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We establish some companions of an Ostrowski type integral inequality for func-
tions whose derivatives are absolutely continuous. Applications for composite
quadrature rules are also given.
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1. Introduction

Motivated by L], Dragomir in [2] has proved the following companion of the Os-
trowski inequality:

[f (@) + flat+b—a)] -

o

N —

(1.1) ‘
% z—a 1 et o) Tt % 7 i
2 [<m)q+ +(52) ] (b=a) 1 lfappr Fp>15+5=1,

(g+1)7
andf’ € L, [a,b];
If f/ S Ll [aab]v

if /" € Lo [a, ] ;

ool

2 (5) | 0= 0 1 o

IN

_3a+b
\ [i + ‘%H I a0

forall z € [a, %], wheref : [a,b] — R is an absolutely continuous function.

In particular, the best result i (1) is obtained forr = “*f’”, giving the following
trapezoid type inequalities:

o [ (E2) 01 (52) -2 from

s(0=a) [ f'layee i f'€ Lo [a,0];

l . (b—a) / . ’ l l o
S : (‘1"‘1)% ||f ||[a’b}’p’ i f = Lp [CL, b] y P> 17 p + q 17
i”f/”[ab]l if f'€ Lia,b].

Some natural applications of (1) and (L.2) are also provided in.
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In [3], Dedic et al. have derived the following trapezoid type inequality:

a9 |y | () o ()]

for a functionf : [a,b] — R whose derivativef’ is absolutely continuous and
" € L a,b].

In [4], we find that for a functiory : [a,b] — R whose derivativef’ is absolutely
continuous, the following perturbed trapezoid inequalities hold:

) i
dt] Ul NPT

b—a (b_a)2 / /
(1.4) t) dt — [/ (@) + FO)) + = [/ (0) = f'(a)]
(O, i 7€ Looa ]
< { oo 1Hf"|yp, it /"€ Lplab],p>1,1+1=1;

8(2¢+1)4

%”JMHI it "¢ Ly[a,b].

\

In this paper, we provide some companions of Ostrowski type inequalities for
functions whose first derivatives are absolutely continuous and whose second deriva-

tives belong to the Lebesgue spaégsa, b, 1 < p < co. These improvel(.3) and
recapture {.4). Applications for composite quadrature rules are also given.
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2. Some Integral Inequalities

Lemma 2.1. Let f : [a,b] — R be such that the derivativg is absolutely continu-

ous on[a, b]. Then we have the equality

(2.1) —/f @)+ f (a+b— )]

+§(x-3ajb) /() = ' (a+b— )

/j (t—a)? 7 () dt + /:H)_w (t - b)2 £ (1) dt

+/ab (t — ) f" () dt}

+b—2x

2(b—a)

foranyz € [a, 22°].

Proof. Using the integration by parts formula for Lebesgue integrals, we have

[-arrwa-e-otrw-2e-as@-2 [ 1o

at+b—zx 2
/ +b <t _a —2|— b) f,, (t) dt
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and

[ avrwa

+b—x
b
=—(@x—a)’fatb—x)—2(x—a)fla+b—2z)+2 f(t)dt.
at+b—zx
Summing the above equalities, we deduce the desired ideftity ( O OS"°WS";”"°‘ 'Lr_'eq”a"ty
eng Liu
Theorem 2.2.Let f : [a,b] — R be such that the derivativg is absolutely contin- vol. 10, iss. 2, art. 52, 2009
uous ona, b]. Then we have the inequality
1 b 1 Title Page
@2 | [ f®dt—Z(f @)+ a+b-a)
—aJg Contents
1 3a+b
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< - _ _
< 7= [/ e-atir@las [ (=50 ) 1ol s saras
b Go Back
v [ a-orir o)l ot
atb—zx Full Screen
=M (x)
Close
foranyz € [a, 22°]. . ' N
If f" € Lo [a, b], then we have the inequalities journal of inequalities
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(x B a>3 "
- LOO + 3 Hf H[a+b—w,b]

( 1 1 I*M "
[%Jra( = ) ] (0= @) [1f" 000

1
B (b—a)?
o LA U A L =

if a>1,;+%:1;
z—a)3 z—24b 3
max{l(b 2) 7( p— ) }
( < (1" lia.ato0 + ILF" N
foranyz € [a, 42°].
The inequality 2.2), the first inequality inZ.3) and the constang% are sharp.

