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ABSTRACT. This paper deals with some extensions of Hardy-Hilbert’s inequality with the best
constant factors by introducing two parametersλ andα and using the Beta function. The equiv-
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1. I NTRODUCTION

If an,bn ≥ 0 satisfy

0 <

∞∑
n=1

a2
n < ∞ and 0 <

∞∑
n=1

b2
n < ∞,

then one has two equivalent inequalities as:

(1.1)
∞∑

n=1

∞∑
m=1

ambn

m + n
< π

{
∞∑

n=1

a2
n

∞∑
n=1

b2
n

} 1
2

and

(1.2)
∞∑

n=1

(
∞∑

m=1

am

m + n

)2

< π2

∞∑
n=1

a2
n,

where the constant factorsπ andπ2 are the best possible. Inequality (1.1) is well known as
Hilbert’s inequality (cf. Hardy et al. [1]). In 1925, Hardy [2] gave some extensions of (1.1) and
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2 BICHENG YANG

(1.2) by introducing the(p, q)−parameter as: Ifp > 1, 1
p

+ 1
q

= 1, an,bn ≥ 0 satisfy

0 <
∞∑

n=1

ap
n < ∞ and 0 <

∞∑
n=1

bq
n < ∞,

then one has the following two equivalent inequalities:

(1.3)
∞∑

n=1

∞∑
m=1

ambn

m + n
<

π

sin
(

π
p

) { ∞∑
n=1

ap
n

} 1
p
{

∞∑
n=1

bq
n

} 1
q

and

(1.4)
∞∑

n=1

(
∞∑

m=1

am

m + n

)p

<

 π

sin
(

π
p

)
p

∞∑
n=1

ap
n,

where the constant factors π
sin(π/p)

and
[

π
sin(π/p)

]p
are the best possible. Inequality (1.3) is called

Hardy-Hilbert’s inequality, and is important in analysis and its applications (cf. Mitrinović et
al. [3]).

In 1997-1998, by estimating the weight coefficient and introducing the Euler constantγ,
Yang and Gao [4, 5] gave a strengthened version of (1.3) as:

(1.5)
∞∑

n=1

∞∑
m=1

ambn

m + n
<


∞∑

n=1

 π

sin
(

π
p

) − 1− γ

n
1
p

 ap
n


1
p


∞∑
n=1

 π

sin
(

π
p

) − 1− γ

n
1
q

 bq
n


1
q

,

where1 − γ = 0.42278433+ is the best value. In 1998, Yang [6] first introduced an indepen-
dent parameterλ and the Beta function to build an extension of Hilbert’s integral inequality.
Recently, by introducing a parameterλ, Yang [7] and Yang et al. [8] gave some extensions of
(1.3) and (1.4) as: If2−min{p, q} < λ ≤ 2, an,bn ≥ 0 satisfy

0 <
∞∑

n=1

n1−λap
n < ∞ and 0 <

∞∑
n=1

n1−λbq
n < ∞,

then one has the following two equivalent inequalities:

(1.6)
∞∑

n=1

∞∑
m=1

ambn

(m + n)λ
< kλ(p)

{
∞∑

n=1

n1−λap
n

} 1
p
{

∞∑
n=1

n1−λbq
n

} 1
q

and

(1.7)
∞∑

n=1

n(p−1)(λ−1)

[
∞∑

m=1

am

(m + n)λ

]p

dy < [kλ(p)]p
∞∑

n=1

n1−λap
n,

where the constant factorskλ(p) = B
(

p+λ−2
p

, q+λ−2
q

)
and[kλ(p)]p are the best possible (B(u, v)

is theβ function). Forλ = 1, inequalities (1.6) and (1.7) reduce respectively to (1.3) and (1.4).
By introducing a parameterα, Kuang [9] gave an extension of (1.3), and Yang [10] gave an
improvement of [9] as: If0 < α ≤ min{p, q}, an,bn ≥ 0 satisfy

0 <
∞∑

n=1

n(p−1)(1−α)ap
n < ∞ and 0 <

∞∑
n=1

n(q−1)(1−α)bq
n < ∞,
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then one has two equivalent inequalities as:

(1.8)
∞∑

n=1

∞∑
m=1

ambn

mα + nα
<

π

α sin
(

π
p

) { ∞∑
n=1

n(p−1)(1−α)ap
n

} 1
p
{

∞∑
n=1

n(q−1)(1−α)bq
n

} 1
q

and

(1.9)
∞∑

n=1

nα−1

[
∞∑

m=1

am

mα + nα

]p

dy <

 π

α sin
(

π
p

)
p

∞∑
n=1

n(p−1)(1−α)ap
n,

where the constant factors π
α sin(π/p)

and
[

π
α sin(π/p)

