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ABSTRACT. This paper introduces a new subclass and investigates the sufficiency conditions
for a function to belong to this subclass. Certain types of inequalities are also studied exhibiting
the well-known geometric properties of multivalently analytic functions in the unit disk. Several
interesting consequences of the main results are also mentioned.
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1. INTRODUCTION AND DEFINITION

Let 7 (p) denote the class of functiorf§z) of the form:

(1.1) f(z) =22+ i apz” (peN ={1,2,3,...}),

k=p+1
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which areanalytic and multivalentin the open disk/ = {z : z € C and |z| < 1}. A
function f(z) belonging to7 (p) is said to bemultivalently starlike ordery in ¢/ if it satisfies
the inequality:

1.2) %{fo<i§)}>a (zeU; 0<a<p, peN),
and, a functionf(z) € 7 (p) is said to benultivalently convex of ordex in ¢/ if it satisfies the
inequality:

"
(1.3) 3‘%{1+Z£((Z§)}>a (zeU; 0<a<p;,peN).

For the aforementioned definitions, one may refef io [1] (see also [11]). Further, a function
f(z) € T(p) is said to be in the subclagsSK; (p; ) if it satisfies the inequality:

2f(2) + 222 f1(2) )
1.4 R > a,
4 {((1 NG A )
(z€U; §#0; 0<A<1; 0<a<p, peN).
Here, and throughout this paper, the value of expressions like

( () + 221 (2) )‘5
A =Nfz2)+Azf'(2))

is considered to be its principal value. We mention below some of the subclasses of the functions
7 (p) from the families of functiong SK3(p; o) (defined above). Indeed, we have

(15)  T&(pia)=TSK)(p;a) (6#0,0<a<p peN),
(16) TK'(p;a)=TSK}(pia) (6#0,0<a<p, peN),
(1.7) T\(p;0) =TSK)(pia) (0K AL, 0<a<p peN) (seelB])

The important subclasses in Geometric Function Theory such as multivalently starlike functions
Sy(«) of ordera (0 < a < p; p € N) in U, multivalently convex function&,(«) of order

a (0 < a<p; pe N)inl, multivalently starlike functionsS, in 2/, multivalently convex
functions/C, in U, starlike functionsS(«) of ordera (0 < a < 1) in U, convex functionsC(«)

of ordera (0 < a < 1) in U, starlike functionsS in & and convex function& in U, are seen

to be easily identifiable with the aforementioned classes ([1], [5]land [11]).

By introducing a subclasg SK3 (p; o)of functions f(z) € 7 (p) satisfying the inequality
(1.4), our motive in this paper is to obtain sufficient conditions for a function to belong to
the above subclass. The other results investigated include certain inequalities for multivalent
functions depicting the properties of starlikeness, close-to-convexity and convexity in the open
unit disk. Several corollaries are deduced as worthwhile consequences of our main results.

2. MAIN RESULTS

Before stating and proving our main results, we require the following assertion (popularly
known as Jack’s Lemma).

Lemma 2.1([[7]). Let the functiorw(z) be non-constant and regular in the unit di&csuch
thatw(0) = 0. If |w(2)| attains its maximum value on the cirdld = r < 1 at the pointzy,
then

(2.1) zow'(20) = ¢ w(zo) (c>1).

We begin now to prove the following:
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Theorem 2.2.Letd € R\ {0},0 < a <p,p € Nandf(z) € T (p). If afunctionF'(z) defined
by

(2.2) F(z)=1=-MNf(z)+Azf(z)  (0<A<]),
satisfies the inequality:
1+Z<F"(()) _1;'((;))) < 3 whené > 0
(2.3) R — (zel),
1—p (fé?) > L whens <0

thenf(z) € TSK3(p; 8), where 3 = p° — (p — a)°.

