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ABSTRACT. The notion of a probabilistic metric space was introduced by Menger in 1942. The
notion of a probabilistic normed space was introduced in 1993. The aim of this paper is to give
a necessary condition to get bounded linear operators in probabilistic normed space.
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1. I NTRODUCTION

The purpose of this paper is to present a definition of bounded linear operators which is based
on the new definition of a probabilistic normed space. This definition is sufficiently general to
encompass the most important contraction function in probabilistic normed space. The concepts
used are those of [1], [2] and [9].

A distribution function(briefly, a d.f.) is a functionF from the extended real linēR =
[−∞, +∞] into the unit intervalI = [0, 1] that is nondecreasing and satisfiesF (−∞) =
0, F (+∞) = 1. We normalize all d.f.’s to be left-continuous on the unextended real line
R = (−∞, +∞). For anya ≥ 0, εa is the d.f. defined by

(1.1) εa (x) =

 0, if x ≤ a

1, if x > a,

The set of all the d.f.s will be denoted by∆ and the subset of those d.f.s called positive d.f.s.
such thatF (0) = 0, by ∆+.
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By settingF ≤ G wheneverF (x) ≤ G (x) for all x in R, the maximal element for∆+ in
this order is the d.f. given by

ε0 (x) =

 0, if x ≤ 0,

1, if x > 0.

A triangle functionis a binary operation on∆+, namely a functionτ : ∆+×∆+ → ∆+ that is
associative, commutative, nondecreasing and which hasε0 as unit, that is, for allF, G, H ∈ ∆+,
we have

τ (τ (F, G) , H) = τ (F, τ (G, H)) ,

τ (F, G) = τ (G, F ) ,

τ (F, H) ≤ τ (G, H) , if F ≤ G,

τ (F, ε0) = F.

Continuity of a triangle function means continuity with respect to the topology of weak conver-
gence in∆+.

Typical continuous triangle functions are convolution and the operationsτT andτT ∗, which
are, respectively, given by

(1.2) τT (F, G) (x) = sup
s+t=x

T (F (s) , G (t)) ,

and

(1.3) τT ∗ (F, G) (x) = inf
s+t=x

T ∗ (F (s) , G (t)) ,

for all F, G in ∆+ and allx in R [9, Sections 7.2 and 7.3], hereT is a continuoust-norm, i.e. a
continuous binary operation on[0, 1] that is associative, commutative , nondecreasing and has
1 as identity;T ∗ is a continuoust-conorm, namely a continuous binary operation on[0, 1] that
is related to continuoust-norm through

(1.4) T ∗ (x, y) = 1− T (1− x, 1− y) .

It follows without difficulty from (1.1)–(1.4) that

τT (εa, εb) = εa+b = τT ∗ (εa, τb) ,

for any continuous t-normT , any continuoust-conormT ∗ and anya, b ≥ 0.
The most importantt-norms are the functionsW , Prod, andM which are defined, respec-

tively, by

W (a, b) = max (a + b− 1, 0) ,

prod (a, b) = a · b,
M (a, b) = min (a, b) .

Their correspondingt-norms are given, respectively, by

W ∗ (a, b) = min (a + b, 1) ,

prod∗ (a, b) = a + b− a · b,
M∗ (a, b) = max (a, b) .

Definition 1.1. A probabilistic metric(briefly PM) space is a triple(S, f, τ), whereS is a
nonempty set,τ is a triangle function, andf is a mapping fromS × S into ∆+ such that, ifFpq

denoted the value off at the pair(p, q), the following hold for allp, q, r in S:

(PM1) Fpq = ε0 if and only if p = q.
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(PM2) Fpq = Fqp.
(PM3) Fpr ≥ τ (Fpq, Fqr) .

Definition 1.2. A probabilistic normedspace is a quadruple(V, ν, τ, τ ∗), whereV is a real
vector space,τ andτ ∗ are continuous triangle functions, andν is a mapping fromV into ∆+

such that, for allp, q in V , the following conditions hold:
(PN1) νp = ε0 if and only if p = θ, θ being the null vector inV ;
(PN2) ν−p = νp;
(PN3) νp+q ≥ τ (νp, νq)
(PN4) νp ≤ τ ∗

(
ναp, ν(1−α)p

)
for all α in [0, 1].