]p
are the best possible. Forα = 1, inequali-

ties (1.8) and (1.9) reduce respectively to (1.3) and (1.4). Recently, Hong [11] gave an extension
of (1.3) by introducing two parametersλ andα as: Ifα ≥ 1, 1− 1

αr
< λ ≤ 1 (r = p, q), then

(1.10)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ
< Hλ,α(p)

{
∞∑

n=1

nα(1−λ)ap
n

} 1
p
{

∞∑
n=1

nα(1−λ)bp
n

} 1
q

,

where

Hλ,α(p) =

[
B

(
1− 1

αq
, λ +

1

αq
− 1

)] 1
p
[
B

(
1− 1

αp
, λ +

1

αp
− 1

)] 1
q

.

Forλ = α = 1, (1.10) reduces to (1.3). However, it is obvious that (1.10) is not an extension of
(1.6) or (1.8).

In 2003, Yang et al. [12] provided an extensive account of the above results. More recently,
Yang [13] gave some extensions of (1.1) and (1.2) as: If0 < λ ≤ min{p, q}, satisfy

0 <
∞∑

n=1

np−1−λap
n < ∞ and 0 <

∞∑
n=1

nq−1−λap
n < ∞,

then one has the following two equivalent inequalities:

(1.11)
∞∑

n=1

∞∑
m=1

ambn

(m + n)λ
< Kλ(p)

{
∞∑

n=1

np−1−λap
n

} 1
p
{

∞∑
n=1

nq−1−λbp
n

} 1
q

and

(1.12)
∞∑

n=1

n(p−1)λ−1

[
∞∑

m=1

am

(m + n)λ

]p

dy < [Kλ(p)]p
∞∑

n=1

np−1−λap
n,

where the constantsKλ(p) = B
(

λ
p
, λ

q

)
and[Kλ(p)]p are the best possible. Forλ = 1, (1.11)

and (1.12) reduce to the following two equivalent inequalities:

(1.13)
∞∑

n=1

∞∑
m=1

ambn

m + n
<

π

sin
(

π
p

) { ∞∑
n=1

np−2ap
n

} 1
p
{

∞∑
n=1

nq−2bq
n

} 1
q

and

(1.14)
∞∑

n=1

np−2

(
∞∑

m=1

am

m + n

)p

<

 π

sin
(

π
p

)
p

∞∑
n=1

np−2ap
n.
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4 BICHENG YANG

For p = q = 2, inequalities (1.13) and (1.14) reduce respectively to (1.1) and (1.2). We find
that inequalities (1.3) and (1.13) are different, although both of them are the best extensions of
(1.1) with the(p, q)−parameter.

The main objective of this paper is to obtain some extensions of (1.3) with the best constant
factors, by introducing two parametersλ and α and using the Beta function, related to the
double series as

∑∞
n=1

∑∞
m=1

ambn

(mα+nα)λ (λ, α > 0), so that inequality (1.10) can be improved.
The equivalent form and some reversions are considered.

2. SOME L EMMAS

First, we need the form of the Beta function as (cf. Wang et al. [14]):

(2.1) B(u, v) :=

∫ ∞

0

1

(1 + t)u+v
tu−1dt = B(v, u) (u, v > 0).

Lemma 2.1. If p > 0 (p 6= 1), 1
p

+ 1
q

= 1, λ, α > 0, φr = φr(λ, α) > 0 (r = p, q), satisfy
φp + φq = λα, define the weight functionωr(x) as

(2.2) ωr(x) :=

∫ ∞

0

xλα−φr

(xα + yα)λ

(
1

y

)1−φr

dy (x > 0; r = p, q).

Then forx > 0, eachωr(x) is constant, that is

(2.3) ωr(x) =
1

α
B

(
φp

α
,
φq

α

)
(x > 0; r = p, q).

Proof. Settingu =
(

y
x

)α
in the integral (2.2), one hasdy = x

α
u

1
α
−1du and

ωr(x) = xλα−φr

∫ ∞

0

1

(xα + xαu)λ

(
1

xu1/α

)1−φr x

α
u

1
α
−1du

=
1

α

∫ ∞

0

1

(1 + u)λ
u

φr
α
−1du (r = p, q).