Proof. Let f(z) € 7 (p)andF'(z) be defined by{(2]2) . From (1.1) arjd (2.2), we have
2F'(z) _ 2f'(2) + A 22 f"()

F(z)  (1=Nf(z) +Azf(2)

E[1+A(k—1 e
p + Zk—p+1 [1+)\—(pl))]akz p

T+ A(k—1) :
1+ Zkzp—&—l 1+ (p— l)a Zk P

(zeU; 0< A<, peN)

(2.4)

Now, define a functiom(z) by

/ §
(2.5) (ZF (z)) -’ =p-a)wz), (zeU;5#0;0<a<p pelN),

F(z)
then the functionu(z) is analytic int{ andw(0) = 0. Differentiation of [2.5) gives
2F"(z)  z2F'(2) ( (p—a)’ ) zw'(2)
2.6 1 — = .
29 FPE FE P -] o
Hence,[(2.b) and (2.6) yields

F(z) F'(2)
I+ 2 <F’(z) - F(z)) _w'(2)
(2.7) — = .
| ph (zF'<z>> dw(z)

We claim thatjw(z)| < 1inU. For otherwise (by Jack’s Lemma), there exists a pajnt U
such that

2ow'(20) = c w(zp), where |w(z)| =1 (c=1).
Therefore,[(2]7) yields

F"(z F'(z 1

L4z (B e | ()] e [ = §whend >0

v (#5) S < famens
2=z0

which contradicts our assumptidn (2.3) . Therefdugz)| < 1 holds true for alk € ¢/, and we
conclude from[(2)5) that

(ri)

which evidently implies that

(2.10) %{(ﬁé?f}>pﬂwp—mﬂ
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and hencef(z) € TSKS(p; ). O

Theorem 2.3.Letd € R\{0}; 0 < a < p;n,m,p € N;q =n—m; f(z) € T(n)
andg(z) € 7(m). If f(z) satisfies the inequality:

(2.11) R (zf’(z)> { <qg+oa+ % when § >0 andg(z) € S,.(«@)

FE )| >gta+L when §<0 andg(z) ¢ Sn(a).

then
(2.12) R { (zq%> } >0,

é
where the value o(z—qféjD is taken to be its principle value.

Proof. Let f(z) € 7 (n) andg(z) € T (m) withn —m € N. Since

Q

f(z>:zq 20 et e T =n—-m
2) + + ¢ +---€7(q) (q e N),
we definew(z) by
5
(2.13) (zq%) =1+ w(z) (z€U;6 #0).

It is clear that the functiomw(z) is an analytic function i/ and w(0) = 0. Differentiating

(2.13), we have
(2.14)

2f'(2) w'(z) | 2g(2)

G TSI ee)

If we suppose that there exists a poigte U such thatquw’(zy) = c w(zy) where|w(z)| =
L(e=1),ie.w(z) =¢" (0 €[0,2r) — {r}), then

- { 20f"(20) } 1 { zow'(20) N d 209 (2) }

flzo) |~ et 5h 1+ w(z) 9(20)

J

B 1 ce® 209’ (2)
(215) —q—i-g%{m}—i-%{ g(ZO) }
From (2.15) it follows that

Zof/(Zo) ]_
(2.16) é)%{ o) }>q+a+% (0 >0),
provided that
R {—ZOQ,(ZO)} > a,
9(20)
and
Zof/(Zo) 1
(2.17) ?R{ (o) }éq—l—omL% (0 <0),
provided that
{ 209/(20) }
9(%0)
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But the inequalities ir (2.16) and (2]17) contradict the inequalities in](2.11). Herieg < 1,
for all z € U, and thereford (2.13) yields

0
(z_qf(Z)) .
9(2)
which evidently implies[(2.12), and this completes the proof of Thegrem 2.3. O

Theorem 2.4.Letd € R\ {0};0 < a < p;n,m,p € N;q =n—m; f(z) € T(n), and
g(z) € T(m). If f(z) satisfies the inequality:

1
§R<1+Zf"(2)){ <g+a+5 when §>0 and g(z) € Kn(a)

(2.18) = |lw(z)| < 1,

(2.19)

f'(z) >q+a+4 when § <0 and g(2) ¢ Kn(a),

then

(2.20) R { (ﬂ%)é} > 0,

/ J . . . .
where the value o(z*q%((;)> is taken its principle value.