If, instead of (PN1), we only haveνθ = εθ, then we shall speak of aProbabilistic Pseudo
Normed Space, briefly a PPN space. If the inequality (PN4) is replaced by the equalityVp =
τM

(
ναp, ν(1−α)p

)
, then the PN space is called aSerstnev space. The pair is said to be a Proba-

bilistic SeminormedSpace (briefly PSN space) ifν : V → ∆+ satisfies (PN1) and (PN2).
Definition 1.3. A PSN(V, ν) space is said to beequilateralif there is a d.f.F ∈ ∆+ different
from ε0 and fromε∞, such that, for everyp 6= θ, νp = F. Therefore, every equilateral PSN
space(V, ν) is a PN space underτ = M andτ ∗ = M where is the triangle function defined for
G, H ∈ ∆+ by

M (G, H) (x) = min {G (x) , H (x)} (x ∈ [0,∞]) .

An equilateral PN space will be denoted by(V, F, M) .

Definition 1.4. Let (V, ‖·‖) be a normed space and letG ∈ ∆+ be different fromε0 andε∞;
defineν : V → ∆+ by νθ = ε0 and

νp (t) = G

(
t

‖p‖α

)
(p 6= θ, t > 0) ,

whereα ≥ 0. Then the pair(V, ν) will be called theα−simplespace generated by(V, ‖·‖) and
by G.

Theα−simple space generated by(V, ‖·‖) and byG is immediately seen to be a PSN space;
it will be denoted by(V, ‖·‖ , G; α).
Definition 1.5. There is a natural topology in PN space(V, ν, τ, τ ∗), called thestrong topology;
it is defined by the neighborhoods,

Np (t) = {q ∈ V : νq−p (t) > 1− t} = {q ∈ dL (νq−p, ε0) < t} ,

wheret > 0. HeredL is the modified Levy metric ([9]).

2. BOUNDED L INEAR OPERATORS IN PROBABILISTIC NORMED SPACES

In 1999, B. Guillen, J. Lallena and C. Sempi [3] gave the following definition of bounded set
in PN space.
Definition 2.1. Let A be a nonempty set in PN space(V, ν, τ, τ ∗). Then

(a) A is certainly boundedif, and only if,ϕA (x0) = 1 for somex0 ∈ (0, +∞);
(b) A is perhaps boundedif, and only if, ϕA (x0) < 1 for every x0 ∈ (0, +∞) and

l−ϕA (+∞) = 1;
(c) A is perhaps unboundedif, and only if, l−ϕA (+∞) ∈ (0, 1);
(d) A is certainly unboundedif, and only if, l−ϕA (+∞) = 0; i.e.,ϕA (x) = 0;

whereϕA (x) = inf {νp (x) : P ∈ A} andl−ϕA (x) = lim
t→x−

ϕA (t).

Moreover,A will be said to beD-bounded if either (a) or (b) holds.
Definition 2.2. Let (V, ν, τ, τ ∗) and(V ′, µ, σ, σ∗) be PN spaces. A linear mapT : V → V ′ is
said to be
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(a) Certainly boundedif every certainly bounded setA of the space(V, ν, τ, τ ∗) has, as
image byT a certainly bounded setTA of the space(V ′, µ, σ, σ∗), i.e., if there exists
x0 ∈ (0, +∞) such thatνp (x0) = 1 for all p ∈ A, then there existsx1 ∈ (0, +∞) such
thatµTp (x1) = 1 for all p ∈ A.

(b) Boundedif it maps everyD-bounded set ofV into aD-bounded set ofV ′, i.e., if, and
only if, it satisfies the implication,

lim
x→+∞

ϕA (x) = 1 ⇒ lim
x→+∞

ϕTA (x) = 1,

for every nonempty subsetA of V .
(c) StronglyB-boundedif there exists a constantk > 0 such that, for everyp ∈ V and for

everyx > 0, µTp (x) ≥ νp

(
x
k

)
, or equivalently if there exists a constanth > 0 such

that, for everyp ∈ V and for everyx > 0,

µTp (hx) ≥ νp (x) .

(d) StronglyC-boundedif there exists a constanth ∈ (0, 1) such that, for everyp ∈ V and
for everyx > 0,

νp (x) > 1− x ⇒ µTp (hx) > 1− hx.

Remark 2.1. The identity mapI between PN space(V, ν, τ, τ ∗) into itself is stronglyC-
bounded. Also, all linear contraction mappings, according to the definition of [7, Section 1],
are stronglyC-bounded, i.e for everyp ∈ V and for everyx > 0 if the conditionνp (x) > 1−x
is satisfied then

νIp (hx) = νp (hx) > 1− hx.

But we note that whenk = 1 then the identity mapI between PN space(V, ν, τ, τ ∗) into
itself is a stronglyB-bounded operator. Also, all linear contraction mappings, according to the
definition of [9, Section 12.6], are stronglyB-bounded.

