, 0), Ker L ∩ Ω2, 0}.

However,

degB{H(·, 0), Ker L ∩ Ω2, 0} = degB{I, Ker L ∩ Ω2, 0} = 1.

Then,

degB{[I− (P +JQN)γ]Ker L, Ker L∩Ω2, 0} = degB{H(·, 1), Ker L∩Ω2, 0} 6= 0.
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Next, we prove 8◦. Let x ∈ Ω2 \ Ω1 andt ∈ [0,∞),

(Ψγx)(t) =

∫ ∞

0

g(s)|x(s)|ds +

∫ ∞

0

g(s)f(s, |x(s)|)ds

+

∫ ∞

0

k(t, s)g(s)

[
f(s, |x(s)|)−

∫ ∞

0

g(τ)f(τ, |x(τ)|)dτ

]
ds

=

∫ ∞

0

g(s)|x(s)|ds +

∫ ∞

0

G(t, s)g(s)f(s, |x(s)|)ds

≥
∫ ∞

0

(1− κG(t, s))g(s)|x(s)|ds ≥ 0.

Hence,Ψγ(Ω2 \ Ω1) ⊂ C, i.e. 8◦ holds.
Since forx ∈ ∂Ω2,

(P + JQN)γx =

∫ ∞

0

g(s)|x(s)|ds +

∫ ∞

0

g(s)f(s, |x(s)|)ds

≥
∫ ∞

0

(1− κ)g(s)|x(s)|ds ≥ 0,

then,(P + JQN)γx ⊂ C for x ∈ ∂Ω2, and 7◦ holds.
It remains to verify 6◦. Let u0(t) ≡ 1 on [0,∞). Thenu0 ∈ C \ {0}, C(u0) =

{x ∈ C : x(t) > 0 on [0,∞)} and we can takeσ(u0) = 1. Let x ∈ C(u0) ∩ ∂Ω1.
Thenx(t) > 0 on [0,∞), 0 < ||x||X ≤ b andx(t) ≥ δ||x||X on [0,∞). For every
x ∈ C(u0) ∩ ∂Ω1, by (H3)

(Ψx)(t0) =

∫ ∞

0

g(s)x(s)ds +

∫ ∞

0

G(t0, s)g(s)f(s, x(s))ds

≥ δ||x||X +

∫ ∞

0

G(t0, s)g(s)
f(s, x(s))

xρ(s)
xρ(s)ds
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≥ δ||x||X + δρ||x||ρX
∫ ∞

0

G(t0, s)g(s)
f(s, b)

bρ
ds

= δ||x||X + δρ||x||X
b1−ρ

||x||1−ρ
X

∫ ∞

0

G(t0, s)g(s)
f(s, b)

b
ds

≥ δ||x||X + δρ||x||X
∫ ∞

0

G(t0, s)g(s)
f(s, b)

b
ds ≥ ||x||X .

Thus,||x||X ≤ σ(u0)||Ψx||X for all x ∈ C(u0) ∩ ∂Ω1.
In addition, 1◦ holds and Lemma3.2yields 2◦. Then, by Theorem2.3, the BVP

(1.1) – (1.2) has at least one positive solutionx∗ on [0,∞) with b ≤ ||x∗||X ≤ B.
This completes the proof of Theorem3.3.

Remark1. Note that with the projectionP (x) = x(0), Conditions 7◦ and 8◦ of
Theorem2.3are no longer satisfied.

To illustrate how our main result can be used in practice, we present here an
example.
Example3.1. Consider the following BVP

(3.12)

 2(etx′(t))′ + e−tf(t, x(t)) = 0, a.e. in(0,∞),

x′(0) = lim
t→∞

etx′(t), x(0) =
∫∞

0
e−sx(s)ds.

Corresponding to the BVP (1.1) – (1.2), p(t) = 2et, g(t) = e−t and f(t, x) =
(t− 1

2
)e−2tx + e−tx2. We can getω = 1

4
and

(3.13) G(t, s)

=

{ 13
12

+ 1
6
(e−t − 3e−s) + 1

4
(e−2t + 2e−2s)− 1

2
e−(t+2s), 0 ≤ s ≤ t < ∞,

13
12
− 1

3
e−t + 1

4
(e−2t + 2e−2s)− 1

2
e−(t+2s), 0 ≤ t ≤ s < ∞.
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Obviously, G(t, s) ≥ 0 for t, s ∈ [0, +∞). Chooseκ = 1
2
, B = 5, c1 = 2

5
,

c2 = 1
2
e−

3
2 , b1 = 1

2
, b2 = 3

2
andb3 = 3

2
e−

3
2 such that (H2) holds, and takeb = 5

4
,

t0 = 0, ρ = 1 andδ = 4
9

such that (H3) is satisfied. Then thanks to Theorem3.3, the
BVP (3.12) has a positive solution on[0,∞).
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