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ABSTRACT. Inthis paper we introduce and study some properties of a unified¢lasa, 3, v, A\, n, A, B|
of prestarlike functions with negative coefficients in a unit disk These properties include
growth and distortion, radii of convexity, radii of starlikeness and radii of close-to-convexity.
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1. INTRODUCTION

Let A denote the class eformalizedanalytic functions of the form:
(1.1) fe) =2+ an2",
n=2

in the unit diskU = {z : |z| < 1}. Further letS denote the subclass df consisting of analytic
and univalent functiong in the unit diskU. A function f in S is said to be starlike of order
if and only if

(1.2) Re (Z;(SU > a

for somea (0 < a < 1). We denote by5*(«) the class of all starlike functions of order It is
well-known thatS*(a)) C S*(0) = S*.
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2 MASLINA DARUS

Let the function
z
(13) Sa(Z) = m, (Z c U, 0 <a< 1)
which is the extremal function for the claS$(«). We also note tha$,, (=) can be written in the
form:

(1.4) Sa(2) :z—i-Z\cn(aﬂz”,
n=2
where
nr_,(j — 2
(1.5) en(a) = M (ne N {1}, N:={1,2,3,...}).
(n—1)!
We note that, («) is decreasing i and satisfies
oo ifa< % ,
(1.6) lim c,(a) =41 ifa=3,
0 ifa> %

Also a functionf in S is said to be convex of orderif and only if

zf”(z))
a.7) Re (1 + ) >
for somea (0 < o < 1). We denote by («) the class of all convex functions of order It is
afactthatf € K(a)ifand onlyifzf'(z) € S*(a).

The well-known Hadamard product (or convolution) of two functigiis) given by [1.1) and
g(z) givenbyg(z) = z+ >~ , b,z" is defined by

(1.8) (f*g)(z) =2+ ianbnz", (ze€U).
n=2

Let Rlu, o, 3,7, A, A, B] denote the class of prestarlike functions satisfying the following
condition

Hi(2)

zH' (2) zH' (2)
2v(B - A) ( ) “) —-B ( ) 1)
whereH)(z) = (1 — AMh(z) + A\zh/'(2), A\ >0, h = f%S5S,,0< 5 <1,0< pu< 1,and

-1

(1.9) < B,

</y< 2(B?A)u’ H?’é(),

forfixed—1 < A< B<land0< B<1.

We also note that a functiohis a so-calledv-prestarlikg(0 < « < 1) function if, and only if,
h = =S, € S*(«a) which was first introduced by Ruscheweyh [3], and was rigorously studied
by Silverman and Silvia 4], Owa and Ahuja [5] and Uralegaddi and Sarangi [6]. Further, a func-
tion f € Aisinthe clas€|u, o, 5,7, A\, A, Bl ifand only if, z f'(2) € R[u, o, 5,7, A, A, B.

Let 7" denote the subclass df consisting of functions of the form

(1.10) flz)=2z— i a,z", (a, >0).
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Let us write
Rrlp, o, 8,7, A\ A, Bl = Rlu, o, 3,7, \, A, BlNT
and
Crlp, o, B,v,\, A, Bl =Clu, o, 8,7, \, A, B|NT

whereT is the class of functions of the forin (1]10) that are analytic and univalént ithe idea
of unifying the study of classeB [y, «, 5,7, A, A, Bl andCr|u, «, 3,7, A, A, B] thus, forming
a new clas$/[u, o, 3,7, \,n, A, B] is somewhat or rather motivated from the work|af [1] and

[2].

In this paper, we will study the unified presentation of prestarlike functions belonging to
Ulp, o, 5,7, A\, n, A, B] which include growth and distortion theorem, radii of convexity, radii
of starlikeness and radii of close-to-convexity.

2. COEFFICIENT INEQUALITY

Our main tool in this paper is the following result, which can be easily proven, and the details
are omitted.

Lemma 2.1. Let the functionf be defined by (1.10). Thehe R+|u, a, 5,7, A, A, B] if and
only if

(2.1) > A(n,\)DIn, 8,7, A, Bllan|ca(@) < E[B,7, 1, A, B]
n=2

where
A(n,A) =1+ (n—1)A),
Din, 8,7, A, Bl =n—1+428y(n — p)(B—A) = BB(n— 1),
E[B,v, 1, A, B] = 26~(1 — p)(B — A).
The result is sharp.
Next, by observing that

(2.2) feCrlp, o, 8,7, M\ A Bl & 2f'(2) € Rr[u, o, 3,7, A\, A, B,
we gain the following Lemm@a 2.2.

