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ABSTRACT. On a bounded strongly pseudo-convex dongiim C™ with a Lipschitz boundary,

we prove that thé&—Neumann operataN can be extended as a bounded operator from Sobolev
(—1/2)—spaces to the Sobolé¥/2)—spaces. In particula®y is compact operator on Sobolev
(—1/2)—spaces.
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1. INTRODUCTION

Let X be a bounded pseudo-convex domairCinwith the standard Hermitian metric. The
0—Neumann operataV is the (bounded) inverse of the (unbounded) Laplace-Beltrami opera-
tor . Thed—Neumann problem has been studied extensively when the doxhhas smooth
boundaries (see [12],][1],[3]. [18], [19], [21], and [22]). Dahlberg [6] and Jerison and Kenig
[17] established the work on the Dirichlet and classical Neumann problem on Lipschitz do-
mains. The compactness 8f on Lipschitz pseudo-convex domains is studied in Henkin and
lordan [14]. LetW, ,(X) be the Hilbert spaces ap, ¢)—forms with W*(.X')—coefficients.
Henkin, lordan, and Kohn in [15] and Michel and Shaw.in/[23] showed A& bounded from

L?p, 0 (X)to W(lp/ 2) (X') on domains with piecewise smooth strongly pseudo-convex boundary by

two different methods. Also Michel and Shaw in[24] proved thats bounded orW(Xj) (X)
when the domain is only bounded pseudo-convex Lipschitz with a plurisubharmonic defining
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2 O. ABDELKADER AND S. SABER

function. Other results in this direction belong to Bonami and Charpentlier [4], Straube [26],
Englis [10], and Ehsani [7]/[8], andl[9]. In fact, the main aim of this work is to establish the
following:

Theorem 1.1.Let X cC C" be a bounded strongly pseudo-convex domain with Lipschitz
boundary. Foreaclh <p <n,1 < ¢ <n — 1, thed—Neumann operator
.72 2
N Lip gy (X) — L(p,q)(X)
satisfies the following estimate: for apyc L%p, (X)), there exists a constant> 0 such that

(1.1) INell1/20x) < cllll-1/20x)
wherec = ¢(X) is independent op; i.e., N can be extended as a bounded operator from

W,2(X) into /2 (X). In particular, N is a compact operator o2, (X) andiW, /*(X).

2. NOTATIONS AND THE O—NEUMANN PROBLEM

We will use the standard notation of Hormander![16] for differential forms. Xebe a
bounded domain of". We express &, ¢)—form ¢ on X as follows:

o= prdz’ NdZ’,
17

wherel and.J are strictly increasing multi-indices with lengthandg, respectively. We denote
by A, (X) the space of differential forms of claés° and of type(p, ¢) on X. Let

A(I%Q)(X) = {90|)_(§ NS A(p,q)((cn)}a

be the subspace df;, ;) (X) whose elements can be extended smoothly up to the boutidary
of X. Forp, ¢ € A, (X), the inner product and norm are defined as usual by

= / orsbpydv, and gl = / o[2dv,
17 /X X

wheredv is the Lebesgue measure. gt , (X) be the subspace df, ; (X ) whose elements
have compact support disjoint frofh..
The operatod) : A, ,—1)(X) — A (X) is defined by

5 o1y
&pzzz 0zkd Adz" A dz
ko IJ

The formal adjoint operata¥ of 0 is defined by :
(6p,0) = (p,00)

foranyy € Ay q)(X) andy € Ag pq- 1)(X) It is easily seen that is a closed, linear, densely
defined operator, angiforms a complex, i.ed*> = 0. We denote b)L2 ( X) the Hilbert space
of all (p, ¢) forms with square integrable coefficients. We denote agakﬁ by pa1)(X) —
pr o (X) the maximal extension of the origindl Thend is a closed, linear, densely defined
operator, and forms a complex, i.82 = 0. Therefore, the adjoint operat6r : L%m)(X) —
L%pq 1y(X) of 9 is also a closed, linear, defined operator. We denote the domain and the range
of din L, ,(X) by Dom,,(9) and Rangg,,)(9) respectively.