By (2.1), sinceφp + φq = λα, one has (2.3). The lemma is proved. �

Lemma 2.2. If p > 1, 1
p

+ 1
q

= 1, λ, α > 0, φr > 0 (r = p, q), satisfyφp + φq = λα, and
0 < ε < qφp, then one has

I1 :=

∫ ∞

1

∫ ∞

1

x−1+φq− ε
p

(xα + yα)λ
y−1+φp− ε

q dxdy

>
1

εα
B

(
φp

α
− ε

qα
,
φq

α
+

ε

qα

)
−O(1).(2.4)

If 0 < p < 1 and0 < ε < −qφq, with the above assumption, then one has

I2 :=
∞∑

m=1

∫ ∞

0

m−1+φq− ε
p

(mα + yα)λ
y−1+φp− ε

q dy

=
1

α
B

(
φp

α
− ε

qα
,
φq

α
+

ε

qα

) ∞∑
m=1

1

m1+ε
.(2.5)
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Proof. Settingu =
(

y
x

)α
in the integralI1, one has

I1 =

∫ ∞

1

x−1+φq− ε
p

[∫ ∞

1

1

(xα + yα)λ
y−1+φp− ε

q dy

]
dx

=
1

α

∫ ∞

1

x−1−ε

∫ ∞

1
xα

1

(1 + u)λ
u

φp
α
− ε

qα
−1dudx

=
1

εα

∫ ∞

0

u
φp
α
− ε

qα
−1

(1 + u)λ
du− 1

α

∫ ∞

1

x−1−ε

∫ 1
xα

0

u
φp
α
− ε

qα
−1

(1 + u)λ
dudx

>
1

εα

∫ ∞

0

u
φp
α
− ε

qα
−1

(1 + u)λ
du− 1

α

∫ ∞

1

x−1

∫ 1
xα

0

u
φp
α
− ε

qα
−1dudx

=
1

εα

∫ ∞

0

u
φp
α
− ε

qα
−1

(1 + u)λ
du−

(
φp −

ε

q

)−2

.(2.6)

By (2.1), it follows that (2.4) is valid. For0 < p < 1, settingu = ( y
m

)α in the integral ofI2, in
the same manner, one has (2.5). The lemma is thus proved. �

3. M AIN RESULTS

Theorem 3.1. If p > 1, 1
p

+ 1
q

= 1, λ, α > 0, 0 < φr ≤ 1 (r = p, q), φp + φq = λα and
an, bn ≥ 0 satisfy

0 <
∞∑

n=1

np(1−φq)−1ap
n < ∞ and 0 <

∞∑
n=1

nq(1−φp)−1bq
n < ∞,

then one has

(3.1)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ
<

1

α
B

(
φp

α
,
φq

α

){ ∞∑
n=1

np(1−φq)−1ap
n

} 1
p
{

∞∑
n=1

nq(1−φp)−1bq
n

} 1
q

,

where the constant factor1
α
B
(

φp

α
, φq

α

)
is the best possible.

Proof. By Hölder’s inequality with weight (see [15]), one has

H(am, bn) :=
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ

=
∞∑

n=1

∞∑
m=1

1

(mα + nα)λ

[
m(1−φq)/q

n(1−φp)/p
am

] [
n(1−φp)/p

m(1−φq)/q
bn

]

≤

{
∞∑

m=1

[
∞∑

n=1

mλα−φp

(mα + nα)λ
· 1

n1−φp

]
mp(1−φq)−1ap

m

} 1
p

×

{
∞∑

n=1

[
∞∑

m=1

nλα−φq

(mα + nα)λ
· 1

m1−φq

]
nq(1−φp)−1bq

n

} 1
q

.(3.2)

Sinceλ, α > 0, and1− φr ≥ 0 (r = p, q), in view of (2.2), we rewrite (3.2) as

H(am, bn) <

{
∞∑

m=1

ωp(m)mp(1−φq)−1ap
m

} 1
p
{

∞∑
n=1

ωq(n)nq(1−φp)−1bq
n

} 1
q

,
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6 BICHENG YANG

and then by (2.3), one has (3.1). For0 < ε < qφp, settinga′nand b′n as: a′n = n−1+φq− ε
p ,

b′n = n−1+φp− ε
q , n ∈ N, then we find

{
∞∑

n=1

np(1−φq)−1a′pn

} 1
p
{

∞∑
n=1

nq(1−φp)−1b′qn

} 1
q

= 1 +
∞∑

n=2

1

n1+ε
(3.3)

< 1 +

∫ ∞

1

1

t1+ε
dt

=
1

ε
(1 + ε).

