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ABSTRACT. In this paper, we introduce the cladg (p, A, B, o) of p-valent functions in the
unitdiscU = { z : | z| < 1}. We obtain coefficient estimate, distortion and closure theorems,
radii of close-to convexity, starlikeness and convexity of orilef0 < § < 1) for this class.

We also obtain class preserving integral operators for this class. Furthermore, various distortion
inequalities for fractional calculus of functions in this class are also given.
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1. INTRODUCTION

Let A(n) be the class of functiong, analytic andb—valent inU = {z : |z| < 1} given by
(1.1) f(z) =2"+ Zap+nzp+", Apin > 0.
n=1

A function f belonging to the clasd(n) is said to be in the class;,(p, A, B, «) if and only if

2 fFP) (5
(p—1)+Re {—f(il)((z))

In the other wordsf € A?, (p, A, B, «) if and only if it satisfies the condition

2F(P) (4
(p—1)+ f(‘é*l)((z)) —-p

2f(P) (2
(A=B)p—0)+pB - B (- 1)+ 75|

}>0 forz e U.
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2 H.O. GUNEY AND S. SUMER EKER

where-1 < B<A<1,—-1<B<0and0 < «a < p. Let A,, denote the subclass df(n)
consisting of functions analytic and-valent which can be expressed in the form

(1.2) f(z) =2"— Z ap+nzp+n; apyn > 0.

Let us define
A3(p. A, B,a) = A, (p, A, B,a) [ ) Am.

In this paper, we obtain a coefficient estimate, distortion theorems, integral operators and radii
of close-to-convexity, starlikeness and convexity, closure properties and distortion inequalities
for fractional calculus. This paper is motivated by an earlier work of Nunokawa [1].

2. COEFFICIENT ESTIMATES
Theorem 2.1.If the functionf is defined by[ (1]1), thefi€ A%(p, A, B, «) if and only if

(2.1) Z (p+n)![n(1 _(i)_:_lgfl — B)(p — )]

tpin < (A= B)(p — a)pl.

n=1

The result is sharp.

Proof. Assume that the inequalitly (2.1) holds true and4ét= 1. Then we obtain
2fP(z) = fTVE)| = [(A=B)p— a)f?) = Bzf® + B

:' fﬂ pin | = | (A= B)(p - a)plz
n=1
— (p+n)! < n(p+n)
A— B _ E nn+1_B§: nn—i—l
( (0% 2 (n+1 ap+ — (’I’L—f—l)' Ap+n
(p+n)[n(l-B)+(A-B)p—a
) (n>+1§ 0= 4 gy <0
n=1

by hypothesis. Hence, by the maximum modulus theorem, we fiaweA’(p, A, B, «). To
prove the converse, assume that

(p)
(p 1) + (]; 1)(())

2f ) (2
(A= B)(p—a)+pB—B|(p—1) + 253 ]
-y et o
N <1
(A= B)(p—a) (p!z — 21 Ef:{i ap+n2"+1> + B Z (5:1” (g2t

SinceRe(z) < |z| for all z, we have

- (ptn)! n+1

nzl (nt1)! dp+n®
(2.2) Re < 1.

(A= B)(p—«a) (p!z — 2—31 Ef:ll; ap+nzn+1> + B E (f:{;, (2T
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Choosing values of on the real axis and letting— 1~ through real values, we obtain

o0

ey S EHh-B) (U= B)p-a)

apsn < (A= B)(p — a)p!,

n=1 (n + 1)'
which obviously is required assertign (2.1). Finally, sharpness follows if we take
_ _ ] |
(2.4) flz) =22 — (A—B)(p — a)pl(n+1)! in

(p+n)![n(1 = B)+ (A= B)(p—a)

Corollary 2.2. If f € A%(p, A, B, o), then
L (A= B)(p—a)pl(n+1)!

P (p+ ) (1 - B) + (A - B)(p - a)]
The equality in[(2.5) is attained for the functigrgiven by [(2.14).

(2.5)

3. DISTORTION PROPERTIES
Theorem 3.1.1f f € A(p, A, B,«), thenfor|z| =7 < 1
2(A—=B)(p - )

G e DB+ A B -al
, 2(A-B)(p—a) pt1
Vel <"t =B+ A-Blp—a)]
and
p—1 2(A—B)(p—«a) P
(3.2) pr (1-B)+(A—B)(p—a)
<|f'() <prt~t + 24 - B)(p ~ o) rP.

