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ABSTRACT. We establish some companions of an Ostrowski type integral inequality for func-
tions whose derivatives are absolutely continuous. Applications for composite quadrature rules
are also given.
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1. INTRODUCTION

Motivated by [1], Dragomir in[[2] has proved the following companion of the Ostrowski
inequality:

ﬂl)‘EU@ﬂ+f®+b—xﬂ—géaliﬂﬂd4

2
( 1 g 3axb 2 , e o
L2 (52 | 0= @) 1 e f ' € Lo [ab]:
1
% r—a\qt1 atb_ N\ atL|a 1 .
<8 2l (5)7) 0- 0t Wlns > 1242
andf’ € L, [a,b];
o Batd _
| [%* a H 1/ a0 if f/ € Ly[a,],

forall z € [a, %], wheref : [a,b] — R is an absolutely continuous function.
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In particular, the best result ih (.1) is obtained for: “£3, giving the following trapezoid
type inequalities:

o L (E2) 0 (552)] - f 1o

s(b=a)[[f s i f' € Lo a,b];

< % (+1%||f||ab]pa if f'eL,ab],p>1, 1+%:1;
il s if f'€Lila,b].

Some natural applications ¢f (1.1) and (1.2) are also provided in [2].
In [3], Dedic et al. have derived the following trapezoid type inequality:

0y () e ()] -k [ rwal < P

for a functionf : [a,b] — R whose derivativef’ is absolutely continuous ant € L., [a, ].
In [4], we find that for a functiory : [, b] — R whose derivativg” is absolutely continuous,
the following perturbed trapezoid inequalities hold:

@ o+ S ) - o )

(1.4) t) dt —

O f oo i S E Lo, b]

IN

(b—a) " " 1 1 _ 1.
. if f"eLlpla,b],p>1, 42 =1,
8(2g41 ,Hf I / pla,b], p » T g

(b_Ta”f//Hl it "€ Lylab].

\

In this paper, we provide some companions of Ostrowski type inequalities for functions
whose first derivatives are absolutely continuous and whose second derivatives belong to the
Lebesgue spaces, [a,b], 1 < p < co. These improve (1]3) and recapture [1.4). Applications
for composite quadrature rules are also given.

2. SOME INTEGRAL INEQUALITIES
Lemma 2.1. Let f : [a,b] — R be such that the derivativg is absolutely continuous dn, b].
Then we have the equality

1 3a+b

@V ;= [ s a-g1r s aro-alg (-2 1 @ - (a4 - o)

= [/j(t—a)zf”(ﬂ dt+/:+b_m (t—a;b>2f"(t) dt

+ /b (t —b)* f" (t) dt

+b—2x

foranyz € [a, 22°].
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Proof. Using the integration by parts formula for Lebesgue integrals, we have

[e-arrwa-e-otrw-2e-as@+2 [ 10w

/x‘”” (t— “‘;b)Qf"(t)dt: (x— a§b>2[f'<a+b—x>—f’<w>]

+2(x—a;_b) [f(a:)+f(a+b—:):)]+2/:+b_$f(t)dt,

and

b b
/ (t—b°f"(t)dt = —(x—a)’ f (a+b—2)=2(x —a) f (a+b— x)+2 f(t)dt

a+b—z atb—zx
Summing the above equalities, we deduce the desired idgntity (2.1). O

Theorem 2.2.Let f : [a,b] — R be such that the derivativg is absolutely continuous on
la, b]. Then we have the inequality

aéi/f@wﬁ—lwu»+fm+b—w1
(w—%+b)w@o—fw+b—@1

1
3
[l (t - a)? '%)Mr+éﬁbx0—“;h)Lw<nm

b

- a—w\ﬂunw}

a+bfx

(2.2)

+

| A

=M(2)

foranyz € [a, 22°].
If f" € L [a,b], then we have the inequalities

@9 M <55 [
2 (a+b —a)’
L2t )ufmﬁml+9§@wﬂmwm1
&+ (5E) | 0 0P 1 e
atb \ 3 é
|:2Q1_1 (ﬁ)&x i (x;j> :|
S 1

B (b—a)?
ﬁuwwﬂ U1 wrmsgoo & 1 o] 522

if a>1, ;+%:1;
a+b3
max a)}

" I " (b—a)” .
\ X Hf H[ax] + ||f ||[x a+b—1x],00 + ||f H[a-&-b—x,b},oo] 3

foranyz € [a, 42°].
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The inequality[(2]2), the first inequality ip (2.3) and the constardre sharp.

Proof. The inequality[(2.R) follows by Lemnja 2.1 on taking the modulus and using its proper-
ties.