If the constant factor1
α
B
(

φp

α
, φq

α

)
in (3.1) is not the best possible, then there exists a positive

constantk (with k < 1
α
B
(

φp

α
, φq

α

)
), such that (3.1) is still valid if one replaces1

α
B
(

φp

α
, φq

α

)
by

k. In particular, by (2.4) and (3.3),

1

α
B

(
φp

α
− ε

qα
,
φq

α
+

ε

qα

)
− εO(1) < εI1

< εH(a′m, b′n)

< εk

{
∞∑

n=1

np(1−φq)−1a′pn

} 1
p
{

∞∑
n=1

nq(1−φp)−1b′qn

} 1
q

= k(1 + ε),

and then1
α
B
(

φp

α
, φq

α

)
≤ k (ε → 0+). This contradicts the fact thatk < 1

α
B
(

φp

α
, φq

α

)
. Hence

the constant factor1
α
B
(

φp

α
, φq

α

)
in (3.1) is the best possible. The theorem is proved. �

Theorem 3.2. If p > 1, 1
p

+ 1
q

= 1, λ, α > 0, 0 < φr ≤ 1 (r = p, q), φp + φq = λα andan ≥ 0
satisfy

0 <

∞∑
n=1

np(1−φq)−1ap
n < ∞,

then one has

(3.4)
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p

<

[
1

α
B

(
φp

α
,
φq

α

)]p ∞∑
n=1

np(1−φq)−1ap
n,

where the constant factor
[

1
α
B
(

φp

α
, φq

α

)]p
is the best possible. Inequality (3.4) is equivalent to

(3.1).

Proof. Set

bn := npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p−1

,
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and use (3.1) to obtain

0 <
∞∑

n=1

nq(1−φp)−1bq
n(3.5)

=
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p

=
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ

≤ 1

α
B

(
φp

α
,
φq

α

){ ∞∑
n=1

np(1−φq)−1ap
n

} 1
p
{

∞∑
n=1

nq(1−φp)−1bq
n

} 1
q

and

0 <

{
∞∑

n=1

nq(1−φp)−1bq
n

} 1
p

=

{
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]
p

} 1
p

≤ 1

α
B

(
φp

α
,
φq

α

){ ∞∑
n=1

np(1−φq)−1ap
n

} 1
p

< ∞.(3.6)

It follows that (3.5) takes the form of strict inequality by using (3.1); so does (3.6). Hence, one
has (3.4).

On the other hand, if (3.4) is valid, by Hölder’s inequality, one has

∞∑
n=1

∞∑
m=1

ambn

(mα + nα)λ
=

∞∑
n=1

[
∞∑

m=1

n
1
q
−1+φpam

(mα + nα)λ

] [
n1−φp− 1

q bn

]
(3.7)

≤

{
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p} 1
p
{

∞∑
n=1

nq(1−φp)−1bq
n

} 1
q

.

By (3.4), one has (3.1). It follows that inequalities (3.4) and (3.1) are equivalent. If the constant
factor in (3.4) is not the best possible, one can obtain a contradiction that the constant factor in
(3.1) is not the best possible by using (3.7). Hence the constant factor in (3.4) is still the best
possible. Thus the theorem is proved. �

Theorem 3.3. If 0 < p < 1, 1
p

+ 1
q

= 1,

A = {(λ, α); λ, α > 0, 0 < φr ≤ 1 (r = p, q), φp + φq = λα} 6= Φ,

andan, bn ≥ 0 satisfy

0 <

∞∑
n=1

np(1−φq)−1ap
n < ∞ and 0 <

∞∑
n=1

nq(1−φp)−1bq
n < ∞,
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then for(λ, α) ∈ A, one has

(3.8)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ

>
1

α
B

(
φp

α
,
φq

α

){ ∞∑
n=1

[1− θp(n)]np(1−φq)−1ap
n

} 1
p
{

∞∑
n=1

nq(1−φp)−1bq
n

} 1
q

,

where0 < θp(n) = O
(

1
nφp

)
< 1; the constant1

α
B
(

φp

α
, φq

α

)
is the best possible.

Proof. By the reverse of Hölder’s inequality (see [15]), following the method of proof in Theo-
rem 3.1, since0 < p < 1 andq < 0, one has

(3.9) H(am, bn) >

{
∞∑

n=1

$p(n)np(1−φq)−1ap
n

} 1
p
{

∞∑
n=1

ωq(n)nq(1−φp)−1bq
n

} 1
q

,

whereωq(n) is defined as in (2.2) and

(3.10) $p(n) :=
∞∑

k=1

nλα−φp

(nα + kα)λ

(
1

k

)1−φp

(n ∈ N).

