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1. Introduction

Some papers, see [1], [2] and [5], have dealt with the equivalence of coefficient
conditions, e.g. in [3] it was proved that two conditions which guarantee that a factor-
sequence should be a Weyl multiplier for a certain property of a given orthogonal
series is equivalent to one assumption. An example of these results is the following
general theorem proved in [2].

Theorem 1.1.Let0 < p < q, {λn} and{cn} be sequences of nonnegative numbers,
furthermore letΛn :=

∑n
k=1 λk. The inequality

(1.1) S11 :=
∞∑

n=1

λn

(
∞∑

k=n

cq
k

) p
q

<∞

holds if and only if there exists a nondecreasing sequence{µn} of positive numbers
satisfying the following conditions

(1.2) S12 :=
∞∑

n=1

cq
nµn <∞

and

(1.3) S13 :=
∞∑

n=1

λn

(
Λn

µn

) p
q−p

<∞.

In the special casep = 1, q = 2, with an andλ−1
n in the place ofcn andλn, the

author in [3] showed that if

(1.4) µn := Λn C−1
n , where Cn :=

(
∞∑

k=n

c2
k

) 1
2

,

http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au


Equivalence of Coefficient
Conditions

L. Leindler

vol. 8, iss. 1, art. 8, 2007

Title Page

Contents

JJ II

J I

Page 4 of 12

Go Back

Full Screen

Close

then (1.1) implies (1.2) and (1.3).
In this special case it is easy to see that ifεn → 0, then withµ∗n := εnµn in place

of µn, the condition (1.2) is also satisfied, but it can be that

(1.5)
∞∑

n=1

λn
Λn

µ∗n
=∞

will occur.
This raises the question: Do (1.2) and (1.5) with the sequence{µ∗n} also imply

(1.1) for arbitrary{cn}? In [3] we showed that the answer is negative. In other
words, this verified the necessity of condition (1.3).

This shows that condition (1.2), in general, does not imply the inequality (1.3).
Thus, we can ask, promptly in connection with the general case considered in

Theorem1.1: What is the "optimal sequence{µn}" when (1.2) implies (1.3) and
conversely?

We shall show that the optimal sequence is

(1.6) µn := Λn Cp−q
n , where Cn :=

(
∞∑

k=n

cq
k

) 1
q

,

and with this{µn} (1.2) holds if and only if (1.3) also holds, that is, the assumptions
(1.2) and (1.3) are equivalent.

Since the following symmetrical analogue of Theorem1.1 was also verified in
[2], therefore we shall set the same question pertaining to the series appearing in it.

Theorem 1.2. If p, q, {λn} and {cn} are as in Theorem1.1, furthermoreΛ̃n :=∑∞
k=n λk, then

(1.7) S17 :=
∞∑

m=1

λm

(
m∑

k=1

cq
k

) p
q

<∞

http://jipam.vu.edu.au
mailto:leindler@math.u-szeged.hu
http://jipam.vu.edu.au


Equivalence of Coefficient
Conditions

L. Leindler

vol. 8, iss. 1, art. 8, 2007

Title Page

Contents

JJ II

J I

Page 5 of 12

Go Back

Full Screen

Close

holds if and only if there exists a nondecreasing sequence{µn} of positive numbers
satisfying conditions (1.2) and

(1.8) S18 :=
∞∑

n=1

λn

(
Λ̃n

µn

) p
q−p

<∞.

In order to verify our assertions made above, first we shall prove two theorems
regarding the equiconvergence of two special series.
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2. Results

We prove the following assertions.

Theorem 2.1.Let0 < α < 1, {an} and{λn} be sequences of nonnegative numbers,
furthermore letΛn :=

∑n
k=1 λk, An :=

∑∞
k=n ak andµn := Λn Aα−1

n . Then the sum

(2.1) S21 :=
∞∑

n=1

anµn <∞

if and only if

(2.2) S22 :=
∞∑

n=1

λn Aα
n <∞.

Theorem 2.2. If α, {an} and {λn} are as in Theorem2.1, furthermoreΛ̃n :=∑∞
k=n λk, Ãn :=

∑n
k=1 ak, Ã0 := 0, andµ̃n := Λ̃nÃ

α−1
n , then

(2.3) S23 :=
∞∑

n=1

anµ̃n <∞

if and only if

(2.4) S24 :=
∞∑

n=1

λnÃ
α
n <∞.

Corollary 2.3. If p, q, {λn}, {cn} andΛn are as in Theorem1.1, andµn is defined
in (1.6), then the sums in (1.1), (1.2) and (1.3) are equiconvergent.
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Corollary 2.4. If p, q, {λn}, {cn} andΛ̃n are as in Theorem1.2, furthermore

µn := Λ̃nC̃
p−q
n , where C̃n :=

(
n∑

k=1

cq
k

) 1
q

,

then the sums in (1.2), (1.7) and (1.8) are equiconvergent.

