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Abstract

Some norm inequalities for sequences of linear operators defined on Hilbert
spaces that are related to the classical Schwarz inequality are given. Applica-
tions for vector inequalities are also provided.
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Let (H; (-, -)) be areal or complex Hilbert space aBd H ) the Banach algebra
of all bounded linear operators that m&apinto H.

In many estimates one needs to use upper bounds for the norm of the linear
combination of bounded linear operatets . . ., A, withthe scalars, . . ., a,,
where separate information for scalars and operators are provided. In this situ-
ation, the classical approach is to use a Holder type inequality as stated below
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In the previous paperl], in order to improve {.1), we have established the
following norm inequality for the operatotd,, ..., A, € B(H) and scalars
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(1.4) ZQZA < Z ;| [max 14:|)* + (n — 1) | Jpax | A A*

i—1 I=n 1
(1.5) Z%‘A < Z|ozZ max |A 12 —i—( Z | A A 2)

i=1 1<i#j<n |
and

2 " 1 . 1
(1.6) Al < (Z\aﬁ”) (ZHAiHQq)
i=1 i=1

Q=

+ (n—l)zl’< SAA; q)
1<ij<n

wherep > 1, % + % = 1. In particular, forp = ¢ = 2, we have from {.6)

2 . ST/ :
< (Z\a#) (ZuAiu‘*)
i=1 =1

+ (n—1)5< SAA; 2)
1<ij<n

(1.7)
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The aim of the present paper is to establish other upper bounds of interest
for the quantityl| > """, a;A;|| , where, as abovey, .. ., a,, are real or complex
numbers, whiled,, ..., A, are bounded linear operators on the Hilbert space
(H;(-,-)) . These are compared with the (CBS) inequalitylY and shown that
some times they are better. Applications for vector inequalities are also given.
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The following result containing 9 different inequalities may be stated:
Theorem 2.1.Letay,...,a, € KandA,,..., A, € B(H). Then

n 2 A
(2.1) Z%‘Ai <q B
i=1 C
where
( max Jal* 3275 [|4i45]]
am | o S o (S0 (S5 A ) )
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max Jag| 32, o] max ( j=1 ||AA*H>
\
11£1a<X loui| (D ey |04k:’p) > et (Z?zl “AiA;||q>E
e | (Ehlo) (Shad S (S 4 ])
wheret > 1, 1 + 1 =1;
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1 1 _
forp>1,5+5—1and

(max Joo] S5 Jn S0, max {]|4,4;

1<i<n 1<j<n

}
1
1

S ™ E S o [z;n (1mes (1) ] ,

1<j<n

wherem,l > 1, L + 1 =1;
| (i loul)” max {[|445]]}
Proof. We observe, in the operator partial order®(fH ), we have that
(2.3) 0< <z": aiAi) <z”: aiAi) *
=1 =1
= i ;A ia_jAj = i i i A Aj.
i=1 j=1

i=1 j=1

Taking the norm inZ.3) and noticing thatl UU*|| = ||U||” for anyU € B (H),
we have:
2 n n

= 2 2 adGA4;

i=1 j=1

<3N ol Loy [|AiA;

i=1 j=1
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Utilising Holder’s discrete inequality we have that

Z | HAZ
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foranyi € {1,...,

n
| 2o fon] max

4
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(i leal)r (S5 [[4i4;

This provides the following inequalities:
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wherep > 1, L +1 =

1
q)q wherep > 1, & + o = 1;
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Utilising Holder’s inequality forr, s > 1, % + % =1, we have:

> lail (Z HAA?H)
1 j=1

1=

( max ‘Oéz‘ ZZj:l HA,LA;(
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By Hélder's inequality we can also have that (for- 1, 1 + 1 = 1)

(

1
n n ).
112%?; | Zi:l (Zj:l HAlA;” ) ’

v < (Z |ak|p> et [ (Sl
k=1

wheret > 1, 1 +1 =1,

q>é}7

|=

Yoy |ou| max {(Z?l HAiA;f

L 1<i<n

and the second part o2 (1) is proved.
Finally, we may state that

( n *
max |q; Y, max {HAAH}
1§i§n| il 2 1<j<n R

)l]l
wherem, > 1, L 4+ 1 =1;

b

giving the last part of4.1). O

3

1<j<n

M, < R (Z?:l |Oéz'|m)% [2?:1 (max {HAzA;k

2isy || max {{|4;47

\ 1<i,j<n

Remark 1. It is obvious that out of4.1) one can obtain various particular
inequalities. For instance, the choi¢e= 2, p = 2 (thereforeu = ¢ = 2) in the
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B—branch of .2) gives:

" 2 n n 3
S| < Sl (3 )
i=1 i=1 ij=1
1
n n 2
S o (znmuu 5 HA#@*) .
i=1 i=1 1<i#j<n

If we consider now the usual Cauchy-Bunyakovsky-Schwarz (CBS) inequality

n 2 n n
Z%Ai < Z|ai|22||Ai||27
i=1 i=1 i=1

(2.4)

(2.5)

and observe that

(Z e

3,j=1

1

) < (z A2 A

3,j=1

) 3 n
2
) S A,
=1

then we can conclude that @) is a refinement of the (CBS) inequali}.%).