If /" € L [a,b], then
(¢ —a)’

| =il < S e,

atb—z a+b\?2 2 (a+b s
[ (=) 1ot 2 () 1 s

’ 2 e (x_a)g "
(=D 1" (@)1t < = P o

+b—zx
and the first inequality irf (2} 3) is proved.
Denote

_ (z —a)® 1 fa+b s (z —a)®
M (I) = 6 Hfll”[a,w],oo +3 Y Hf//H[z,a—i—b—:c],oo + HfHH[a—&-b—z,b]

3 2 6

forx € [a, “TH’]

Firstly, observe that
M (I) S max { ||f”||[a,m],ooa ||f//||[z,a+b7x],oov ||.f”||[a+bfx,b],oo}

(x—a)® 1 a+b P (x—a)®

X [T*g(T—“’) +T]
—a2 a 2
=||f”H[a,b1,oo[(b L g (o- 25

96 2 4

and the first part of the second inequality[in {2.3) is proved.
Using the Holder inequality far > 1, - + 4 = 1, we also have

- 1[](z-a)? * a+b\* (z —a)® 1°
M < - - -
@)—3{[ 2 ]+(x 2) L
X |:”f”||[ﬂa7x]7oo + ||f”||[ﬁaj7a+b—x]7oo + ||f”H€L+b—$7b],OO

giving the second part of the second inequality in|(2.3)
Finally, we also observe that

W (2) < gmx{% (o %b)}

X [Hf”H[a,m],oo + HfHH[:E,a—l-b—x],oo + Hf”H[a—l-b—m,b],oo:| .

The sharpness of the inequalities mentioned follows from the fact that we can choose a function
fila,b] = R, f(t) =t*foranyz € [a, “*] to obtain the corresponding equalities. [

(b—a)

@l

Remark 1. If in Theoreni 2.2 we choose = a, then we recapture the first part of the inequality
(1.4),i.e.,

1P 1 b—a 1

. / ol <

s [0 S o) 0 - ) < g

(b= a)* Il
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with 2 as a sharp constant. If we choose- 212, then we get

1 b CL+b 1 1 1
Ta/a f () dt—f( 5 >‘ < = [Hf ”[a,‘%b],oo"‘ 1 f |’[QT'H’b]oo
1
< = a1 e

with the constantgl— and ; being sharp.

Corollary 2.3. With the assumptions in Theorém|2.2, one has the inequality

1 b Sa+b -+ a+3b 1
bT/ pw- T < o6 0= @ 1" liastoo

(2.4) 5

The constan% is best possible in the sense that it cannot be replaced by a smaller constant.
Clearly (2.4) is an improvement ¢f (1.3).

Theorem 2.4.Let f : [a,b] — R be such that the derivativg is absolutely continuous dn, b
and f” € L,[a,b], p > 1. If M (z) is as defined ir (2]2), then we have the bounds:
1

2+1
T —a a
(N G22) 1 e
2(2¢+ 1)« a

o o z—a\>ts 1
a . 1+1
+2q ( Z_ a > ||f”||[:v,a+b7w],p (b— a) ||f//||[a+bfx7b],p (b— a) q

(2.5) M(z) <

¢ [ 1 L“'b_z 2+l

2 () e ()]

- 1
X maX{”f”H [a,x],p> ||f”|| [z,a+b—z],ps Hlf//”[a-&-b—%pr} (b - a)1+q )

[ o atb_ o\ 2047 ] @
2(ba)2+q+2q<ba> q}

X ] " e B % 1+3
[ A I A [l (A L (SO R

ifa>1,é+%:1,
a+bx 2+l
mox{ (20)" 2 (52)

141
X [ Nasetp + 1 N atoatp + 1 Nfato—op1p) (0 —a) "

Q=

C2(2¢+ 1)

foranyz € [a, 22°].

Proof. Using Holder’s integral inequality fgr > 1, % + % =1, we have

/ (t—a)?|f" (1) | dt < (/ (1 — )™ dt) 1 eel

e
- %r\f“uw

Qe
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a+b—x Cl+b a+b—z a+b 1
[ e ([ ) 1 s

E a+b —r 2+
_ 2 s) 1" z,0+b—a1,5

<>%

1
b b q
INRGCHLCIE ( JGs dt) TZ—
a+b—x a+b—x

24
r—a
= %Hf [ fatb—a,0,p-
(2¢+1)s
Summing the above inequalities, we deduce the first bounid i (2.5).
The last part may be proved in a similar fashion to the one in Theprgm 2.2, and we omit the
details. 0

Q=

and

Remark 2. If in ( we chooser = ¢, 3 =p, L+ 1 =1,p > 1, then we get the inequality

1 2q+1 %
24 r—a\2t atb _ o 1
Miz) < 2(2g+1)s [(ba) |l (b= )" [

foranyz € [a, 42°].