(1-B)+(A-B)(p—a)
All the inequalities are sharp.

Proof. Let
f(z) =2F — Z Apin 2P iy > 0.
n=1
From Theorerh Z2]1, we have

(p+ D1 —B)+(A-B)p—a)]
2 ;CLP—H@

3 b= B)+ (A= B)p—a)

n=1 (n+1)! e
<(A-B)(p—a)p!

which

> 2(A-B)(p—qa)
(3-3) ; = Br D (1-B) + (A-B)(p - a)]
and

o0 2(A-B)(p—qa)
(3.4) ;(PJrn)apm < (1-B)+(A-B)(p—a)
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Consequently, fofz| = r < 1, we obtain

z rP 4 pptl N a rP Q(A—B)(p—a) rPH
TENS D i <74 T By 4 (A= B —a)
and
Z rP — pptl N a rP — 2(A—B)(p—a) Pt
1f(2)] = ; pin 2 (p+1[(1-B)+(A-B)(p—a)

which prove that the assertign (B.1) of Theofenj 3.1 holds.
The inequalities in(3]2) can be proved in a similar manner and we omit the details.

The bounds in (3]1) anfl (3.2) are attained for the funcfi@iven by

2(A—B)(p—«a)
(p+1[(1-B)+(A-B){p—a)

Lettingr — 1~ in the left hand side of (3]1), we have the following:

Pans

(3.5) flz) =2 —

Corollary 3.2. If f € A%(p, A, B, a), then the dis¢z| < 1 is mapped by onto a domain that
contains the disc

| < P+1)A-B)+(A-B)p-a)p—1)
(P+1)[(1=B)+ (A= B)(p—a)

The result is sharp with the extremal functigibeing given by[ (3]5).

Puttinga: = 0 in Theorenj 3.]1 and Corollafy 3.2, we get
Corollary 3.3. If f € A(p, A, B,0), then for|z| = r

2p(A — B)

rP — rptt
(p+1)[(1 = B)+p(A—B)]
p 2p(A — B) p+1
== - By v oA - D)
and
pT‘p_l o 2p(A — B) rP < |f/(2)| Sprp_l + 2p(A— B) P

(1—B)+p(A—B) (1-B)+p(A-B)

The result is sharp with the extremal function

2p(A — B) ey
(p+1)[(1=B)+p(A-B)]"

Corollary 3.4. If f € A%(p, A, B,0), then the dis¢z| < 1 is mapped by onto a domain that
contains the disc

(3.6) f(z)=2P — z = Fr.

] < (p+1)(1—B)+plp—1)(A—B)
(p+1)[(1 - B)+p(A- B)

The result is sharp with the extremal functigibeing given by[(3]6).
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4. RADII OF CLOSE-TO-CONVEXITY , STARLIKENESS AND CONVEXITY

Theorem4.1.Letf € A%(p, A, B, ). Thenf is p—valent close-to-convex of ordér(0 < § < p)
in|z| < Ry, where

_ (p+n)n(1—=B)+(A-B)p—a)] (p—10 1
(4.1) Rl—lﬂf{[ (A—B)(p—a)(n+ 1)p! (p—l—n)} }

Theorem 4.2.1f f € AX(p, A, B,«), then f is p—valent starlike of ordep (0 <6 < p) in
|z| < Ry, where

“2) RZ:i%f{{<p+n>![n<1—B>+<A—B><p—a>1( p—3 )]}

(A= B)(p—a)(n+1)!p! p+n—29

Theorem4.3.1f f € A%(p, A, B, a), thenf is ap—valent convex function of ordér(0 < § < p)
in |z| < R3, where

[n(l—B>+<A—B><p—a>}<p+n—1>!( p—o )}
(A=B)(p—a)(n+1!(p—1) ptn—29 '

In order to establish the required results in Theoremg 4.1, 4.2 and 4.3, it is sufficient to show
that

(4.3) Ry = igf{ [

lf)—p <p-4§ for |z|] <Ry,
zp=1
Zf(z)—p <p-9 for |z] <R, and
(2)
Zf”(Z)}
1+ —p|<p—9¢ for |z] < Rs,
H f'(2) et

respectively.

Remark 4.4. The results in Theorens 41, .2 4.3 are sharp with the extremal furfction
given by [2.4). Furthermore, taking= 0 in Theorem$ 4]1, 4|2 arid 4.3, we obtain radius of
close-to-convexity, starlikeness and convexity, respectively.