Proof. The inequality .2) follows by Lemma2.1 on taking the modulus and using

its properties.
If f” € Ly [a,b], then
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afoo + 1 ooz po0) E555
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and the first inequality in4.3) is proved.
Denote

(z —a)° 1

_ a+b
3 (@) = e + & ( -

2

3
6 3 I) “ f”H [z,a+b—zx],00

(¢ —a)’

6 || f”H [a+b—2x,b]

forx € [a, “T“’]

Firstly, observe that

M (x) < max {[[f"lja,al,c0 1" liwatb-at.o0r 1/ Narb—a,b1.00 }
(x—a)® 1 [/a+b P (z—a)
X - i _ -
[ 6 3\ 2 7)) T

2 2
e (b—a) 1 _3a+b
- If ||[a,b],oo[ e

and the first part of the second inequality in3) is proved.
Using the Holder inequality for > 1, ; + 4 = 1, we also have

wors{[e] (o) [

3 [ A IV T VAP

giving the second part of the second inequality4rs)

(b—a)

1
B
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Finally, we also observe that

M (z) < = max u, x—a+
3 2 2
X [”f”H[a,:c],oo + 1l w.atb-a]00 + Hf”H[a-i-b—x,bLOO} :

The sharpness of the inequalities mentioned follows from the fact that we can choose Ostrowski Type Inequality

afunctionf : [a,b] — R, f (t) = t*foranyz € [a, “t%] to obtain the corresponding Zheng Liu
equalities. [ vol. 10, iss. 2, art. 52, 2009
Remarkl. If in Theorem2.2 we chooser = a, then we recapture the first part of
the inequality (.4), i.e., Title Page
1 b J 1 ; b—a ; ) 1 . Contents
t) dt — = - < —(b— o
'b_a/am S @+ F O+ [ 0) = £/ (@) < 57 0= aP |1 f] —
Wlth 37 as a sharp constant. If we choose- ““’ , then we get < 4
1 b a+b 1 Page 9 of 23
P t dt - < N |: " a " a
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< 2 (b— a) Hf”H [a,b],00 Full Screen
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The constangl—6 is best possible in the sense that it cannot be replaced by a smaller
constant. Clearly4.4) is an improvement ofl(3).

Theorem 2.4.Let f : [a,b] — R be such that the derivativg is absolutely contin-
uous onja,b] and f” € L, [a,b], p > 1. If M () is as defined in4.2), then we have
the bounds:

1

1 r—a g "
(2.5) M(x)§2(2q+1) [(b_a) 1N a0

N o r—a 2ty 1
: _ N
+2q< b= ) ”f”\hw—m(,,_ ) 1" iass-esi | (b—a)™s

Q=

a

( [ a+b 2+l
2(2) e ()]

i o
X maX{HfNH[a z],p ||fNH[:L’ a+b—z],ps ||1f”H[a+b—ﬂc,b],p} (b - a) T )
i o atb_ o\ 20+5 ] @

2(3=2)" 0 428 (7?2‘) q}
X ] " 1" 1" l 141

o A Vi o (AP K (RO B

ifa>1, i + % =1
1 atb_ 2+
max{ (520" 24 (52) 7}
1
< (1" Naato + 1 lizaro-atp + 1F lfarozptp] (b —a) "5

foranyz € [a, 2°].

S

C2(2q+1)

Y

Ostrowski Type Inequality
Zheng Liu
vol. 10, iss. 2, art. 52, 2009

Title Page
Contents
44 44
< 14
Page 10 of 23
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:lewzheng@163.net
http://jipam.vu.edu.au

Proof. Using Hélder's integral inequality fg5 > 1, 2 + 1 = 1, we have

/ (t—a)? |/ ()| dt < (/ (t— )™ dt)q A

(I - a’)2+l "
= m”f 0,21,
q

a+b—zx 2 atb—z 1
a+b a+b
/ (t— 5 ) If”(t)ldtﬁ(/ |t — \2th) [T [e——

E a+b — 2+
- ( ) Hf”H[:E,a—O—b—:p},m

(2q+1)s

Q=
Q

Q=

and

1
b b q
/ @—mﬂﬂ@nﬁs(/ @—@mﬁ)|WWMme
a+b—x a+b—x

(ZL‘ B a>2+6 !
= ——— 1" llia+b-at1p-
(2 + 1)«
Summing the above inequalities, we deduce the first bound i (

The last part may be proved in a similar fashion to the one in TheGrénand
we omit the detalils. O
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inequality