We deflne the Laplace-Beltrami operator

0= 00"+ 89 : L}, (X) — L, (X)
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on
Dom, »(0) = {p € Dom(p’q)(a) N Domy,q) (8*) dp € Domy g41) (5 )

and 9*p € Domy, ,—1)(0)}.
Let

Kerg,o(O0) = {¢ € Dom,,(9) N Dom, (9%); dp =0 and 9%y =0}.

Definition 2.1. A domain X CccC C" is said to be strongly pseudo-convex witt° —boundary
if there exist an open neighborhobdof the boundary X of X and aC* function\ : U — R
having the following properties:

(i) XNU ={z€U;\z) <0}

(i) Y 5oy 22 e > L) 2 € U = ('....0") € C* andL(z) > 0.

(ii) The gradientVA(=) = (55, 55, ..., 52, 5 £ 0
forz = (2',...,2") € U; 2% = a® + iy

Let f : ®*"~! — R be a function that satisfies the Lipschitz condition
(2.1) |f(z) — f(2')| < T|z — 2| forall z,2" € R

The smallest” in which (2.1) holds is called the bound of the Lipschitz constant. By choosing
finitely many balls{V;} coveringdX, the Lipschitz constant for a Lipschitz domain is the
smallestl” such that the Lipschitz constant is bounded in every g4} .

Definition 2.2. A bounded domainX in C" is called a strongly pseudo-convex domain with
Lipschitz boundary) X if there exists a Lipschitz defining functignin a neighborhood oX
such that the following condition holds:

(i) Locally near every point of the boundatyX , after a smooth change of coordinaieX;
is the graph of a Lipschitz function.
(i) There exists a constant > 0 such that,

2

~ o . -
(2.2) > ol Zall, =" ") eC,
a,B

where [2.2) is defined in the distribution sense.

Let W#(X),s > 0, be defined as the space of ally such that, € W*(C").We define the
norm of W#(X) by

lullsxy = inf{||v]|scny, v € WH(C"),v|x = u}.

We uselV;, ,(X) to denote Hilbert spaces ¢p, )—forms withiW*(X) coefficients and their
norms are denoted by | x). Let W§(X) be the completion o’s° (X )—functions under
the W*(X)—norm. Restricting to a small neighborhoétdnear a boundary point, we shall
choose special boundary coordinates . ., ¢y, 1, A such thatt,, ..., ¢y, 1 restricted to0X
are coordinates fob.X. Let D,, = 9/0t;,j = 1,...,2n — 1, andDy = 9/0X. ThusD,,’s
are the tangential derivatives &xX, and D, is the normal derivative. For a multi-indek =
(B1, .-, Pan—1), Where eaclp; is a nonnegative integeDf denotes the product dd;,’'s with
order|3| = 81 + -+ + fan_1, 1-€,, D) = D - D”'. For any$ € C3°(X) with compact
support inU, we define the tangential Fourier transform foin a special boundary chart by

R AV
R2n—1
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wherev = (vq,...,v9,1) and (t,v) = tjv; + -+ + to,_119,_1. We define the tangential
Sobolev normg|-|||, by

0 ~
|I|¢H|5=/R%_1/ (14 [v]2)?|o(w, N)|dAdw.

We recall theL? existence theorem for the—Neumann operator on any bounded pseudo-
convex domainX c C". Following Hérmander?>— estimates fo on any bounded pseu-
doconvex domains, one can prove thathas closed range and Kgy(O) = {0}. The
d—Neumann operataV is the inverse of]. In fact, one can prove

Proposition 2.1 (Hormander[[16]) Let X be a bounded pseudo-convex domaiin n > 2.
For each0 < p < nandl < g < n, there exists a bounded linear operator

N: L%Z%Q)(X) — L%p,q) (X)
such that we have the following:

() Range,,(N) cDom, ,(0) anddN = NO = I on Dom,, ;) (0).
(i) Foranyyp € L%p,q) (X), o =00*Np+0*ONg.
(i) If 0 is the diameter o' ,we have the following estimates:

ed?
[Ne|| < —||90||

- ed?
[ON¢]| < \/7||90||
= | ed?