Defineθp(n) as

(3.11) θp(n) :=
nλα−φp

ωp(n)

∫ 1

0

1

(nα + yα)λ

(
1

y

)1−φp

dy (n ∈ N).

Since

ωp(n) >

∫ 1

0

nλα−φp

(nα + yα)λ

(
1

y

)1−φp

dy,

then we find0 < θp(n) < 1, and

(3.12) $p(n) >

∫ ∞

1

nλα−φp

(nα + yα)λ

(
1

y

)1−φp

dy = ωp(n) [1− θp(n)] .

By (3.12), (2.3) and (3.9), one has (3.8). Since

(3.13) 0 < θp(n) <
nλα−φp

ωp(n)

∫ 1

0

1

nλα

(
1

y

)1−φp

dy =
1

ωp(n)φp

· 1

nφp
,

andωp(n) is a constant, we haveθp(n) = O
(

1
nφp

)
(n →∞).

For 0 < ε < min{q(φp − 1),−qφq}, settinga′n andb′n as:a′n = n−1+φq− ε
p , b′n = n−1+φp− ε

q ,
n ∈ N, sinceφp > 0, then

∞∑
n=1

O

(
1

nφp+1+ε

)
= O(1)(ε → 0+),
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and {
∞∑

n=1

[1− θp(n)]np(1−φq)−1a′pn

} 1
p
{

∞∑
n=1

nq(1−φp)−1b′qn

} 1
q

(3.14)

=
∞∑

n=1

1

n1+ε

1−

∑∞
n=1 O

(
1

nφp+1+ε

)
∑∞

n=1
1

n1+ε


1
p

=
∞∑

n=1

1

n1+ε
(1− o(1))

1
p .

If the constant1
α
B
(

φp

α
, φq

α

)
in (3.8) is not the best possible, then there exists a positive number

K (with K > 1
α
B
(

φp

α
, φq

α

)
), such that (3.8) is still valid if one replaces1

α
B
(

φp

α
, φq

α

)
by K. In

particular, by (3.14) and (2.5), one has

K

∞∑
n=1

1

n1+ε
{1− o(1)}

1
p

= K

{
∞∑

n=1

[1− θp(n)]np(1−φq)−1a′pn

} 1
p
{

∞∑
n=1

nq(1−φp)−1b′qn

} 1
q

< H(a′m, b′n)

< I2 =
1

α
B

(
φp

α
− ε

qα
,
φq

α
+

ε

qα

) ∞∑
n=1

1

n1+ε
,

and thenK ≤ 1
α
B
(

φp

α
, φq

α

)
(ε → 0+). By this contradiction we can conclude that the constant

1
α
B
(

φp

α
, φq

α

)
in (3.8) is the best possible. Thus the theorem is proved. �

Theorem 3.4. If 0 < p < 1, 1
p

+ 1
q

= 1,

A = {(λ, α); λ, α > 0, 0 < φr ≤ 1 (r = p, q), φp + φq = λα} 6= Φ,

andan, bn ≥ 0 satisfy

0 <
∞∑

n=1

np(1−φq)−1ap
n < ∞,

for (λ, α) ∈ A, one has

(3.15)
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p

>

[
1

α
B

(
φp

α
,
φq

α

)]p ∞∑
n=1

[1− θp(n)]np(1−φq)−1ap
n,

where0 < θp(n) = O
(

1
nφp

)
< 1, and the constant factor

[
1
α
B
(

φp

α
, φq

α

)]p
is the best possible.

Inequality (3.15) is equivalent to (3.8).

Proof. Still setting

bn := npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p−1

,
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by (3.8), one has

0 <

∞∑
n=1

nq(1−φp)−1bq
n(3.16)

=
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p

=
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ

≥ 1

α
B

(
φp

α
,
φq

α

){ ∞∑
n=1

[1− θp(n)]np(1−φq)−1ap
n

} 1
p
{

∞∑
n=1

nq(1−φp)−1bq
n

} 1
q

and

0 <

{
∞∑

n=1

nq(1−φp)−1bq
n

} 1
p

=

{
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p} 1
p

≥ 1

α
B

(
φp

α
,
φq

α

){ ∞∑
n=1

[1− θp(n)]np(1−φq)−1ap
n

} 1
p

.(3.17)

