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ABSTRACT. We define an approximate Birkhoff orthogonality relation in a normed space. We
compare it with the one given by S.S. Dragomir and establish some properties of it. In particular,
we show that in smooth spaces it is equivalent to the approximate orthogonality stemming from
the semi-inner-product.
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1. INTRODUCTION

In an inner product space, with the standard orthogonality relatioone can consider the
approximate orthogonality defined by:

ey < [{zy)| <ellz]yll.

(| cos(z,y)| < < forz,y # 0).

The notion of orthogonality in an arbitrary normed space, with the norm not necessarily
coming from an inner product, may be introduced in various ways. One of the possibilities is
the following definition introduced by Birkhoff [1] (cf. also Jamés [6]). L¥tbe a normed
space over the fielt € {R, C}; then forz,y € X

rlpy <= VAeK:|z+ Nyl > ||=] .

We call the relationL g, aBirkhoff orthogonality(often called a Birkhoff-James orthogonality).
Our aim is to define an approximate Birkhoff orthogonality generalizinglthene. Such a
definition was given in[3]:

(1.1) ng_By S VAeK: |z + Ayl > (1 —¢) |z -

We are going to give another definition of this concept.
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2 JACEK CHMIELINSKI

2. BIRKHOFF APPROXIMATE ORTHOGONALITY
Let us define ampproximate Birkhoff orthogonalityFore € [0, 1):
(2.1) rly <= VA €K |z + Ay|* > |l]|* — 2¢ |l | Ayl

If the above holds, we say thats -Birkhoff orthogonal toy.
Note, that the relatiod5; is homogeneouys.e.,z 15y impliesax 1555y (for arbitrarya, 8 €
K). Indeed, for anyA € K we have (excluding the obvious case- 0)

a:—l—)\éy
(0%

2
law + ABy[|* = |af?

p
> faf? (lel®* - 2 el |22
— llaa? - 2¢flaz A3y,

Proposition 2.1. If X is an inner product space then, for arbitratyc [0, 1),
rLlfy = xl37y.

We omit the proof — a more general result will be proved later (Theprem 3.3). As a corollary,
for e = 0, we obtain the well known fact: Lgy < z_Ly (in an inner product space).

Let us modify slightly the definition of Dragomif (1.1). Replacihg- ¢ by v/1 — ¢ we
obtain:

1oy <= VAeK: |z+Xy| >V1—e?|z].

Thuszlpy < xlegyWwithp=p(e) =1—+v1—¢€
Then, for inner product spaces we have:

1%y = zl%

(seel3, Proposition 1]).
T. Szostok [[10], considering a generalization of the sine function introduced, for a real
normed spac&’, the mapping:

inf cr W, forr e X \ {0},
s(z,y) =
1, forx = 0.

It is easily seen that Lgy < s(x,y) = 1. Itis also apparent that 1%y < s(z,y) >
V1 — 2. Defininge(z, y) := +£+/1 — s%(x, y) (generalized cosine) one gets,y < |c(x,y)]
<e.

Let us compare the approximate orthogonalitigsand_L5. In an inner product space both
of them are equal te-orthogonality |°. Thus one may ask if they are equal in an arbitrary
normed space. This is not true. Moreover, neithigrC 15, nor L5, C 1% holds generally (i.e.,
for an arbitrary normed space andalt [0, 1)). For, considetX = R? (overR) equipped with
themaximummorm || (z1, z)| := max{|z1], |z2|}. Now, letz = (1,0),y = (3,1),e = 1. One
can verify thatr 15y (i.e., that(max { |1 + 2|, |A|})” > 1 — |A| holds for each\ € R) but not

On the other hand, for = (1,1), y = (1,0), ¢ = ¥ we have(max{|1 +/\|,§})2 >

2
1-— (‘?) , 1.e.,x 1%y but notz 15y (consider, for example\ = \/75 —1). Thus1y, ¢ 15.