[0" Nl < 7”90”

For a detailed proof of this proposition see Shaw [25], Proposition 2.3, and Chen and Shaw
[5], Theorem 4.4.1.

foranyy € L{, (X).

Theorem 2.2(Rellich Lemma) Let X be a bounded domain i@" with Lipschitz boundary. If
s >t > 0, the inclusionV*(X) — W*(X) is compact.

3. PROOF OF THE M AIN THEOREM

To prove the main theorem we first obtain the following estimates on each smooth subdomain.
As Lemma 2.1 in Michel and Shaw [23], we prove the following lemma:

Lemma3.1.Let X CcC C" be abounded strongly pseudo-convex domain with Lipschitz bound-
ary. Then, there exists an exhaustipki, } of X with the following conditions:

(i) {X,}is anincreasing sequence of relatively compact subsexsafidu, X, = X.
(i) Each{X,} hasaC> plurisubharmonic defining Lipschitz functior such that

Z 820‘82577 Cl|n|2

for z € 90X, andn € C, Wherec1 > (0 is a constant independent pf
(iif) There exist positive constantg, ¢; such thatc, < |VA,| < ¢; ondX,, wherec,, c;
are independent gf.
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Proof. Let®X = {z € X| —Jy < o(z) < 0}, whered, > 0 is sufficiently small. Thus, there
exists a constanf > 0 such that the function,(z) = o(z) —¢;|z|?* is a plurisubharmonic oR.
Letd, be a decreasing sequence such #hat, 0, and we defineX;, = {z € X|o(z) < —0,}.
Then {X;,} is a sequence of relatively compact subsetsXofvith union equal toX. Let
U e C§°(C") be a function depending only dmy|, . . ., |z,| and such that
(i) ¥ >o.
(i) v =0when|z| > 1.
(iii) [ WwdX =1, whered)\ is the Lebesgue measure.
We definel.(z) = 5 ¥ (%) fore > 0.

e2n

For each: € X;,,,0 < e < ¢,, we define

0:(2) = 0 .(2) = [ ol = €)WOINC).
Theno, € C*(X;,) ando. \, o on X5, whene \ 0. Since

%0.(z 92
az,;@(z; = azaa_ﬁ{(ao(z) +ar)2]?) * Uo(2)}
82
azaa 5{00( )
82
B (9,;(()9(2; * We(z) + 1

for € X;, N, andn € C" it follows that

* W (2) 4 c1]z)? % U (2)}

9222
82a|(9|25 * We()

P’0:(2) o 3 ~ 0%00(2) o 4
Q= — (65 m
920070 1 < 90920 17 Z

a,f=1 a,f= /=1

azﬁn“ 7’ % We(2)

> ¢p|n’.

Eachp., is well defined if0 < ¢, < 0,41 for z € X;,,,.
sufficiently small, we have(z) < o.,(2) < o(z) + cse, on X, ,,. For eachu, we choose
Eu = ﬁ(‘sufl - 5u> andCu S (5u+175u)- We deﬁneXu = {Z S <cn| Oe, < _Cﬂ}' Since
0(2) < 0,(2) < —Cu < —0,u41, We have thatX,, C X;,,,. Also, if z € X5, ,, theng, (2) <
0(2) + cse, < =0, < —(,. Thus we have

X5 DX#DX(;

and (i) is satisfied. Then the function, = o., + (, satisfies (ii). Now, we prove (iii). First,
since a Lipschitz function is almost everywhere differentiable (see Evans and Gariepy [11] for
a proof of this fact), the gradient of a Lipschitz function exists almost everywhere and we have
Vo| < ¢z ae. inX and|V),| < ¢; on9X,. Secondly, we show tha¥’ ),| is uniformly
bounded from below. To do that, sin6& is Lipschitz from our assumption, then there exists

a finite covering{V;,}1<;<n» of X such thatV; c U, for 1 < j < m, a finite set of unit
vectors{x; }1<j<m @andcs > 0 such that the inner produ€Vo, x;) > c2 > 0 a.e. forz € V},

1 < j <'m. Since this is preserved by convolution, (iii) is proved. Moreover, we Ravg # 0

in a small neighborhood @fX . ThusdX, is smooth. Then, the proof is complete. O

p+1 pn—1

We use a subscript to indicate operators oX,.