If
∑∞

n=1 nq(1−φp)−1bq
n < ∞, by using (3.8), (3.16) takes the form of strict inequality; so does

(3.17). If
∑∞

n=1 nq(1−φp)−1bq
n = ∞, (3.17) takes naturally strict inequality. Hence we have

(3.15).
On the other hand, if (3.15) is valid, by the reverse of Hölder’s inequality,

∞∑
n=1

∞∑
m=1

ambn

(mα + nα)λ
=

∞∑
n=1

[
∞∑

m=1

n
1
q
−1+φpam

(mα + nα)λ

]
[n1−φp− 1

q bn](3.18)

≥

{
∞∑

n=1

npφp−1

[
∞∑

m=1

am

(mα + nα)λ

]p} 1
p
{

∞∑
n=1

nq(1−φp)−1bq
n

} 1
q

.

Hence by (3.15), one has (3.8). If the constant factor in (3.15) is not the best possible, we can
conclude that the constant factor in (3.8) is not the best possible by using (3.18). The theorem
is proved. �

Note: In view of (3.1), ifφr = φr(λ, α) (r = p, q) satisfy

B(φp(1, 1), φq(1, 1)) =
π

sin
(

π
p

) ,

andrφr(1, 1) = 1 (r = p, q), one can get a best extension of (1.3); ifB(φp(1, 1), φq(1, 1)) =
π

sin(π/p)
(or π

2
), andrφr(1, 1) 6= 1 (r = p, q), one can get a best extension of (1.1) but not a best

extension of (1.3). For example, settingφr =
[

1
r
(α− 2) + 1

]
λ (r = p, q), thenrφr(1, 1) =

r − 1 6= 1, by Theorems 3.1 – 3.4, one can get a best extension of (1.13) and (1.1) as follows:
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Corollary 3.5. If p > 1, 1
p
+ 1

q
= 1, λ > 0, α > 2−min{p, q},

[
1
r
(α− 2) + 1

]
λ ≤ 1 (r = p, q),

an,bn ≥ 0, satisfy

0 <
∞∑

n=1

np[1−λ(α−1)]+(α−2)λ−1ap
n < ∞

and

0 <

∞∑
n=1

nq[1−λ(α−1)]+(α−2)λ−1bq
n < ∞,

one has equivalent inequalities as:

(3.19)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ

< Kλ,α(p)×

{
∞∑

n=1

np[1−λ(α−1)]+(α−2)λ−1ap
n

} 1
p
{

∞∑
n=1

nq[1−λ(α−1)]+(α−2)λ−1bq
n

} 1
q

and

(3.20)
∞∑

n=1

n(p+α−2)λ−1

[
∞∑

m=1

am

(mα + nα)λ

]p

< [Kλ,α(p)]p
∞∑

n=1

np[1−λ(α−1)]+(α−2)λ−1ap
n,

where

Kλ,α(p) =
1

α
B

(
λ

p + α− 2

αp
, λ

q + α− 2

αq

)
and [Kλ,α(p)]p are the best possible. In particular,

(i) for α = 1, one has0 < λ ≤ min{p, q} and (1.11);
(ii) for λ = 1, one has2−min{p, q} < α ≤ 2 and

(3.21)
∞∑

n=1

∞∑
m=1

ambn

mα + nα
< K1,α(p)

{
∞∑

n=1

n(p−1)(2−α)−1ap
n

} 1
p
{

∞∑
n=1

n(q−1)(2−α)−1bq
n

} 1
q

and

(3.22)
∞∑

n=1

np+α−3

[
∞∑

m=1

am

mα + nα

]p

< [K1,α(p)]p
∞∑

n=1

n(p−1)(2−α)−1ap
n.

If 0 < p < 1, for (λ, α) = (1, 2) ∈ A(6= Φ), by (3.8), (3.15) and (3.13), one can obtain
two equivalent reversions as

(3.23)
∞∑

n=1

∞∑
m=1

ambn

m2 + n2
>

π

2

{
∞∑

n=1

(
1− 2

πn

)
ap

n

n

} 1
p
{

∞∑
n=1

bq
n

n

} 1
q

and

(3.24)
∞∑

n=1

np−1

[
∞∑

m=1

am

m2 + n2

]p

>
(π

2

)p
∞∑

n=1

(
1− 2

πn

)
ap

n

n
,

where the constant factors in the above inequalities are the best possible.
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4. SOME BEST EXTENSIONS OF (1.3)