5. INTEGRAL OPERATORS

Theorem 5.1.Letc be areal number such that> —p. If f € AX(p, A, B, ), then the function
F defined by

(5.1) F(z) = &P /0 £ f(1)dt

ZC

also belongs tol*(p, A, B, ).
Proof. Let

o0
f(z) = 2P — Apin 2P
p+
n=1

Then from the representation 67 it follows that

F(z) = 2P — Z bpin2? ™,
n=1
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6 H.O. GUNEY AND S. SUMER EKER

whereb,;, = (CJM) a,+n. Therefore using Theorel 1 for the coefficientdofve have
o~ (p+n)!n(1 = B) + (A= B)(p— o)
> o
1 n .
_ i P+ n(l=B)+(A-B)p—a)] [ ct+p \_
— (n+1)! c+p+n) "
< (A-B)(p—a)!
since_ v < landf € Aj(p, A, B,a). HenceF' € Aj(p, A, B, ). O

Theorem 5.2. Let ¢ be a real number such that > —p. If F € A*(p, A, B, «), then the
function f defined by[(5]1) is—valentin|z| < R*, where

o0 o [(c) S D b o) (o)L

The result is sharp. Sharpness follows if we take

_p_(ctptn (n+1)!I(A B)( a)p! i
flz) = (c+p )<p+n>![n<1—B> TA-Bp

6. CLOSURE PROPERTIES

In this section we show that the clad$(p, A, B, «) is closed under “arithmetic mean” and
“convex linear combinations”.

Theorem 6.1. Let

(0.0
p+n L
— g Apn 2, J=1,2,..
n=1

and .
z)=2P — Z bpin2?t",
n=1
where
p+n ZA Ap+tn,j, j>0
and) >, A =1.1f f; € Aj;(p,A,B,a) for eachj = 1,2,..., thenh € A%(p, A, B, a).
Proof. If f; € A%(p, A, B, a), then we have from Theorem 2.1 that

i (p+n)[n(l—B)+ (A—B)(p—a)]a < (A=B)p—a)p!, j=12,...

2 (n+1)! pim
Therefore
— (p+n)! (1 = B)+ (A= B)(p—a)]
; CE b4
> +n)!'n(l—-—B)+ (A—B)(p—« >
-y (p+n)! [n( (n>+ 15! )(p—a)] (Z A)]
< (A-B)(p-ap.
Hence, by Theorefn 2.1, € A;(p, A, B, o). O
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Theorem 6.2. The class4}(p, A, B, «) is closed under convex linear combinations.
Theorem 6.3. Let f,(z) = 2P and

A-Bp-a)n+t D .,
-+ ! [l = B) + (A= B)(p - a)]

Thenf € A*(p, A, B, «) if and only if it can be expressed in the form

(n>1).

fp+n =2 -

f( _)‘pfp +Z/\nfp+n zeU,

where),, > 0and), =1—> 7 A,..

Proof. Let us assume that

F(2) = Aofo(2) ZA Fon(2

T SICLY. RS I
“— (p+n)n(l—B)+

Then from Theorem 211 we have

— (p+n)!n(1-B)+(A—B)(p—a)]
Z (n+1)!
y (A— B)(p—a)(n+1)p \
(p+n)![n(l=B)+(A=B)(p—-a) "
< (A-B)(p—a)p.

Hencef € A:(p, A, B,«). Conversely, letf € A%(p, A, B, «). It follows from Corollary{ 2.2
that

n=1

Ui < (A= B)(p—a)(n+1)!p!
T )= B) + (A= B)(p - )]

Setting

(p+n)![n(l—B)+(A-B)(p—a)
(A= B)(p—a)(n+1)!p!

and), =1—-5%> \,, we have

_Zap+nzp+n
_ — 2P - A B)( )(n+1)!p! 2P
_ Z)\ +ZA nZlA (p+n)[n(1 — B) + (A= B)(p— )] ’

- )‘pfp + Z )\nfp+n

An =

This completes the proof of Theorém|6.3. O
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7. DEFINITIONS AND APPLICATIONS OF FRACTIONAL CALCULUS

In this section, we shall prove several distortion theorems for functions to general class
A*(p, A, B,«). Each of these theorems would involve certain operators of fractional calcu-
lus we find it to be convenient to recall here the following definition which were used recently
by Owa [2] (and more recently, by Owa and Srivastava [3], and Srivastava and Owa [4] ; see
also Srivastava et al. |[5]).