See also Remafk 4.1 for further comparisoni@fand_1%.
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3. SEMI—INNER—PRODUCT (APPROXIMATE ) ORTHOGONALITY

Let X be a normed space ovEr € {R,C}. The norm inX need not come from an inner
product. However, (cf. G. Lumer|[7] and J.R. Giles [5]) there exists a maggihg X x X —
K satisfying the following properties:

(1) [Ax + pylz] = Nxlz] + e [ylz], x,y,2€ X, \,u €K
(s2) [z|M\y] = Nz|y], =,y € X, A€K,

(s3) [a]a] = ||z[*, = € X;

(s4) [[zly] | < =l - [lyll, =,y € X,

(Cf. also [4].) We will call each mapping-| satisfying (s1)—(s4) aemi-inner-products.i.p.)
in a normed spacd&’. Let us stress that we assume that a s.i.p. generates the given n&rm in
(i.e., (s3) is satisfied). Note, that there may exist infinitely many different semi-inner-products
in X. There is a unique s.i.p. iN if and only if X is smooth (i.e., there is a unique supporting
hyperplane at each point of the unit sphérer, equivalently, the norm is Gateaux differentiable
on S —cf. [2,/4]). If X is an inner product space, the only s.i.p.Xns the inner-product itself
([7, Theorem 3]).

We say that s.i.p. isontinuousff Re [y|z + A\y] — Re[y|z] asR 3 A — 0 forall z,y € S.
The continuity of s.i.p is equivalent to the smoothnessXofcf. [5, Theorem 3] or([4]). It
follows also in that case (see the proof of Theorem 3lin [5]):

(3.1) lim [l + Ayll =1

A—0 A
AER

=Relylz], z,y€s.

Extending previous notations we defisemi-orthogonalityandapproximate semi-orthogo-
nality:
rlsy & [ylz] =0;
e Ly e Wl <ellz] -yl

forz,y € X and0 <e < 1.
Obviously, for an inner—product space; = L and L5, = L°.

Proposition 3.1. For z,y € X, if z L5y, thenx 15y (i.e., 15 C 15).

Proof. Suppose that_L°y, i.e.,
¢ € [—m, 7] we have:

[ylx] | < el|z] - ||y||.- Then, for somé < [0, 1] and for some

[ylz] = Oe ||| - [lyll - €.
For arbitrary\ € K we have:
[z + Ayl - [zl = [ [z + Aylz] |

= [ll* + A [ylal|

= [lll® + Oe |zl - [lyll - A - €|
whence

[+ Xyl > [llz]| + Oe [lyl| - A - €]
= [||z| + be [lyl| Re (Ae"?) + ibe ||y|| Im (Ae™?)|.
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Therefore
lz + Ayl > (lz]l + 0= [ly]| Re (™)) + (0= ly]| Tm (Xe™) )
= ||2[|* + 202 ||| [ly]| Re (Ae?)
+0%2 [y ((Re (Ae))° + (1m (Ae#))*)

= |[]]* + 202 ||z lyll Re (Ae™®) + 622 | Ay

> ||z]|* + 20 |1zl |yl Re (Ae™?)

> [l])® + 26¢ |2l lyll (— |\e*])

= [l]I* = 26¢ [|]| | Ay

> |l2]* — 2¢ ] |9l
ie.,rl5%y. .

Since| [y|z]| < ||z|| |ly]], i.e., z Ly for arbitraryz, y, the above result gives alsal'yy for
all z,y. That is the reason we restricto the intervall0, 1).

Proposition 3.2. If X is a continuous s.i.p. space aad: [0, 1), then L5 C 15,

Proof. Suppose that 15 y. Because of the homogeneity of relatialigsand_ L5, we may assume,
without loss of generality, that, y € S. Then, for arbitrary\ € K we have:

0 < |lz+ M|I> =1+ 2|\ = [z]z + My] + Mylz + Ay] — 1+ 22|\

Therefore
0 < Relz|z + Ay] + Re [Ay|z + Ay] — 1 + 2¢ |A|
<|[z]z + My]| + Re [M\y|z + Ay] — 1 + 2¢ ||
<|lz+ M|l + Re [Ay|z + Ay] — 1+ 2¢ ||
whence
(3.2) Re [Mylz + Ay + ||z + Ayl — 1 > —2¢ ||, forall A € K.
Let A, € K\ {0}, n € Nand\ = 22. Then from [3.2) we have
Rel&y|x+&y}+ a:—l—&y —-1> 2| |
n n n n
]
Re | g+ gy + B 2 2=
Puttingy’ = M gy € S, &, = % € R (& — 0asn — oo) we obtain from the above

inequality
+ &y -1
Lettingn — oo, using continuity of the s.i.p. and (3.1)

Re[v'|z] + Re [y'|x] > —2¢

—2e.

whence
Re [Aoy|z] = —&[Aol.
Putting— )\, in the place of\, we obtainRe [\oy|z] < |\¢| whence
IRe [Aoy|z]| < €]Xo| for arbitrary), € K.
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Now, taking, = [y|z| we get

[Re [bfalylz] | < el lyle]|
whence| [y|z] |* < €] [y|z] | and finally| [y|z] | < e, i.e.,x15y. O
Without the additional continuity assumption, the inclusign C 5 need not hold.