Lemma 2.2. Let the functionf be defined by (1.10). Thefie Cr(u,, 3,7, A, A, B] if and
only if

(2.3) > nA(n,A)Dn, 8,7, A, Bllan|cn(e) < E[3,7, 1, A, B]

n=2

where

A(n,A) = (1+ (n—1)N),
D[naﬁa’%AaB] =n—1+ 2ﬁ7(n - #)(B - A) - Bﬁ(n - 1)7
E[B, 7, A, Bl = 28v(1 — p)(B — A)

andc, («) given by[(1.F).
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In view of Lemmg 2.]l and Lemnfa 2.2, we unified the clasBe$y:, o, 3,7, X, A, B] and
Crlu, o, B,7, A, A, B] and so a new clasg#|u, a, 3,7, A\, n, A, B] is formed. Thus we say that a
function f defined by|(1.10) belongs td[u, «, 3, v, \, n, A, B] if and only if,

o

(2.4) > (1 =n+nn)A(n, \)Dln, 8,7, A, Bllay|ca (@) < E[B,7, 1, A, B],

n=2
0<a<1;0<B<Lin>0A>0; -1<A<B<land0< B<1),

where A(n, \), Din, 3,7, A, B] , E[3,7,u, A, B] and¢,(a) are given in (Lemma 2|1 and
Lemmg 2.2) and given by (1.5), respectively.
Clearly, we obtain

Ulp,a, 8,7, A n, A, Bl = (1 = n)Rrp, o, 8,7, A, B + nCrp, ., 3,7, A, B,
so that
Ulp, o, 8,7, ,0,A, Bl = Rru, a, 5,7, A, B,
and
Ulp, o, B,7v,\ 1, A, B] = Crlp, o, 5,7, A, B.

3. GROWTH AND DISTORTION THEOREM

A distortion property for functiory in the class{|u, «, 5,7, A, n, A, B] is given as follows:
Theorem 3.1. Let the functionf defined by[(1.10) be in the cla&$y, o, 3,7, A\, n, A, B], then

E[3,v,u, A, B]
@i)T_2ﬂ+ﬂmM2AﬂﬂZﬁﬁﬂ&BKl—ay2
E[3,7, p, A, B]
SV S AN DR, Ay A B )
n>0; 0<a<l;, 0<pB<1, z2€l)
and
EWVM B
®2 - R ADR A A B0 - a)
< |f,(Z)| <1+ E[ﬁaf}/?llﬂA’B]

(L AR DR, 5,7, A, B(1 - a)”
p>0; 0<a<l; 0<pB<1; zeUl).
The bounds in (3]1) anfl (3.2) are attained for the functfagiven by

E[ﬂ/%:u?A?B} 22
21+ A2, D2, 3,7, A, B](1 — a)

Proof. Observing that;,(«) defined by[(1.p) is nondecreasing for < o < 1), we find from
(2.4) that

(3.3)

fz) =2~

E[B,7,11, A, B]
Z;%J§2O+WA@AﬂNL@%AJﬂG—af
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Using (1.10) and (3]3), we readily hage < U)

1F(2)] = 2] =D lanlen(a)]2"]
n=2
> [2| — |27 Z || en (),
n=2
E[B777IM7A7B] 9
=T = 1
=" T 21+ A2, ND2, 5,7, A B(1—a) 2| =7 <
and

@) < T2+ ) lanlen(a)l2"]
n=2

)
<2+ 122D lanlen(@),
n=2

E[B,v, 1, A, B] ,
< pu—
<r+ 2(1+n)A(2,\)D[2,3,v, A, B](1 — oz)r ) |z| =r <1,

which proves the assertion (B.1) of Theorenj 3.1.
Also, from (1.10), we find for € U that

o0

(N2 1= nlasfen(a)l""
n=2
> 1=z 3 nlanfeaa),
n=2
E[ﬁ?%N:A, B]
>1— _ X
> (1+n)A(2,\)D[2, 53,7, A, B](1 — a>r, |z =7 <
and

<14 nlaglen(@)]="
n=2

<14z Zn|an|cn(a),
n=2

<1+ E[ﬁa’y’,uﬂAaB] T, |Z|:T<].,
which proves the assertion (B.2) of Theofenj 3.1.

4. RADII CONVEXITY AND STARLIKENESS

The radii of convexity for clas&/|u, o, 3,7, A\, n, A, B] is given by the following theorem.

