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ABSTRACT. The notion of a probabilistic metric space was introduced by Menger in 1942. The
notion of a probabilistic normed space was introduced in 1993. The aim of this paper is to give
a necessary condition to get bounded linear operators in probabilistic normed space.
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1. INTRODUCTION

The purpose of this paper is to present a definition of bounded linear operators which is based
on the new definition of a probabilistic normed space. This definition is sufficiently general to
encompass the most important contraction function in probabilistic normed space. The concepts
used are those df[[1],[2] and|[9].

A distribution function(briefly, a d.f.) is a function” from the extended real lin® =
[—00, +00] into the unit intervall = [0, 1] that is nondecreasing and satisfieg—oo) =
0, F'(4+00) = 1. We normalize all d.f’s to be left-continuous on the unextended real line
R = (—o0, +00). For anya > 0, ¢, is the d.f. defined by

0, if z<a
(1.1) o (1) =

1, if = > a,

The set of all the d.f.s will be denoted lyand the subset of those d.f.s called positive d.f.s.
such thatF' (0) = 0, by A™.
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By setting” < G wheneverF' (z) < G (z) for all z in R, the maximal element foA™ in
this order is the d.f. given by
0, if x<0,
g0 () =
1, if z>0.
A triangle functionis a binary operation oA, namely a function : AT x AT — A* thatis
associative, commutative, nondecreasing and whichhas unit, thatis, foralF’, G, H € AT,
we have

T(T(F,G), H) =7 (F,7 (G, H)),
T(F,G)=7(G,F),
T(FH)<7(G,H), if F<G,
T(F,g9) = F.
Continuity of a triangle function means continuity with respect to the topology of weak conver-

gence inA™.
Typical continuous triangle functions are convolution and the operatigpesd -, which
are, respectively, given by

(1.2) mr (F,G) (v) = signg (F(s),G (1)),
and
(1.3) - (F,G) (x) = mf T"(F(s),G (1)),

forall F,G in A* and allz in R [9) Sections 7.2 and 7.3], hefeis a continuousg-norm, i.e. a
continuous binary operation df, 1] that is associative, commutative , nondecreasing and has
1 as identity;T* is a continuoug-conorm, namely a continuous binary operation@n| that

is related to continuousnorm through

(1.4) T° (r,y)=1-T(1—-x,1—1y).
It follows without difficulty from (I1.1)(1.4) that
77 (€asEb) = Eatb = Tr+ (€a, T)

for any continuous t-norrii’, any continuoug-conorm?7™ and anya, b > 0.
The most important-norms are the functiond’, Prod, and M which are defined, respec-
tively, by

W (a,b) =max(a+b—1,0),
prod (a,b) = a-b,
M (a,b) = min (a,b).
Their corresponding-norms are given, respectively, by
W* (a,b) = min (a +b,1),
prod* (a,b) =a+b—a-b,
M* (a,b) = max (a,b).
Definition 1.1. A probabilistic metric(briefly PM) space is a triplésS, f,7), whereS is a

nonempty setr is a triangle function, and is a mapping front x S into A* such that, ifF,,
denoted the value of at the pair(p, q), the following hold for allp, ¢, in S:

(PM1) F,, = ¢ ifandonly ifp = q.
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(PM2) E,, = F,.

(PM3) F,. > 7 (Fpy, Fyr) -

Definition 1.2. A probabilistic normedspace is a quadrupld’, v, 7, 7*), whereV is a real
vector spacer and7* are continuous triangle functions, ands a mapping from/ into A*
such that, for alp, ¢ in V, the following conditions hold:

(PN1) v, = gq ifand only if p = 6, § being the null vector irV;

(PN2) v_, = 1)

(PN3) vpig > 7 (Vp, 1)

(PN4) v, < 7* (I/ap, V(l_a)p) for all «in [0, 1].

If, instead of PN1), we only haveyy = ¢4, then we shall speak of Rrobabilistic Pseudo
Normed Spacebriefly a PPN space. If the inequalit?l4) is replaced by the equality, =
™ (uap, y(l_a)p), then the PN space is calledsarstnev spacelhe pair is said to be a Proba-
bilistic Seminorme@&pace (briefly PSN space)uf: V' — AT satisfies PN1) and PN2).
Definition 1.3. A PSN (V,v) space is said to bequilateralif there is a d.f.F' € A™ different
from ¢, and frome,,, such that, for every # 6, v, = F. Therefore, every equilateral PSN
spacgV,v) is a PN space under= M andr* = M where is the triangle function defined for
G,H € A" by

M (G, H) (z) =min{G (x),H ()} (x€]0,00]).
An equilateral PN space will be denoted @y, F', M) .
Definition 1.4. Let (V, ||-||) be a normed space and [8te A™ be different frome, ande.;
definev : V. — AT by yy = ¢ and

t
Vp(t)—G<W) (p#0,t>0),

wherea > 0. Then the pai(V, v) will be called then—simplespace generated Y/, ||-||) and
by G.

Thea—simple space generated b, ||-||) and byG is immediately seen to be a PSN space;
it will be denoted by(V, ||-||, G; «).