Example 3.1.Consider the spadé (with the norm||z|| = >°7°, || forx = (21, 22,...) € I*).
Define

— i

[ely] = llyll D =1, wyel
i=1 |y’L|
y; #0

— a semi-inner-product itt. Lete € [0,+/2 — 1) and letz = (1,0,0,...),y = (1,1,¢,0,...).
Then, for an arbitrarp € K:

e+ Ayll® = [l ]1” + 2¢ || Ayl = (11 4+ AL+ AL+ [Ael)® = 1+ 25(2 +¢) ||
> (14 Me)? —1+2e(24¢) ||
=2:(34¢2) |\ + |\ €2

>0,
i.e.,z 15y (in fact,z Lgy). On the other hand,
1
=1= >
[y|] o Iyl > ezl yl

whence-(x_L5y). In particular, fore = 0, this shows that. g ¢ L (cf. [4,8,[9]).
From the last two propositions we have:
Theorem 3.3.1f X is a continuous s.i.p. space, then
15 = 15,
Moreover we obtain, for = 0, (cf. [5, Theorem 2])
Corollary 3.4. If X is a continuous s.i.p. space, then
lg= L
Conversely,lg C L¢implies continuity of s.i.p. (smoothness) — ¢f. [4] and [8].

4. SOME REMARKS

Remark 4.1. Dragomir [3, Definition 5] introduces the following concept: The s|.p| is of
(APP)-type if there exists a mapping: [0,1) — [0,1) such thaty(¢) = 0 < ¢ = 0 and
:rﬂD(g)y impliesz L5y for all ¢ € [0, 1). It follows from Propositiol that in that case we have
also

(4.1) 1My = zlhy
foralle € [0,1).

It follows from [3, Lemma 1] that for a closed, proper linear subspaad a normed space

X and for an arbitrary € (0,1), the setG-LD of all vectors_ 15 -orthogonal toG is nonzero.
Using (4.1) we get

(5) €
4.2) alo’ cgle.
Therefore, we have
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Lemma 4.2. If X is a normed space with the s.i.p|-] of the (APP)-type, then for an arbitrary

proper and closed linear subspac¢eand an arbitrarys € [0, 1) the setG-Le of all vectors
e-Birkhoff orthogonal ta is nonzero.

We have also

Theorem 4.3.1f X is a normed space with the s.i.jp-] of the (APP)-type, then for an arbitrary
closed linear subspad@ and an arbitrarys € [0, 1) the following decomposition holds:

X =G+Gls.

Proof. Fix G ande € [0, 1). It follows from [3, Theorem 3] that

n(e)
X=G+Gio .

Using (4.2) we get the assertion. O

The final example shows that the set ofaairthogonal vectors may be equal to the set of all
orthogonal ones.

Example 4.1. Consider again the spa¢ewith the s.i.p. defined above. Let= (1,0,...).
Observe that vectorsorthogonal tce are, in fact, orthogonal te:

(4.3) rlghe = xlge.

Indeed, lete € [0,1) be fixed and lett = (z,79,...) € [! satisfyx 15e. Because of the
homogeneity ofl5; we may assume, without loss of generality, thatt = 1 andz; > 0. Thus
we have

YAeK: ||z 4 Xl > 1 —2¢|)|.
Therefore
YAEK: (o1 + A +1—21)* >1—2¢|).
Suppose that; > 0. Take\ € R such that\ < 0, A > —x; and\ > —2(1 — ¢). Then we have
(m1 +A+1—21)% > 142,

which leads to\ < —2(1 — ¢) — a contradiction. Thus; = 0, i.e,z = (0, x5, x3,...) and
|ze| 4+ |z3| + - - - = 1. This yields, for arbitrary\ € K,

[+ Xel| = [A[+1 =1 = [l
i.e.,zLge. It follows from (4.3) that forG := lin e we have
Gle = gls,
Note, that the implicatiom 1z = e_Lgz is not true. Take for example = (2,1,0,...).
3 3
Then[z|e] = 3|l ||z|, i.e, eLsx, whence (Propositio@.Je)LL‘*Bx. On the other hand, for
A = —2 one has
2
le+Aall = % < 1= lel,

i.e.,~(elgx).
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