Definition 7.1. The fractional integral of ordex is defined, for a functiorf, by
_ L f©

7.1 D7 f(z) = / d¢ (A >0),

(7.1) &=t | Goagmd (=0

where f is an analytic function in a simply — connected region of thglane containing the
origin, and the multiplicity of(z= — ¢)*~! is removed by requiringog(z — ¢) to be real when
z—(¢>0.

Definition 7.2. The fractional derivative of orde¥ is defined, for a functiorf, by

(7.2) D) = prmy s | e (0=A<D),

wheref is constrained, and the multiplicity ¢f — ¢)~* is removed, as in Definiti.l.

Definition 7.3. Under the hypotheses of Definitipn 7.2, the fractional derivative of qrder))
is defined by

dn
7.3 DA f(z) = —
(7.3) () =
where0 < A < 1andn € Ny = NJ{0}. From Definitior] 7.2, we have
(7.4) D2f(2) = f(2)
which, in view of Definitior] 7.B yields,

dn
(7.5) DI f(=) = T D (2) = £(2).
Thus, it follows from [[7.4) and (7]5) that
lim D72f(2) = f(2) and lim D7 f(z) = f'(2).

Theorem 7.1.Let the functiory defined by{(1]2) be in the clas§(p, A, B, o). Then forz € U
and\ > 0,

Dif(z) (0<A<1),

— p+A F(p—i— 1)
| DA f(2)] = 2] {m
24-B)p—a)l'(p+1)

A p+DIA+p+ ) [(1-B)+ (A= B)(p - a)] ‘Z|}

and

‘D;)‘f(z)’ S |Z‘p+)\{ F(p+ 1)

FA+p+1)

A+p+ 1IN +p+1)[(1—-B)+ (A—-B)(p—a)] '
The result is sharp.
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Proof. Let
F(o) = S ()
S
3 plmagent,
n=1
where

_Tlp+n+1DI(p+A+1)
pln) = Tp+ )l (p+n+A+1) (A>0, neN).

Then by using) < ¢(n) < ¢(1) = -2 and Theorel, we observe that

+IN[1=B)+(A-B)(p— )] —
b+ D=5+ (A= B) HEQ%M

= (4 n)! [n(1 = B) + (A B)(p— )]
< nz_; (n T 1)! Aptn

which shows thaf’(z) € A (p, A, B, a). Consequently, with the aid of Theor¢m|3.1, we have
[F(2)] = |27 = (1) |27 apin
n=1

2(A—B)(p— )

S Py ey} sy grny ) Al
and
F)] < 122+ o) 1Y apen
S |Z|p+ Q(A—B)(p—a) |Z|p+1

(P+A+ DA =B)+ (A= B)p—-a)

which completes the proof of Theorém[7.1.By letting— 0, Theorenj 7] reduces at once to
Theoreni 3.1. O

Corollary 7.2. Under the hypotheses of Theorem| 7L, f () is included in a disk with its
center at the origin and radiug;* given by

/\_{ T(p+1) }{H 2(A-B)(p—a) }
L 7 +p+1) (p+A+D[A1-B)+(A-B)(p—a)] [’
Theorem 7.3. Let the functionf defined by[(1]2) be in the clask (p, A, B, «). Then,

I'(p+1)
F'p—XA+1)

\Dﬁ@nzVVA{

B 20A-B)p—a)l'(2=NT'(p+1) |z|}
Fp—=A+1I(p—-A+2)[(1-B)+(A-DB){p—a)

J. Inequal. Pure and Appl. Math6(4) Art. 97, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10 H.O. GQINEY AND S. SUMER EKER

and
o I'(p+1)
|D2f(2)] < |2 A{m
N 20A—B)(p—a)[(2—AN(p+1) |Z|}
Fp—A+1DI'(p—A+2)[1-B)+(4A-B)(p—a)]

for0 < A< 1.
Proof. Using similar arguments as given by Theoijenj 7.1, we can get the result. O

Corollary 7.4. Under the hypotheses of Theor 78.f(z) is included in the disk with its
center at the origin and radiug; given by

v Tlp+1) 2(A—DB)(p—a)I'(2—-))
= {F(A+p+1)} {H F(p—AH)[(l—B)+(A—B)(p—a)]}'
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