Definition 1.5. There is a natural topology in PN spadé v, , 7*), called thestrong topology
it is defined by the neighborhoods,
N,(t)={qeV vy, ,(t)>1—-t}={qedr(vy—p, €0) <1},
wheret > 0. Hered, is the modified Levy metric((]9]).

2. BOUNDED LINEAR OPERATORS IN PROBABILISTIC NORMED SPACES

In 1999, B. Guillen, J. Lallena and C. Sempi [3] gave the following definition of bounded set
in PN space.

Definition 2.1. Let A be a nonempty set in PN spadé v, 7, 7). Then
(a) A is certainly boundedf, and only if, p 4 (x) = 1 for somez, € (0, +00);
(b) A is perhaps boundedf, and only if, o4 (zq) < 1 for everyz, € (0,+00) and
[mpa(+00) =1,
(c) Ais perhaps unboundeifl and only if, I ¢4 (+00) € (0, 1);
(d) A is certainly unboundedf, and only if,[~p4 (+00) = 0; i.e.,04 () = 0;
wheregp, (x) =inf {v, (z) : P € A} andl~ ¢4 (z) = tligl wa (t).
Moreover,A will be said to beD-bounded if either (a) or (b) holds.
Definition 2.2. Let (V, v, 7,7*) and(V’, u,0,0*) be PN spaces. Alinearmdp: V — V'is
said to be
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(a) Certainly boundedf every certainly bounded set of the spaceV, v, ,7*) has, as
image byT" a certainly bounded sétA of the spaceV’, i, 0, 0%), i.e., if there exists
zo € (0,+00) such that, (zo) = 1 for all p € A, then there exists; € (0, +o0) such
thaty, (1) = 1 forallp € A.

(b) Boundedf it maps everyD-bounded set oV into a D-bounded set of”, i.e., if, and
only if, it satisfies the implication,

lim ¢4 (z)=1= mEIJPoo ora(x) =1,

Tr—-+00

for every nonempty subset of V.

(c) StronglyB-boundedf there exists a constanit > 0 such that, for every € V' and for
everyz > 0, ur, () > v, (%), or equivalently if there exists a constant> 0 such
that, for everyp € V" and for everyr > 0,

H1p (hx) > Vp ().

(d) StronglyC-boundedf there exists a constant € (0, 1) such that, for every € V and
for everyx > 0,

vp(x) >1—2= pp, (hx) >1— ha.

Remark 2.1. The identity map/ between PN spacéV,v, r,7*) into itself is stronglyC-
bounded. Also, all linear contraction mappings, according to the definition of [7, Section 1],
are stronglyC-bounded, i.e for every € V and for everyz > 0 if the conditionv,, (z) > 1 — =
is satisfied then

vip (he) = v, (hz) > 1 — ha.

But we note that whe = 1 then the identity mag between PN spac@/, v, 7, 7*) into
itself is a stronglyB-bounded operator. Also, all linear contraction mappings, according to the
definition of [9, Section 12.6], are strongBrbounded.

In [3] B. Guillen, J. Lallena and C. Sempi present the following, every stroBgiypunded
operator is also certainly bounded and every stroBghpounded operator is also bounded. But
the converses need not to be true.

Now we are going to prove that in the Definitipn [2.2, the notions of stro@lyounded
operator, certainly bounded, bounded and stroBghounded do not imply each other.

In the following example we will introduce a strongy-bounded operator, which is not
stronglyB-bounded, not bounded nor certainly bounded.

Example 2.1.Let V' be a vector space and &t = py = ¢, while, if p, ¢ # 6 then, for every
p,qg € V andz € R, if

and if
T (%), v (y) =77 (v () . v (y) = min (1, (2) , vy (2))
o (tp () s 1q (y) = 0™ (1 (), p1q (y)) = min (p, () , g (7)),

then (V,v,7,7*) and (V’, i, 0, 0*) are equilateral PN spaces by Definitjon|1.3. Nowllet
(Vyv,m,7*) — (V,u,7,7") be the identity operator, thehis strongly C-bounded but/ is
not stronglyB-bounded, bounded and certainly bounded, it is clear thit not certainly
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bounded and is not bounded.is not stronglyB-bounded, because for evety> 0 and for
T = max {2, %},
9
prp (kx) = 10 < l=v,(x).

But I is stronglyC-bounded, because for evepy> 0 and for everyz > 0, this condition
v, (r) > 1 — x is satisfied only ifc > 1 now if h = ;-2 then

7 7\ 13 7 7
()= ()= 21 Lo ()
pp (h) = iy (10x$) Hr (10) 3710 10 (101:)”7

Remark 2.2. We have noted in the above example that there is an operator, which is strongly
C-bounded, but it is not strongB-bounded. Moreover we are going to give an operator, which
is stronglyB-bounded, but it is not stronglg-bounded.

Definition 2.3. Let (V, v, 7, 7*) be PN space then we defined
B(p)=inf{heR:v, (h") >1—h}.

Lemma2.3.LetT : (V,v,7,7*) — (V', u,0,0*) be a stronglyB-bounded linear operator, for
everyp in V and letur, be strictly increasing o0, 1], thenB (T,,) < B (p),Vp € V.