Proposition 3.2. Let { X, } be the same as in Lemrpa[3.1. There exists a consfant0, such
that for anyy € A, 4) (X, )NDoMy, (1 (975), 0 <p<n,1 < g<n-—1,

(3.1) Il oy < ea (100115, + 1331, )
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wherec, is independent ap and .. If ¢ € A, ,)(X,)N Domy, ,,(0,,), then

(3.2) ||90||1/2(XN) < C4||DMS0||XM7
wherec, is independent ap and .

Proof. Since|V\,| # 0 on a neighborhoodil” of 0.X,,, then the functiom, = \,/|VA,| is
defined onl//. We extend,,, to be negative smoothly insid€,. Thenn, is a defining function

in a neighborhood ofX,, such that), < 0 on X,, n, = 0 ondX, and|Vn,| = 1 onW.
Then, by simple calculation as in Lemma 2.2 in Michel and Shaw [23] and by using the identity
of Morrey-Kohn-Hormander which was proved in Chen and Shaw [5], Proposition 4.3.1, and
from (ii)and (iii) in Lemma 3.1, it follows that there exists a constant- 0 such that for any

P € Np.g)(Xu)N Domy, ) (57),

Ovry
ozk

(3.3)

[ telas, < (1901, + 1lk,)

Letz € 90X, andU be a special boundary chart containing-rom Kohn[20], Proposition 3.10
and Chen and Shaw[5], Lemma 5.2.2, the tangential Sobolev hofm ||| D7¢|||.-1, and the
ordinary Sobolev normiy||. are equivalent fopp € Dom(9)N Dom(9*) where the support of
pliesinUNX,, DVp =0¢/dz;, (j =1,2,...,2n), ande > 0. Then, from Folland and Kohn
[12], Theorems 2.4.4 and 2.4.5, it follows that there exists a neighbortioadU of z and a

positive constants such that
2212 el + [ mm%)
0X

0
(3.4) lell?acx,) < ( SOU

for p € Ao (e (VNX,). SinceX,, is a Llpschltz domain, thery; depends only on the Lipschitz
constant. Also from Lem 1 EX,. 152, is uniformly Lipschitz, then the constant can be
chosen to depend only on the Llpschltz constaréLif,, which is independent gf. Now cover

0X,, by finitely many chartdV;}, such that this conclusion holds on each chart, and choose
Vo so thatX,, — UV, € V, C Vy C X,,.. Then, the estimat4) holds for alle Ag ) (Vo)-
Using a partition of unity subordinate {d; }{, the estimate (3/4) now reads

Il + ww%)
90X,
for any € A(,q)(X,,)N Domy, ) (3%). It follows from Propositior 21 that
2 ed® (15 1 % 112
el < = (1961, + 161, )

Therefore, by taking, = ¢ (% + 05), and by using3) an.5) inequali.l) is proved.
Also, since

a<PIJ

(3.5) ||‘P||%/2(XM) > Ce (

19¢ll%, + 0 ¢lI%, < 10ulx, el
wheny € Ay, g (X,)NDomy, ,y(0,). Then, [3.2) is proved also. O

Proof of Theorerm 1]1We shall apply the Michel and Shaw techniquelin/ [23] with the suitable
modifications required. LetX,,} be the same as in Lemipha 8.1 aNgdenote th&)—Neumann
operator onL%n 2 (X,). SinceX is a strongly pseudo-convex domain with Lipschitz boundary,
then by using Lemmja 3.1, it can be approximated by domains with smooth boundary which are
uniformly Lipschitz. ThenX, is a Lipschitz domain, and $6>°(X ) is dense if?*(X,,) in the
W#(X,)—norm. Then, to prove this theorem, it suffices to prh e|(1.1) for@my A, (X).
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By using the boundary regularity fa¥,, which was established by Kohin [19], we haVgy <
Ao (X,)N Domg, y(0,,). The 9— Neumann operatal is the inverse of the operatat. By
using (iii) in Proposﬂm@l we have

ed? ed?
[Nupllx, < —||<PHX,1 < —|190||X7

5 Sr ed?
[ON.pllx, + 10, Nupllx, < 2\/ ||90||X <2 7||80||x-

Then, there is no loss of generality if we assume that

and

N =0 in X\X,.