1 2g+1 %
924 _ g 2at! atb _
(2.6) M(2) < 1 ("”” “) T (e
2(2¢+1)s [ \b—a b—a

1
x (0= )" | " bl

Ostrowski Type Inequality

foranyz € [a, 22°]. Zheng Liu
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the inequality (.4), i.e.,
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constant. ——
Proof. Indeed, if we assume that.() holds with a constant’ > 0, instead of%, Full Screen
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then for the functiory : [a,b] — R, f (z) = k (x — %2)*, k > 0, we have

fl@)+f ), (b-ay

2 B 4
= f'(a) =2k(b—a),
f . 0= a)’
b —a 12 ’ Ostrowski Type Inequality
" 1 Zheng Liu
| f ||[a,b},p =2k(b—a)r; vol. 10, iss. 2, art. 52, 2009
and by ¢.6) we deduce
9 9 Title Page
k(b—a)” k(b—a) +/{(b—a) 2C - k(b—a)
12 4 4 (2q N 1) Contents
N 44 44
giving C' > Qq“ )e . Lettingg — 1+, we deduce&” > 1, and the sharpness of the p >
constant is proved O

: b . _ . Page 13 of 23
Remarld. Ifin Theorem?2.4we choose: = %12, then we get the midpoint inequality

Go Back
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In both inequalities the consta@ﬁs sharp in the sense that it cannot be replaced by
a smaller constant.

To show this fact, assume that §) holds withC', D > 0, i.e.,

(2.10) ‘—/f ) dt — (“b)’

1
(b a) 1+ Ostrowski Type Inequality
<C-4t——7 [Hf"H[ Tl A [P Zheng Liu
24 (2¢+1)7 .
1+ vol. 10, iss. 2, art. 52, 2009
b—ua
<0 L= Ly,
(2¢+ 1)« Title Page
For the functionf : [a,b] — R, f (z) = k (z — %)%, k > 0, we have Contents
7 a+by) 0 / i k(b— a) « 44
2 - b—a 12 7 < >
L Page 14 of 23
" " b—a\r
17 1 17, = 45 (52 Go gack
— oty (b — a)% k Full Screen
. 1 Close
1/ lfap1p =2 (b—a)» k;
journal of inequalities
and then by Z.10) we deduce R Yy e
k(b—a) 2k (b—a)? 2k (b—a)? mathematics
M <C- (—); <D- ( ); ) issn: 1443-575k
12 (2¢ +1)7 (29 +1)7
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givingC, D > 2"“ for anyq > 1. Lettingg — 1+, we deduce”, D > 1 s and the
sharpness of the constants m9) is proved.

The following result is useful in providing the best quadrature rule in the class
for approximating the integral of a functiof: [a,b] — R whose first derivative is
absolutely continuous d, b] and whose second derivative isfip [a, b].

Corollary 2.5. With the assumptions in Theoréiml, one has the inequality

o B2 (42) e 00
1

a)'*

2 <2q+— ok

< 1" la,b1.p-
where; + - = 1.

The constan% is the best possible in the sense that it cannot be replaced by a
smaller constant.

Proof. The inequality follows by Theorem.4and ¢.6) on choosingr = 3“7“’
To prove the sharpness of the constant, assumeahal) holds with a constant
E>0,ie.,

ol el
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Consider the functiorf : [a,b] — R,

( —% (x 3ajb)2 if xe [a, 3ajb ,
O RGeS SR C e ot
_% ( a—z3b)2 if rec (%;7 az:ab] :
[ J(e—=2)" if we (=52
We have soryl ,
v — 282 i 2 € fa, ],
f(x) =

o] i ae (220]

Then f’ is absolutely continuous antt € L, [a,b], p > 1. We also have

(22052 -
bia/bf@) dt:%’

1/ H[ab],p (b—a)
and then, by{.12), we obtain

() P )
9% T (2q+1)7

»Qh—'

(2q+1)9 +1)
giving £ > -~ foranyq > 1, i.e. E232,

and the corollary is proved.
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Theorem 2.6.Let f : [a,b] — R be such that the derivativg is absolutely contin-
uous onfa,b] and f” € Ly [a,b]. If M (z) is as defined in4.2), then we have the
bounds:

e

b N 2
@13) M) < a[(b_j) 17”12

2
2
a+b 2
2 1" r—a "

el (5]

X mz_xx [Hf//H[a,x],la ||f”||[x,a+b7%],17 ||f//||[a+b7:c,b},l} ;

B o atb_ 20| «
e [+ (559) 7]
1

B
S [ A W A Vil A
if a>1,§—|—%:1;

~

o

IN

3a+b

B 2
550 15+ 3] 1 s

foranyz € [a, 22°].