Proof. Letn € (0, 1*TVB (p)), wherey € (0,1). ThenB (p) > v [B (p) +n] and so

tirp (B (p)) > prp (v [B (p) + 1)),

and whereur, is strictly increasing off0, 1], then

pry (7 [B(p) +1)) =2 vy (B(p)+1) =2 v, (B(p)") >1—-B(p),
we conclude that
B(T,) =inf {B(p) : prp (B(p)") >1—B(p)},
soB(1T,) < B(p), VYpeV. O

Theorem 2.4.LetT : (V,v,7,7") — (V' u,0,0%) be a stronglyB-bounded linear operator,
and letyu.r, be strictly increasing off0, 1], thenT" is a stronglyC-bounded linear operator.

Proof. Let T" be a strictlyB-bounded operator. Since, by Lem@ 231,) < B(p),VpeV
there existy, € (0,1) such thatB (7,) < v,B (p).
It means that
inf {h € R: pp, (k") >1—=h} <yinf{heR:y, (h") >1—h}
:inf{’thR:Vp<h+) >1—h}

ht h
:inf{hER:Vp(—)>l——}.
v Y

We conclude that, <%> > 1 — (%) = prp(h) > 1 —h. Now if z = % theny, (z) >

1 — 2 = pr, (zh) > 1 — zh, soT is a stronglyC-bounded operator. O

Remark 2.5. From Theorenji 2]4 we have noted that under some additional condition every a
stronglyB-bounded operator is a strongBtbounded operator. But in general, it is not true.
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Example 2.2.LetV = V' = R andvy = ug = o, While, if p # 0, then, forz > 0, let
v, () =G (%) pp () =U (%) where

%, 0<x <2,
CN@{ CN@{

1, 2<x<+o0,

Consider now the identity map: (R, |-|, G, u) — (R, |-|, G, u). Now
(a) I is a stronglyB-bounded operator, such that for everg R and everyr > 0 then

3 3 3 3 O<wz<2ip, .
Hiy (zm) =t (Z””) -v (m) - =¢ (ﬂ) = (@)
p 1, 2|p| <z < +o0, p

(b) I is not a stronglyC-bounded operator, such that for evérg (0, 1), letz = Sih p= i
If > 2|p| then the condition, (x) > 1 — = will be satisfied, but we note that

mp(h:v):up(hx):U(%):U(g):%<§:1—h(%):l—hm

Now we introduce the relation between the stronBhpounded and stronglZ-bounded
operators with boundedness in normed space.
Theorem 2.6. Let G be strictly increasing o0, 1], thenT : (V.|| , G, o) — (V', ||| , G, @)
is a stronglyB-bounded operator if, and only iff’ is a bounded linear operator in normed
space.

1, %<x§+oo

Proof. Let k£ > 0 andz > 0. Then for everyp € V

G(W%#>=um@@zv“mzc(m%ﬁ,

T, <k |lpl] -

if and only if

O

Theorem 2.7.LetT : (V,|-]|,G,a) — (V',]||]| , G, «) be stronglyC-bounded, and let be
strictly increasing orj0, 1] then7" is a bounded linear operator in normed space.

Proof. If v, is strictly increasing for every € V, then the quasi-inversg} is continuous and
B (p) is the unique solution of the equatien= v} (1 — ) i.e.

(2.1) B(p) = vy, (z) (1 - B(p)).

If v, () =G (Hpma), thenv) () = ||p||* G* («) and from I ) it follows that
(2.2) B(p) = |Ipl* G* (1 = B (p)).

Suppose thdl’ is stronglyC-bounded, i.e. that

(2.3) B(T,) <kB(p), VpeV,

wherek € (0,1).
Then [2.2) and (2]3) imply
B (1) kB (p) kB (p)
T < P < <
= e B @) S e i —kBG) = G 0 -B )
Which means thdf is a bounded in normed space. Il

= k|pl*
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The converse of the above theorem is not true, see Example 2.2.
We recall the following theorems from![3].

Theorem 2.8.Let (V,v,7,7%) and (V' u,0,0*) be PN spaces. Alinearmap: vV — V' is
either continuous at every point &f or at no point ofl’.

Corollary 2.9. f T : (V,v,7,7*) — (V’, u,0,0*) is linear, thenT" is continuous if, and only if,
it is continuous at.

Theorem 2.10. Every stronglyB-bounded linear operatof’ is continuous with respect to the
strong topologies iV, v, 7, 7*) and (V’, u, o, 0*), respectively.

In the following theorem we show that every stron@ibounded linear operatdr is contin-
uous.

Theorem 2.11.Every stronglyC-bounded linear operatdr’ is continuous.

Proof. Due to Corollary 3.1[[3], it suffices to verify thdt is continuous afl. Let Ny (t), with
t > 0, be an arbitrary neighbourhood &f If T is stronglyC-bounded linear operator then
there exist: € (0, 1) such that for every > 0 andp € N (s) we note that

prp (t) > v, (ht) > 1 —ht > 1 —t,
soT, € Ny (t); in other words" is continuous. O
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