Then there is a subsequencd\qm still denoted byN,,, converging weakly to some element
Y e Ly, (X)andoy € L} (X). This implies that) € Domy,,(9). Now, we show that

(p,g+1)

¥ € Domy, ;) (97) as follows: for anyu € Domy, ,1)(9) N L{, , 1) (X),
‘<¢75U>X‘ :ph—I)noo|< HQO,aU> u|
= Jim (0N, |

< HwaHuHx.

Thusy € Domy, (). Also, we show thaby) € Domy,, ,.1)(9;) anddy € Domy, ,_1y(0) as
follows: by using (ii) in Propositiof 2]1, we have

(36) |08 Nuglly, + 050N, = llell, < llelk-

Thusd9;y is the L* weak limit of some subsequence @b N, andd;y € Domg, , 1)(9).
By using [3.6), we have, for anye Domy,(9) N L{, ;) (X),

(90, 00) | = Tim [(ON,p,00), |

p—00

= lim ‘<5;5N#<p,v>x‘
i

pH—s00

< llelxllvlx.

Thusdy € Domg,441)(97%) and 90y is the weak limit of a subsequence @fON,.¢. This
implies thatyy € Domy, ,y(0J,,) and,7) = . SinceN is one to one orL%p’q)(X), then we

conclude that) = N¢. SinceX), is a Lipschitz domain. Henc&(X) are dense ifiV’*(X) in
W#(X)—norm. Ifs < 1/2, we can show that,(X) are dense if/*(X) as in Theorem 1.4.2.4
in Grisvard [13]. Thus

W2 (X)) = W (X).

It follows from the Generalized Schwartz inequality (see Proposition (A.1.1) in Folland and
Kohn [12]) that

[ R L e e
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foranyh € Wl/2 ( y)andf e W(;;/)Q(XM). By using ), there exists a constant> 0
such that for anyo € qu)(X )N Domy, y(d,),0 < p <nandl < ¢ <n,

Il j2x,) < callloely, + 10;00%,)
= ca{p, L)y,
(3.7) < callelly2oi) 1Buell-1/2x,,
wherec, is independent op andy. SubstitutingV,¢ into (3.7), we have
(3.8) INuelli/2cx,) < callBuNupll-1/20x,) = callell-1/20x.),

wherec, is independent op and .. By using the extension operator on Euclidean space (see
Theorem 1.4.3.1 in Grisvard [13]), it follows that for any Lipschitz dom&jnc C”,

R, : WY(X,) — W2(C™)
such that for eacly € W'/%(X,,), R, = ¢ on X, and

(3.9) [Ruell1/2cm < esllelliyac),
for some positive constamt. The constant; in (3.9) can be chosen independento$ince
extension exists for any Lipschitz domain (see Theorem 1.4.3.1 in Grisvard [13]). By applying
R, to N, component-wise, we have, by using (3.8) gnd|(3.9), that

IR, Nupllijecxy < N1RuNupllijaeny < esllNuplliacx,) < cllell-1/20x.)
wherec > 0 is independent of.. SlnceWI/2 (X) is a Hilbert space, then from the weak
compactness for Hilbert spaces, there eX|sts a subsequeReVpl> which converges weakly

. 1/2 . .
in 1I//I;'(p’q)(X). Since R, N, ¢ converges weakly taVy in L%M)(X), we conclude thatVy €
W, (X) and '

[Noll1/20x) < hm [ R Nuplliyzx,) < cllell-1/20x)

Thus, N can be extended as a bounded operator figfj}/*(X) to /2 (X).

To prove thatV is compact, we note that for any bounded dom&iwith Lipschitz boundary
there exists a continuous linear operator

R: WY X) — WY
such thatR¢|x = ¢. Also, we note that the inclusion map
WY2(X) — L*(X) = W°(X)
is compact. Thus, by using the Rellich Lemma @Y, we conclude that
WI/Q(X) N W_I/Q(X)

is compact and this proves thaitis compact oriV/,, 1/2( X)andL?,

(X). O
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