Proof. Let f(z) € T(n) andg(z) € 7 (m) withn —m € N. Since
m ['(z)
ng'(z)

and if we definau(z) by

= 204 k2" 4 hp2??  € T (q) (g=n—meN),

/ 1)
(2.21) <z—Q%((ZZ))> —1t+wlz) (2el),

then by appealing to the same technique as in the proof of Th¢orem 2.3, we arrive at the assertion
(2.20) of Theorem 2]4 under the conditions stated With {2.19). O

3. SOME CONSEQUENCES OFMAIN RESULTS

Among the various interesting and important consequences of Theprgmg 2,2 — 2.4, we men-
tion now some of the corollaries relating to the clasgg®; «), 7, («), S,(a), Ky(@), Sy, Ky,
S(a), K(«), which are easily deducible form the main results. Inequalities concerning analytic
and multivalent functions were also studiedlin [2] + [6], and.in [8] = [10].

Firstly, if we taked = 1, then Theorerp 2|2 by virtue df (1.7) gives the following:

Corollary 3.1. Let a functionF'(z) defined by[(2]2) satisfy the condition:

1tz (58 - 539)
(3.1) R HCENACVI O
1 — F(2)
p zF'(z)

(zeU;0<a<ppeN;f(z) e T(p)

thenf(z) € Ta(p; o).
Next, if we taked — 1 = A = 0 in Theorenj 2., so thaf(z) = f(z), then we get

Corollary 3.2. If F'(z) = f(z) satisfies the condition if (3.1), thefiz) € S,(a), i.e. f(z) is
p—valent starlike of orden(0 < a < p;p e N) inlU.

If we taked = A = 1in Theorenj 2., so thaf(z) = zf'(z), then we obtain the following:
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Corollary 3.3. If f(z) satisfies the condition

1+Z(@ﬁ@ﬁ_«ﬁ%ﬁ)

(3.2) 3‘%{ (/1) - AS) } <1 zelU;0<a<ppeN),

thenf(z) € K,(«), thatis f(z) is p—valent convex of the order (0 < oo < p;p € N) inU.
Forp = 1in Corollarieq 3.]L + 313 give the following:

Corollary 3.4. Let a functionF(z) defined by[(2]2) satisfy the condition

142 (58 - 59)
(3.3) 9%{ e reJ 4 g

_ _F()
1 zF'(z)

(zelU; 0<a<]; f(z)eT)

thenf(z) € 7T, ().

Corollary 3.5. If F(z) = f(z) satisfies the conditiof (3.3), thef{z) € S(«), i.e. f(z)is
starlike of ordera (0 < a < 1) inU.

Corollary 3.6. If f(z) satisfies the condition

1+Z<@ﬂav_wde>

GFE) =) ,

(3.4) R - <1 (zelU; 0<a<),
ijgy

thenf(z) € K(a), i.e., f(z) is convex of ordety (0 < o < 1) inU.
Let us take) = 1 in Theorem$ 2]3 ar[d 2.4, then we get the following:

Corollary 3.7. Letz € U; 0 < a < p; n,m,p € N; f(z) € T(n) and a functiong(z) €
7 (m) belong to the clas§,,,(«) withq = n —m € N. If f(z) satisfies the inequality:

(3.5) %{?é?}<q+a+%
then
(3.6) §R{zq§g%}:>0

Corollary3.8. Letz e U; 0 < ao < p; n,m,p € N; f(z) € T(n)andafunctiory(z)in7T (m)
belong to the clask,,(«) withg = n —m € N. If f(z) satisfies the inequality:

(3.7) éR{lJrZ%S)} <q+a+%,
then

_,m f'(2)
(3.8) ﬂ%{z n (o) } > 0.

Lastly, settingd = —1 in Theorem$ 2]3 ar[d 3.4, we obtain the following:

Corollary 3.9. Letz € U; 0 < a < p; n,m,p € N; f(z) € T(n) and suppose a function
g(z) € T(m) does not belong to the clask,(a) withg = n — m € N. If f(z) satisfies the
inequality:

(3.9) %{?&?}>q+a—;
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then
9(2)
A 9=— = )
(3.10) é)%{z f<z)}>o
Corollary 3.10. Letz e U; 0 < a < p; n,m,p € N; f(z) € T(n) and suppose a function

g(z)in T (m) does not belong to the clags,, (o) withg = n —m € N. If f(z) satisfies the
inequality:

zf"(z)} 1
(3.11) %{1—0— 72) >q+ o 5
then
9
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