In [3] B. Guillen, J. Lallena and C. Sempi present the following, every stronglyB-bounded
operator is also certainly bounded and every stronglyB-bounded operator is also bounded. But
the converses need not to be true.

Now we are going to prove that in the Definition 2.2, the notions of stronglyC-bounded
operator, certainly bounded, bounded and stronglyB-bounded do not imply each other.

In the following example we will introduce a stronglyC-bounded operator, which is not
stronglyB-bounded, not bounded nor certainly bounded.

Example 2.1. Let V be a vector space and letνθ = µθ = ε0, while, if p, q 6= θ then, for every
p, q ∈ V andx ∈ R, if

νp (x) =

 0, x ≤ 1

1, x > 1
µp (x) =


1
3
, x ≤ 1

9
10

, 1 < x < ∞

1, x = ∞

and if

τ (νp (x) , νq (y)) = τ ∗ (νp (x) , νq (y)) = min (νp (x) , νq (x)) ,

σ (µp (x) , µq (y)) = σ∗ (µp (x) , µq (y)) = min (µp (x) , µq (x)) ,

then (V, ν, τ, τ ∗) and (V ′, µ, σ, σ∗) are equilateral PN spaces by Definition 1.3. Now letI :
(V, ν, τ, τ ∗) → (V, µ, τ, τ ∗) be the identity operator, thenI is stronglyC-bounded butI is
not stronglyB-bounded, bounded and certainly bounded, it is clear thatI is not certainly
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bounded and is not bounded.I is not stronglyB-bounded, because for everyk > 0 and for
x = max

{
2, 1

k

}
,

µIp (kx) =
9

10
< 1 = νp (x) .

But I is stronglyC-bounded, because for everyp > 0 and for everyx > 0, this condition
vp (x) > 1− x is satisfied only ifx > 1 now if h = 7

10
x then

µIp (hx) = µIp

(
7

10x
x

)
= µp

(
7

10

)
=

1

3
>

3

10
= 1− 7

10
= 1−

(
7

10x

)
x.

Remark 2.2. We have noted in the above example that there is an operator, which is strongly
C-bounded, but it is not stronglyB-bounded. Moreover we are going to give an operator, which
is stronglyB-bounded, but it is not stronglyC-bounded.

Definition 2.3. Let (V, ν, τ, τ ∗) be PN space then we defined

B (p) = inf
{
h ∈ R : νp

(
h+

)
> 1− h

}
.

Lemma 2.3. LetT : (V, ν, τ, τ ∗) → (V ′, µ, σ, σ∗) be a stronglyB-bounded linear operator, for
everyp in V and letµTp be strictly increasing on[0, 1], thenB (Tp) < B (p) , ∀p ∈ V.

Proof. Let η ∈
(
0, 1−γ

γ
B (p)

)
, whereγ ∈ (0, 1). ThenB (p) > γ [B (p) + η] and so

µTp (B (p)) > µTp (γ [B (p) + η]) ,

and whereµTp is strictly increasing on[0, 1], then

µTp (γ [B (p) + η]) ≥ νp (B (p) + η) ≥ νp

(
B (p)+)

> 1−B (p) ,

we conclude that

B (Tp) = inf
{
B (p) : µTp

(
B (p)+)

> 1−B (p)
}

,

soB (Tp) < B (p) , ∀p ∈ V. �

Theorem 2.4. Let T : (V, ν, τ, τ ∗) → (V ′, µ, σ, σ∗) be a stronglyB-bounded linear operator,
and letµTp be strictly increasing on[0, 1], thenT is a stronglyC-bounded linear operator.

Proof. Let T be a strictlyB-bounded operator. Since, by Lemma 2.3,B (Tp) < B (p) , ∀p ∈ V
there existγp ∈ (0, 1) such thatB (Tp) < γpB (p).

It means that

inf
{
h ∈ R : µTp

(
h+

)
> 1− h

}
≤ γ inf

{
h ∈ R : νp

(
h+

)
> 1− h

}
= inf

{
γh ∈ R : νp

(
h+

)
> 1− h

}
= inf

{
h ∈ R : νp

(
h+

γ

)
> 1− h

γ

}
.