Remark1. Corollary 2.3 shows that if (1.1) implies a certain property of a fixed
orthogonal series

∑∞
n=1 cnϕn(x), then there is no exact universal Weyl multiplier

concerning this property, namely the multiplier sequence{µn} depends on{cn}.
Remark2. The interested reader can check that the proofs of the implications (1.1)⇒(1.2)
and (1.7)⇒(1.2) given by our corollaries are shorter than those in [2].

Remark3. As far as we know, Y. Okuyama and T. Tsuchikara [4]were the first to
study conditions of the type (1.7).
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3. Proofs

Proof of Theorem2.1. First we show that (2.1) implies (2.2). SinceAn → 0, then

∞∑
n=1

λn Aα
n =

∞∑
n=1

λn

∞∑
m=n

(Aα
m − Aα

m+1)(3.1)

=
∞∑

m=1

(Aα
m − Aα

m+1)
m∑

n=1

λn.

An easy consideration yields that if0 ≤ a < b, 0 < α < 1 and

(3.2)
bα − aα

b− a
= α ξα−1,

then

(3.3) ξ ≥ α1/(1−α)b =: ξ0,

namely ifa = 0 thenξ = ξ0.
Using the relations (3.2) and (3.3) we obtain that

(3.4) Aα
m − Aα

m+1 = amαξα−1 ≤ amAα−1
m .

This and (3.1) yield that

∞∑
n=1

λn Aα
n ≤

∞∑
m=1

am Aα−1
m Λm =

∞∑
m=1

amµm.

Herewith the implication (2.1)⇒(2.2) is proved.
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The proof of (2.2)⇒(2.1) is similar. We use the first part of (3.4), α < 1 and
ξ < Am. Thus

∞∑
m=1

amµm =
∞∑

m=1

amAα−1
m Λm

=
∞∑

m=1

(Am − Am+1)A
α−1
m Λm

≤ α−1

∞∑
m=1

(Aα
m − Aα

m+1)
m∑

n=1

λn

= α−1

∞∑
n=1

λn

∞∑
m=n

(Aα
m − Aα

m+1)

= α−1

∞∑
n=1

λnA
α
n,

that is, (2.2)⇒(2.1) is verified.
The proof of Theorem2.1 is complete.

Proof of Theorem2.2. The proof is almost the same as that of Theorem2.1. By (3.2)
and (3.3) we get that

(3.5) Ãα
m − Ãα

m−1 = amαξα−1 ≤ amÃα−1
m .

Utilizing this at the final step we have

∞∑
n=1

λnÃ
α
n =

∞∑
n=1

λn

n∑
k=1

(Ãα
k − Ãα

k−1)
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=
∞∑

k=1

(Ãα
k − Ãα

k−1)
∞∑

n=k

λn ≤
∞∑

k=1

akÃ
α−1
k Λ̃k ≡

∞∑
k=1

akµ̃k;

this proves the implication (2.3)⇒(2.4).
To verify (2.4)⇒(2.3) we use

α−1(Ãα
m − Ãα

m−1) ≥ amÃα−1
m ,

which follows from the first part of (3.5) by α < 1 andξ < Ãm.
Thus we get that

∞∑
n=1

anµ̃n =
∞∑

n=1

anÃ
α−1
n Λ̃n

≤ α−1

∞∑
n=1

(Ãα
n − Ãα

n−1)
∞∑

k=n

λk

= α−1

∞∑
k=1

λk

k∑
n=1

(Ãα
n − Ãα

n−1)

= α−1

∞∑
k=1

λkÃ
α
k .

Summing up, the proof of Theorem2.2 is complete.

Proof of Corollary2.3. We shall use the results of Theorem2.1 with α = p
q

and

an = cq
n. Thenµn = Λn (

∑∞
k=n cq

k)
p−q

q , and

S22 ≡ S11 ≡ S13 as well as S21 ≡ S12,
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moreover, by Theorem2.1, S21 andS22 are equiconvergent, herewith Corollary2.3
is proved.

Proof of Corollary2.4. Now we utilize Theorem2.2with α = p
q

andan = cq
n. Then

µ̃n = Λ̃n (
∑n

k=1 cq
k)

p−q
q , furthermore

S24 ≡ S17 ≡ S18 and S23 ≡ S12,

hold. Since, by Theorem2.2, S23 andS24 are equiconvergent, thus Corollary2.4 is
verified.
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