Theorem 4.1. Let the functionf be in the clas${|u, a, 3,7, A\, n, A, B]. Then the functiorf is
convex of ordep (0 < p < 1) inthe diskz| < ri (i, o, 5,7, A\, n, A, B) = r1, where

41 o =inf { 2(1 — @)(1 = p)A(n, \)Dln, 3,7, A, BI(1 —n + nn) }"11
. n n(n — p)E[B, v, p, A, B]
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Proof. It sufficient to show that

)| |- Ty n(n — Dayzn!
& T e,
0 _ n—1
(42) < Zn:Qn(Q 1)an|z|
1 =2 sy nan|zt="
which implies that
2f"(2) Doz (n — Day||2[""
1—p)— > (1—p)— =2
(1—p) ) | 2 (1—p) =5 nagen
_ _ oo _ n—1
1=, nay|z"t
Hence from[(4.]1), if
4.4 Z|m < ( . ,
@n s B[B. 7, o A, 5]
and according td (2/4)
(4.5) 1—p=> n(n—playlz|"' >1-p—(1-p)=p.
n=2
Hence from([(4.3), we obtain
2f"(z)
<1l-—
7(2) g
Therefore )
z z
Req 1+ } > 0,
(s
which shows thaf is convex in the diskz| < 1 (u, o, 3,7, A\, 1, p, A, B). O

By settingn = 0 andn = 1, we have the Corollarfy 4.2 and the Corollary|4.3, respectively.

Corollary 4.2. Let the functionf be in the clasR+(u, o, 8,7, A, p, A, B). Then the function
fis convex of ordep (0 < p < 1) inthe disk|z| < ro(u, @, 3,7, A\, p, A, B) = r9, Where

2(1 = a)(1 = p)A(n, \)D[n, B,7, A, B] | 77
Corollary 4.3. Let the functionf be in the clas€7(u, a, 3,7, A, p, A, B). Then the functiorf
is convex of ordep (0 < p < 1) inthe disk|z| < r3(u, a, 5,7, A, p, A, B) = r3, where

2(1 = a)(1 = p)A(n, \)D[n, 3,7, A, B] | 7T

Theorem 4.4.Let the functionf be in the clasé{|u, «, 3,7, A\, n, A, B]. Then the functiorf is
starlike of orderp (0 < p < 1) inthe disk|z| < r4(p, o, 5,7, A\, n, A, B) = r4, Where

(4.6) ro = inf

n

4.7) r3 = inf

n

f2(1 = a)(1 — p)A(n,N)D[n, 8,7, A, BJ(L — 1+ nn) }
4.8 ry = inf .
(4:8) o { (n— p)E[B.7, 1, A, B]
Proof. It sufficient to show that
zf'(z)
-1l <1-
) ’
Using a similar method to Theorgm #.1 and making usg of (2.4), wé gét (4.8). O
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Lettingn = 0 andn = 1, we have the Corollary 4.5 and the Corollary|4.6, respectively.

Corollary 4.5. Let the functionf be in the classRr(u, o, 3,7, A, p, A, B). Then the function
f is starlike of orderp (0 < p < 1) in the disk|z| < r5(u, o, 3,7, A, p, A, B) = 15, where

. [20 - ) (1= p)AmND[n, 8,7, A, B] |+
(4.9) rs = 1nf{ (0= ))EIB. 7. 11, A D] } .

Corollary 4.6. Let the functionf be in the clas€r(u, a, 8,7, A, p, A, B). Then the functiorf
is starlike of orderp (0 < p < 1) in the disk|z| < r¢(u, o, 8,7, A\, p, A, B) = rg, where

n

(4.10) r¢ = inf

n

{2”“ — a)(1= p)A(n,\)D[n, 8,7, A, B] }
(n— p)E[B,, 1, A, B] :
Last, but not least we give the following result.

Theorem 4.7.Let the functionf be in the clas${/|u, a, 3,7, A\, n, A, B]. Then the functiorf is
close-to-convex of order (0 < p < 1) inthe disk|z| < r7(i, «, 5,7, A\, n, A, B) = r7, where

r. = 1in 2(1 _ Q)(l _ 'O)A(n’ )\)D[n>ﬁ>7>Av B](l —-n + 7’L77) }nll
(4.11) 7 nf{ B A B |

Proof. It sufficient to show that
F(z) =1 <1-p.
Using a similar technique to Theor¢m}4.1 and making use of (2.4), wg get (4.11). O
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