We conclude thatνp

(
h
γ

)
> 1 −

(
h
γ

)
=⇒ µTp (h) > 1 − h. Now if x = h

γ
thenνp (x) >

1− x =⇒ µTp (xh) > 1− xh, soT is a stronglyC-bounded operator. �

Remark 2.5. From Theorem 2.4 we have noted that under some additional condition every a
stronglyB-bounded operator is a stronglyC-bounded operator. But in general, it is not true.
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Example 2.2. Let V = V ′ = R andv0 = µ0 = ε0, while, if p 6= 0, then, forx > 0, let

vp (x) = G
(

x
|p|

)
, µp (x) = U

(
x
|p|

)
, where

G (x) =


1
2
, 0 < x ≤ 2,

1, 2 < x ≤ +∞,
U (x) =


1
2
, 0 < x ≤ 3

2
,

1, 3
2

< x ≤ +∞
.

Consider now the identity mapI : (R, |·| , G, µ) → (R, |·| , G, µ). Now
(a) I is a stronglyB-bounded operator, such that for everyp ∈ R and everyx > 0 then

µIp

(
3

4
x

)
= µp

(
3

4
x

)
= U

(
3x

4 |p|

)
=


1
2
, 0 < x ≤ 2 |p| ,

1, 2 |p| < x ≤ +∞,
= G

(
x

|p|

)
= vp (x) .

(b) I is not a stronglyC-bounded operator, such that for everyh ∈ (0, 1), letx = 3
8h

, p = 1
4
.

If x > 2 |p| then the conditionvp (x) > 1− x will be satisfied, but we note that

µIp (hx) = µp (hx) = U

(
hx

|p|

)
= U

(
3

2

)
=

1

2
<

5

8
= 1− h

(
3

8h

)
= 1− hx.

Now we introduce the relation between the stronglyB-bounded and stronglyC-bounded
operators with boundedness in normed space.
Theorem 2.6. Let G be strictly increasing on[0, 1], thenT : (V, ‖·‖ , G, α) → (V ′, ‖·‖ , G, α)
is a stronglyB-bounded operator if, and only if,T is a bounded linear operator in normed
space.

Proof. Let k > 0 andx > 0. Then for everyp ∈ V

G

(
kx

‖Tp‖α

)
= µTp (kx) ≥ vp (x) = G

(
x

‖p‖α

)
,

if and only if
‖Tp‖ ≤ k

1
α ‖p‖ .

�

Theorem 2.7. Let T : (V, ‖·‖ , G, α) → (V ′, ‖·‖ , G, α) be stronglyC-bounded, and letG be
strictly increasing on[0, 1] thenT is a bounded linear operator in normed space.

Proof. If vp is strictly increasing for everyp ∈ V , then the quasi-inversevΛ
p is continuous and

B (p) is the unique solution of the equationx = vΛ
p (1− x) i.e.

(2.1) B (p) = vΛ
p (x) (1−B (p)) .

If vp (x) = G
(

x
‖p‖α

)
, thenvΛ

p (x) = ‖p‖α GΛ (x) and from (2.1) it follows that

(2.2) B (p) = ‖p‖α GΛ (1−B (p)) .

Suppose thatT is stronglyC-bounded, i.e. that

(2.3) B (Tp) ≤ kB (p) , ∀p ∈ V,

wherek ∈ (0, 1) .
Then (2.2) and (2.3) imply

‖Tp‖α ≤ B (Tp)

GΛ (1−B (Tp))
≤ kB (p)

GΛ (1− kB (p))
≤ kB (p)

GΛ (1−B (p))
= k ‖p‖α .

Which means thatT is a bounded in normed space. �
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The converse of the above theorem is not true, see Example 2.2.
We recall the following theorems from [3].

Theorem 2.8. Let (V, ν, τ, τ ∗) and (V ′, µ, σ, σ∗) be PN spaces. A linear mapT : V → V ′ is
either continuous at every point ofV or at no point ofV .
Corollary 2.9. If T : (V, ν, τ, τ ∗) → (V ′, µ, σ, σ∗) is linear, thenT is continuous if, and only if,
it is continuous atθ.
Theorem 2.10.Every stronglyB-bounded linear operatorT is continuous with respect to the
strong topologies in(V, ν, τ, τ ∗) and(V ′, µ, σ, σ∗), respectively.

In the following theorem we show that every stronglyC-bounded linear operatorT is contin-
uous.
Theorem 2.11.Every stronglyC-bounded linear operatorT is continuous.

Proof. Due to Corollary 3.1 [3], it suffices to verify thatT is continuous atθ. Let Nθ′ (t), with
t > 0, be an arbitrary neighbourhood ofθ′. If T is stronglyC-bounded linear operator then
there existh ∈ (0, 1) such that for everyt > 0 andp ∈ Nθ (s) we note that

µTp (t) ≥ νp (ht) ≥ 1− ht > 1− t,

soTp ∈ Nθ′ (t); in other words,T is continuous. �
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