Corollary 2.2. Letay,...,a, € KandAy, ..., A, € B(H) sothat4; A% =0
with i # j. Then

2

(2.6) <

Ql UU? ::Bz

n
E a; A
i=1
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A different approach is embodied in the following theorem:

Theorem 3.1.If ay, ..., € Kand Ay, ..., A, € B(H),then

2 n n
<D laal’ )[4
i=1 Jj=1

(

(3.1)

Sl max [0 [|4i4;

1<i<

} :

[ (5 ) T

1 1 _ 1.
wherep > 1, P

B =
—

(Z?:l |ai|2p)

IN

| e ool 05 [ 4]

Proof. From the proof of Theorer.1 we have that

n 2 non
S| <30 ol 4
=1

i=1 j=1
Using the simple observation that

1 o
|042HO‘J‘ <3 (|O‘2’ "”C“J’) i,j€{1l,...,n},
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we have

33ttt Al < 5 523l + ) A

i=1 j=1 i=1 j=1

1 n n

i=1 j=1

— Zn:zn]aiﬁ | 4;A;

i=1 j=1

+ loyl* | 445

]

Y

which proves the first inequality ir8(1).

The second part follows by Holder’s inequality and the details are omitted.

]

Remark 2. If in (3.1) we choosey; = - - - = a,, = 1, then we get

S 4, ) <>l
=1 i=1

which is a refinement for the generalised triangle inequality.

n

§<Z||Ai||2+ SAA
=1

1<i#j<n

The following corollary may be stated:

Corollary 3.2. If Ay,..., A, € B(H) are such thatd, A7 = 0 fori # j,
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i,j7€{l,...,n}, then

(3.2)

2 n
2 2
< Z|ai| | Asll
i=1

(

Doy ol max [ Ay

1<i<

(S lol™)” [ AP

<
Whel’ep > 1, 1 + 1 1; Norm Inequalities for
p a Sequences of Operators
Related to the Schwarz
max |o A;
| o | i 00 1A

Inequality
Finally, the following result may be stated as well:

Theorem 3.3.1f oy, ..

Sever S. Dragomir

Lo, € KandA,, ..., A, € B(H),then

( Title Page
Efaéz'a’l Z” 1 HA 4] Contents
2 2 :
n n 5 P\p ( A; A* > ! « g
(3.3) > i (oim 0al) \2im ” 1
— wherep > 1, >+ =1; < >
) ) Go Back
(7] max A’LA* .
\ (sz1| |) lgi,jgn{H JH} Close
Proof. We know that Qu

n 2 non
doadill <D il |44
i=1

i=1 j=1
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Firstly, we obviously have that

n n
P < 1211?;(71 {|a1| |O‘J|}ij1 AZAJ 1%1%}; |O‘Z| = AZAJ

Secondly, by the Holder inequality for double sums, we obtain

_ 1 1
P< Z(\m\laﬂ)p] (Z\\AiA; >
Li,j=1 ij=1
= Zlailleaﬂf’) (Z | A A )
i=1 j=1 i,j=1
. : 1
() (i)
i=1 ij=1

wherep > 1,1+ 1 =1.
Finally, we have

S ol oy

ij=1

n 2
= (; Iai|> nax {||A:A;

and the theorem is proved.

P < max {HAZA;k

1<i,j<n

}
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Corollary 3.4. If ay,...,a,, € Kand A;,..., A, € B(H) are
AiA5 =0fori,j € {1,...,n} withi # j, then

( 2 2
g?g;!%’ > i A7

2 n 1
< (Z:’L:l ‘O‘i‘p)p (Zi:l ”AiHQq) ‘,

1 1 __ 1.
wherep > 1, P

n 2 2
(ool mas {147}

n 2

Z OZZ‘AZ'

=1

(3.4)

such that
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As pointed out in our previous papert]] the operator inequalities obtained
above may provide various vector inequalities of interest.

If by M (a, A) we denote any of the bounds provided By, (2.4), (3.1)
or (3.3 for the quantity||> ", o;A;||%, then we may state the following general
fact:

Under the assumptions of Theor@m, we have:

2

< ||z M (a, A).

zn: aiAim

i=1

(4.1)

foranyxr € H and

2

(4.2) < [l ]I* llyll* M (e, A) .

Z ; <Al$7 y>
=1

foranyx,y € H, respectively

The proof follows by the Schwarz inequality in the Hilbert spage (-, -)),
see for instancel], and the details are omitted.

Now, we consider the non zero vectess. . ., y, € H. Define the operators

[1]

Ai . H—>H, AZ.Z': <x7yl>

T R R
i
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Since
then A; are bounded linear operatorskh Also, since

2
(Ajx, x) :% >0, € H, ie{l,...,n}
and
’ 72—
(z,9:) (Yi, 2)
r,Ajz) = ——————,
A2 =
giving

(Ajz,z) = (x, Az), x,z€ H, i1€{l,...,n},

we may conclude thatl; (i =1,...,n) are positive self-adjoint operators on
H.
Since, for anyr € H, one has

) (o)) = Ll sl e oy,

then we deduce that
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If (4i),_1 is an orthonormal family orH, then||A;|| = 1 and A;A; = 0 for

i,je{l,....,n},i#7.
Now, utilising, for instance, the inequalities in Theor&x we may state

that:

(4.3)

n 2
T, Yi

Zai< y>yi
|

=1
< Nl el D 1, v3)|
i=1 j=1
( n 2 n
Si ool max |2y I )|

1<i<n

= (S 1w

wherep > 1, -+ ¢ =1;
2 n
v max |ay| Zi,j:l (Y, yi)] -

1<i<n

RS

(3 loaf™)

2
< [l x

foranyz,y,...,y, € H anda,, ..., qa, € K.
The proof follows on choosingl; = <"yl’>y,» in Theorem3.1 and taking into

[yl
account that| A;|| = ||u|,

|AAL = Hiy)l, ige{l,...n}.

We omit the details.
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The choicer; = ||y;|| (i = 1,...,n) will produce some interesting bounds
for the norm of the Fourier series

n

i=1

Notice that the vectorg; (: = 1,...,n) are not necessarily orthonormal.
Similar inequalities may be stated if one uses the other two main theorems.

For the sake of brevity, they will not be stated here. Norm Inequalities for
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