(2.6)

Remark 3. If in Theorem[2.4 we choose = «, then we recapture the second part of the
inequality (I.4), i.e.,

b —a
oo | T =@+ 6]+

2.7) 5

[ (b) = f'(a)]

L1 0= ey
8 (29 +1)7
The constan§ is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Indeed, if we assume th.7) holds with a constant 0, instead of%, ie.,

b—a
8

(2.8) [/ (b) = /" (a)]

1
(b—a) (|| a0
1
(2¢+ 1)«

o [ 0@ @

<C-

then for the functiory : [a,b] — R, f (z) =k (z —

[la)+f()
2

“*b) k > 0, we have

(b—a)’

4 I

fH ) = f'(a) =2k (b—a),

—/f ) dt =

( )

Y

1" a,p1.0 = 2k (b — a)p
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and by [2.8) we deduce

k(b—a) k(b—a)? k(b—a) _ 20 k:(b—a)
- +
12 4 4 (2 + 1)
giving C' > 2‘?“)6 . Lettingq — 1+, we deduce&” > , and the sharpness of the constant is
proved. O

Remark 4. If in Theoren] 2.4t we choose = “}2, then we get the midpoint inequality

o froe )

1 (b — OJ)H_a " "
<5 e or Moot 17
Sé'&_ﬂ_ﬂWWMm P>l o=l
(2¢+1)9

In both inequalities the constai“gtls sharp in the sense that it cannot be replaced by a smaller
constant.

To show this fact, assume that (2.9) holds withD > 0, i.e.,

(2.10) ‘—/f ) dt — <“+b>‘

b—a H_l " "
<0 L (1 + 1 g
24 (2q+ 1)«
b—a)te "
<D L_J_?W”Mb
(2¢+ 1)
For the functionf : [a,b] — R, f (z) = (x ? k>0, we have
a+b b—a)
f( 2 ) 0 12
, , b—a 1
15 g+ 17 ez, ( ) — 2 -k,
1 a1 p =2 (0= a)v k;
and then by[(2.70) we deduce
k(b—a)’ <c. 2k (b — a)? <D, 2k (b—a)?
12 B (2q+1)§ B (2q+1)§ 7

givingC, D > 2"“ for anyg > 1. Lettingg — 1+, we deduce”, D > 1 s and the sharpness
of the constants njl?] 9) is proved.

The following result is useful in providing the best quadrature rule in the class for approxi-
mating the integral of a functiofi : [a,b] — R whose first derivative is absolutely continuous
on [a, b] and whose second derivative isiip [a, b].
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Corollary 2.5. With the assumptions in Theorém|2.4, one has the inequality

i B (ER) (58] [0
1 (b—a)s
32 (2¢+1)

< 1"l a.01.0

Q=

where. + 2 = 1.
The constam3i2 is the best possible in the sense that it cannot be replaced by a smaller
constant.

Proof. The inequality follows by Theore@A a .6) on choosing 3“7“’
| tha

To prove the sharpness of the constant, assume that (2.11) holds with a céhstdnti.e.,

@12 [ [r (350) + s (2)] -5 [ al < e o )); 17 s

Consider the functiorf : [a,b] — R,

(3 (=) i o€ o 252],
3 (0= 250)" i we (St o]
R [ ]
L3 (e =) 0w (442 0]
We have
. o — 32| it g [a, 28],

‘:B—%?’b‘ if xe(“+b b] .

Then f’ is absolutely continuous antf € L, [a,b], p > 1. We also have
1 3a+0b a—+ 3b
(% >+f( o))
)
) dt =
b— a/ ft

1 10 = (b= a)”

and then, by{(2.12), we obtain

(b—a)? <E. (b—a)21
9% T (2¢+1)s

Y

giving £ > (2‘1“> foranyq > 1,i.e.,E > -5, and the corollary is proved. OJ

32’
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Theorem 2.6.Let f : [a,b] — R be such that the derivativg is absolutely continuous dn, b]
and f” € Ly [a,b]. If M (z) is as defined i (2]2), then we have the bounds:

2
r —a
(5=2) 14 o

2
a+b 2
2 7 1" r—a "
+ ( b—a > Hf ||[wva+bfx]71 + (b— a) ||f ||[a+b—x,b],1

el (55)

X IIlE_LX [”f//H[a,a:],h ||f//||[x,a+b—€},l7 ||f”H[a+b—z,b],1] ;

—a | z—a )2 ot g o)
7 2(5) +(ﬁi;> ]
L1 s+ 1V 1o ]
if a>1++ ﬁ =1
b—a [ e
. 2 b—a

1 s

(2.13) M (z) < b;“

IN

wl=

foranyz € [a, 42°].