Settingφr = λα
r

(r = p, q), by Theorems 3.1 – 3.4, one has

Corollary 4.1. If p > 1, 1
p

+ 1
q

= 1, λ, α > 0, λα ≤ min{p, q}, an, bn ≥ 0, satisfy

0 <
∞∑

n=1

n(p−1)(1−λα)ap
n < ∞ and 0 <

∞∑
n=1

n(q−1)(1−λα)bq
n < ∞,

then one has the following equivalent inequalities:

(4.1)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ
<

Kλ(p)

α

{
∞∑

n=1

n(p−1)(1−λα)ap
n

} 1
p
{

∞∑
n=1

n(q−1)(1−λα)bq
n

} 1
q

and

(4.2)
∞∑

n=1

nλα−1

[
∞∑

m=1

am

(mα + nα)λ

]p

<

[
Kλ(p)

α

]p ∞∑
n=1

n(p−1)(1−λα)ap
n,

whereKλ(p) = B
(

λ
p
, λ

q

)
. In particular,

(i) for α = 1, one has0 < λ ≤ min{p, q} and the following two equivalent inequalities:

(4.3)
∞∑

n=1

∞∑
m=1

ambn

(m + n)λ
< Kλ(p)

{
∞∑

n=1

n(p−1)(1−λ)ap
n

} 1
p
{

∞∑
n=1

n(q−1)(1−λ)bq
n

} 1
q

and

(4.4)
∞∑

n=1

nλ−1

[
∞∑

m=1

am

(m + n)λ

]p

< [Kλ(p)]p
∞∑

n=1

n(p−1)(1−λ)ap
n;

(ii) for λ = 1, 0 < α ≤ min{p, q} one has two equivalent inequalities as:

(4.5)
∞∑

n=1

∞∑
m=1

ambn

mα + nα
<

π

α sin
(

π
p

) { ∞∑
n=1

n(p−1)(1−α)ap
n

} 1
p
{

∞∑
n=1

n(q−1)(1−α)bq
n

} 1
q

and

(4.6)
∞∑

n=1

nα−1

[
∞∑

m=1

am

mα + nα

]p

<

 π

α sin
(

π
p

)
p

∞∑
n=1

n(p−1)(1−α)ap
n,

where the constant factors in the above inequalities are the best possible.

Note: Since for0 < p < 1, φq = λα
q

< 0, thenA = Φ. It follows that both (4.1) and (4.2) do

not possess reversions. Settingφr = λα−1
2

+ 1
r

(r = p, q), by Theorems 3.1 – 3.4, one has

Corollary 4.2. If p > 1, 1
p

+ 1
q

= 1, λ, α > 0, 1 − 2 min
{

1
p
, 1

q

}
< λα ≤ 1 + 2 min

{
1
p
, 1

q

}
,

an, bn ≥ 0, satisfy

0 <
∞∑

n=1

n
p
2
(1−λα)ap

n < ∞ and 0 <

∞∑
n=1

n
q
2
(1−λα)bq

n < ∞,
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then one has the following equivalent inequalities:

(4.7)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ

<
1

α
B

(
pλα− p + 2

2pα
,
qλα− q + 2

2qα

){ ∞∑
n=1

n
p
2
(1−λα)ap

n

} 1
p
{

∞∑
n=1

n
q
2
(1−λα)bq

n

} 1
q

and

(4.8)
∞∑

n=1

n
p
2
(λα−1)

[
∞∑

m=1

am

(mα + nα)λ

]p

dy

<

[
1

α
B

(
pλα− p + 2

2pα
,
qλα− q + 2

2qα

)]p ∞∑
n=1

n
p
2
(1−λα)ap

n.

In particular,

(i) for α = 1, one has1 − 2 min
{

1
p
, 1

q

}
< λ ≤ 1 + 2 min

{
1
p
, 1

q

}
, and the following two

equivalent inequalities:

(4.9)
∞∑

n=1

∞∑
m=1

ambn

(m + n)λ

< B

(
pλ− p + 2

2p
,
qλ− q + 2

2q

){ ∞∑
n=1

n
p
2
(1−λ)ap

n

} 1
p
{

∞∑
n=1

n
q
2
(1−λ)bq

n

} 1
q

and

(4.10)
∞∑

n=1

n
p
2
(λ−1)

[
∞∑

m=1

am

(m + n)λ

]p

dy

<

[
B

(
pλ− p + 2

2p
,
qλ− q + 2

2q

)]p ∞∑
n=1

n
p
2
(1−λα)ap

n;