The proof is as in Theorem 2 and we need only to prove the third inequality of
the last part as

2
b—a r—a\® [ g
M < - 2
(z) < p (b—a) ’(b—a)

X |:”f”H[a,x],1 + ”f”H[:v,aerfm],l + Hf”H[aerfz,b],l}
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2

I f" a,1-

_ 3a+b
4

b —

T 1

"1

_b—a
2

Remarkb. By the use of Theorer.6, for z = a, we recapture the third part of the
inequality (L.4), i.e.,

b—a
8

(o) = f

~
—~

b
[0 a- @ s )

<< (0=a)lf" lap1-

If in (2.13 we choose: = 2+, then we get the mid-point inequality

1 b b 1
‘bT/ e (ﬁ )\ < 3 0= a) 1Mo

Corollary 2.7. With the assumptions in Theoren®, one has the inequality

L FEE) 1 (5)
b—a/af(t)dt_ 4 5 4

0|

1
32

<

(b—a) 1f" a1
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3. A Composite Quadrature Formula

We use the following inequalities obtained in the previous section:

1 3a+0b a+ 3b
o [5r ()1 ()] -5 [0 4]

b= a) [ lfasoo I f" € Log[a,b];

IN

1, (b=a) Ty ey if 1.1 1.
b O Py 7€ Lyfad] > 1 h = L

L —a)lf s if £ € Lifab].

Letl,:a=2y <z <--- <z, <z, =bbe adivision of the intervdk, b] and
hi =xi1—x; (i=0,...,n—1)andv (I,,) == max {h;)i = 0,...,n — 1}.
Consider the composite quadrature rule

(3.2) (L f) = %Z [ (3$z+$z+1) ny (xri-jl’iﬂ)] .

1=

The following result holds.

Theorem 3.1.Let f : [a,b] — R be such that the derivativg is absolutely contin-
uous ona, b]. Then we have

(/f@ﬁzQM%ﬁ+RM%ﬂ,

where@,, (I,,, f) is defined by the formula3(?), and the remainder satisfies the
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estimates

96Hf”Hab] Zh
1 A
33) BT D) <] — s (z h?“l)
32(2¢+1)4 i=0

L 52l e [v

(I))*

if "€ Lo

la,

bl;

it € L,a,b],

p>1,%+%:1;
if f” € Lyla,bl.

Proof. Applying inequality §.1) on the intervalz;, z; 1], we may state that

(3.4)

&

96"

1

IA

for eachi € {0,...,n — 1}.

Summing the inequality3(4) overi from 0 to n — 1 and using the generalized

triangle inequality, we get
n—1
56 2oico M ILF" N
1 n— 1
32(2g+1)4 2izo

3 Yico DEILS"

(3.5) |Rn (I, f)| <

— 1y
32(2g+1)4

\ 312h22”f”||[

[z4,%i41],00

o4 1

+=
q Hfl/‘

[zi,2i41],0

TiTit1],1)

xza-’”z«kl} OO’

p>1,

N eyt P> 1,

|| $z7$z+1} 1
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Now, we observe that

n—1
> B
=0

Using Holder’s discrete inequality, we may write that

n—1 2+l n—1 (2+l)q % n—1
S s < [ S0 ) <Z||f"|
1=0 3 1=0

n—1
[i,2i41],00 S Hf”H[a,b],oo Z h?
=0

1
p
p
[zi,zi11],p

_ Zh2q+1> Hf//”[ab

Also, we note that

n—1
> RN
=0

[$¢,€B¢+1]71 0<Zm<ax {hZ}ZHf’

= [v (L))" IIf”II[a,b},l
Consequently, by the use d¢f.§), we deduce the desired resuiits).

[xz 7$1+1] 1

For the particular case where the divisibnis equidistant, i.e.,

b—a
L=z, =a+1- , 1=0,...,n,
n

n—1 % n—1 Tit1 %
- th"“> (Z [ e rpdt>
i=0 i=0 v %
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we may consider the quadrature rule:

09 a5 o ()]

| o (552 0ma)).

The following corollary will be more useful in practice.

Corollary 3.2. With the assumption of Theoréiri, we have

/f(t)dtz@n<f>+Rn<f>7

whereQ),, (f) is defined by{.6) and the remaindeR,, (f) satisfies the estimate:

bh— 3
9_16||f//||[a,b},oo(n—g);

|Ry (In, )] < 320 H,Hf”Hab],pb 2)2 , p>1,

b—a
32||f//||[ab ( )'
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