The proof is as in Theorefn 2.2 and we need only to prove the third inequality of the last part

as
2
b—a r—a\’ atb _ o
M < 2
(z) = g X (b—a) ’ ( b—a
X [Hf//H[a,x],l + Hf//H[r,a—l—b—x],l + Hf”H[a-l-b—x,b],l]
2

B b—a 1
2

1" a1
Remark 5. By the use of Theorein 2.6, far= a, we recapture the third part of the inequality

(1.4),i.e.,

3a+b
4

xr —

b—

o [0S o1 0 - 1 @) <

1

(0 —a) I f"lap.1-

oo

in (2.13) we choose: = <12, then we get the mid-point inequality
Ifin (2.13) h atb th he mid-point i [

‘—/f ) dt — <a+b)‘ 8(b—a)|]f\|ab]1

Corollary 2.7. With the assumptions in Theorém|2.6, one has the inequality

b 3a+b a+3b 1
A [ rwa LET G L
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3. A COMPOSITE QUADRATURE FORMULA

We use the following inequalities obtained in the previous section:

e [ (45) s (57)] -5 [0

&L= |f"lsoe If f” € Lo [a,b];

< 3_12'(ba ,Hf"Hab]p if f”eL,lab],p>1, 1+%:1;

(2q+1)7
3_12 (b - a) ||f//||[a,b},1 if f// SN [a,b] .
Letl, : a = 2y < 21 < -+ < 2,1 < 2, = b be a division of the intervala, b] and

hi =z —x; (1=0,...,n—1)andv (I,) == max{h;|i =0,...,n — 1}.
Consider the composite quadrature rule

62 Quf)my 3y |f (B (B

=0

The following result holds.

Theorem 3.1.Let f : [a,b] — R be such that the derivativg is absolutely continuous on
[a, b]. Then we have

b
/ £ () dt = Qu(Tns f) + R (I, f).

whereQ,, (I,,, f) is defined by the formula (3.2), and the remainder satisfies the estimates

561/ a0 §3h3 if /" € Loo [a,b];

i 1
33 R HI<{ — s <z h3q+1) e L[],
32(2q+1)4 =
p>1 s +.=1
L 1w v (1)) if £ ¢ Ly[a,b].
Proof. Applying inequality [(3.1L) on the intervét;, z;,1], we may state that

Tit1 1 3x; i i+ 3z
(3.4) / f@)ydt—=1f OTi  Tit1 (2 3T |
@ 2 4 4
916 hlSHf”| [xi,ri+1},oo;
2+1
< 1 B , >1, 41 =7
- 32(2(14‘1)% (3 ||f ||[ 2 2+1},p p P q
312 h'l2||f//| [Ii,xzurﬂ,l;

foreachi € {0,...,n —1}.
Summing the inequality (3/4) overfrom 0 to n — 1 and using the generalized triangle
inequality, we get

S B

n—1,2+g
(3.5) |R” <I”’ f) | < —11_ 21‘:01 hi Hf”H[Iin'i-‘rl]ap? p>1, % + % =1

32(2¢+1)9

n—1
32 Z hZHfNH[:c, Tig1],1

[5,zi11],005
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Now, we observe that

n—1
Zh?||f”| [zi,Tit1],00 = HfNH[a b],00 Zhg
=0

Using Holder’s discrete inequality, we may write that
1 1
~—  2+1 (2+1)q :
Z hz‘ ! ”f//| [®i,zi11],p < h ! ) (Z Hf”‘ [©i,2it1], )
=0 i

— hft}ﬂ) (Z/%H " |Pdt>
0

1=

i
L

s
I
=)

3
,_.

1

[asy

3

2
= hﬂ“) 17" Nfa.01.-

1=0

Also, we note that

n—1
Zh?Hf//H[mi,xiH} 0<m<ax {h } Z Hf//||[$z zit1],
=0

= [v (L))" Hf”l![a,m,l-
Consequently, by the use ¢f (B.5), we deduce the desired riesiilt (3.3). O

For the particular case where the divisibnis equidistant, i.e.,

b—a
L, =x,=a+1- , 1=0,...,n,
n

we may consider the quadrature rule:

(3.6) O (f) = b;g{f {a+ (42;1) (b—a)} 47 [a+ <4i423> (b—a)}}.

The following corollary will be more useful in practice.

Corollary 3.2. With the assumption of Theor¢m|3.1, we have

b
[ 7 de=Qur)+ R ).
whereQ,, (f) is defined by[(3]6) and the remaindgy, (/) satisfies the estimate:
%Hfﬂn[a,b],oo(b;—g)(;
2+%
|Rn (In7.f)| < ,Hf””[a ]p ) p>17

2
32(2q +1) "

32Hf//||a ]1 a) .
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