(ii) for λ = 1, one has1 − 2 min
{

1
p
, 1

q

}
< α ≤ 1 + 2 min

{
1
p
, 1

q

}
and two equivalent

inequalities as:

(4.11)
∞∑

n=1

∞∑
m=1

ambn

mα + nα

<
1

α
B

(
pα− p + 2

2pα
,
qα− q + 2

2qα

){ ∞∑
n=1

n
p
2
(1−α)ap

n

} 1
p
{

∞∑
n=1

n
q
2
(1−α)bq

n

} 1
q

and

(4.12)
∞∑

n=1

n
p
2
(α−1)

[
∞∑

m=1

am

mα + nα

]p

dy

<

[
1

α
B

(
pα− p + 2

2pα
,
qα− q + 2

2qα

)]p ∞∑
n=1

n
p
2
(1−α)ap

n,

where the constant factors in the above inequalities are the best possible.
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Note: Since for0 < p < 1, we find

A =

{
(λ, α); λ, α > 0, 0 <

λα− 1

2
+

1

r
≤ 1 (r = p, q)

}
= Φ,

it follows that both (4.7) and (4.8) do not possess reversions. Settingφr =
(
1− 1

r

)
(λα−2)+1

(r = p, q), by Theorems 3.1 – 3.4, one has

Corollary 4.3. If p > 1, 1
p

+ 1
q

= 1, λ, α > 0, 2−min{p, q} < λα ≤ 2, an, bn ≥ 0, satisfy

0 <

∞∑
n=1

n1−λαap
n < ∞ and 0 <

∞∑
n=1

n1−λαbq
n < ∞,

then one has the following equivalent inequalities:

(4.13)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)λ

<
1

α
B

(
p + λα− 2

pα
,
q + λα− 2

qα

){ ∞∑
n=1

n1−λαap
n

} 1
p
{

∞∑
n=1

n1−λαbq
n

} 1
q

and

(4.14)
∞∑

n=1

n(p−1)(λα−1)

[
∞∑

m=1

am

(mα + nα)λ

]p

<

[
1

α
B

(
p + λα− 2

pα
,
q + λα− 2

qα

)]p ∞∑
n=1

n1−λαap
n,

where the constant factors in the above inequalities are the best possible.
If 0 < p < 1, one has(α/2, α) ∈ A and two equivalent reversions as:

(4.15)
∞∑

n=1

∞∑
m=1

ambn

(mα + nα)2/α
> kα

{
∞∑

n=1

(
1− 1

kαn

)
1

n
ap

n

} 1
p
{

∞∑
n=1

1

n
bq
n

} 1
q

and

(4.16)
∞∑

n=1

np−1

[
∞∑

m=1

am

(mα + nα)2/α

]p

> kp
α

∞∑
n=1

(
1− 1

kαn

)
1

n
ap

n,

wherekα = 1
α
B
(

1
α
, 1

α

)
, and the constant factors are the best possible.

Proof. For0 < p < 1,

φr =

(
1− 1

r

)
(λα− 2) + 1 ≤ 1 (r = p, q),

we obtainλα = 2 andφr = 1. By (3.13), we find

0 < θp(n) <
1

ωp(n)φp

· 1

nφp
=

1

kαn
.

Hence by (3.8) and (3.15), one has (4.15) and (4.16). The corollary is proved. �
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Remark 4.4.
(i) For α = 1, by (4.13) and (4.14), one has (1.6) and (1.7); forλ = 1, by (4.13) and (4.14),

one has (1.8) and (1.9). It follows that (4.13) is an extension of (1.6) and (1.8), which
is an improvement of (1.10), and (4.14) is an extension of (1.7) and (1.9). (4.11) and
(4.12) are extensions of (3.23) and (3.24).

(ii) Inequalities (1.6), (4.3) and (4.9) are different extensions of (1.3) with a parameterλ; in-
equalities (1.8), (4.5) and (4.11) are different extensions of (1.3) with a parameterα and
inequalities (4.1), (4.7) and (4.13) are different extensions of (1.3) with two parameters
λ andα.

(iii) Inequalities (1.7), (4.4) and (4.10) are different extensions of (1.4) with a parameterλ;
inequalities (1.9), (4.6) and (4.12) are different extensions of (1.4) with a parameterα
and inequalities (4.2), (4.8) and (4.14) are different extensions of (1.4) with two param-
etersλ andα. Since the above inequalities and some reversions are all with the best
constant factors, one gives some new results.
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