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1. Introduction

Throughout this papé¥ denotes the set of positive integers, and the numbkrs €

N are fixed withA/ > 2. Let ¢ be the Euler’s totient function, and let'(n) be

the number of all natural numbets < n such that(k,n)* = 1, where(k,n)*

is the greatest divisad of k&, which is also aunitary divisor ofn (i.e., such that
(d,n/d) =1).

A classical (and still unsolved) problem proposed by Lehmer concerns the exis-

tence of a composite numbewhich fulfils the equation
(1.1) Mp(n)=n-—1

(see e.g. 3, p. 212-215]). Subbarao, Siva Rama Prasad and Dixit studiet] bj [
an analogous equation for the functigt

(1.2) Me*(n) =n—1.

Let

(1.3) n=p" Pyt Py

be the prime factorization of, wherep; < py, < -+ < p. anday,...,a, € N.

Putw(n) = r. Itis known (and easy to verify), that every solutiomf the equation
(1.1, must be odd and squarefree. Moreover, sincefof the form (L.3) we have

©*(n) = (P" = 1) - (py* = 1) - (pir = 1)

(see f]), no solutionn of the equation.2) can be the power of a prime number
PutSy, := {n € N: Mp*(n) = n — 1}, andS* := (J,,, Sy, In the papers
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[4, 5] the authors obtained the following estimationswof S*:

(1.4) n < (r—2.3)%"1 wherer = w(n),

(1.5) if 3t n, thenw(n) > 11 if 5|n, andw(n) > 17 if 5{n,
(1.6) w(n) > 1850 when 3|n,

2.7) w(n) > 17 when the number 455 is not a unitary divisor of n,
(1.8) w(n) > 33 for M = 3,4 or 5.

In this paper, we show that the techniquesajidllow us to obtain lower estimations
for the elements of;,, whereM > 4, which are considerably stronger than cited in
(1.5 — (1.8 andunconditional

Our main result reads as follows.

Theorem 1.1.Let M > 4 and letn € S;, be of the form(1.3).
(a) If py = 3, thenw(n) > 3049M/* — 1509.
(b) If py > 3, thenw(n) > 143M/4 — 1,

Thus, forn € S};;, whereM > 4, we have (in general)v(n) > 1540 when3|n
(for M = 4 this result is slightly weaker than ()), andw(n) > 142 when3 1 n
(for M = 4 this result is stronger thari (). Moreover,

e w(n) > 21147 when3|n, andw(n) > 493 when3 { n —for M = 5;
e w(n) > 166849 when3|n, andw(n) > 1709 when3 { n — for M = 6; and
e w(n) > 1249543 when3

n, andw(n) > 5912 when3 { n — for M > 7.

Further, by an argument similar to that @ Proof of corollary], we obtain
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Corollary 1.2. Let M > 4, and letn € S;, be of the form(1.3).

(a) If p, = 3, thenn > (CMGM)ﬁM, wherec = 0.597... = lo§6.

(b) If p1 > 3, thenn > (dM3M)3", whered = 0.366... = %%,

Using estimationX.4) we obtain the following analogue o2 Theorem 2].

Theorem 1.3.LetP = {P,, P»,... }, whereP, < P,,, for all i > 1, denote the set

of all prime numbers. For every integér> 2 there exists an infinite subsgt{ k) of
the setP such that

(a) for every pairwise distinct primesy, po,...,pr € P(k) anday, s, ..., €
N the numben = p$'p3?ps? - - - pi* does not fulfil equatiof!.2);

(b) P(k) is maximal with respect to inclusion.

(Notice that, by the general inequalityn) > 11 (see(1.4)), we haveP (k) = P
for k£ < 10.)
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2. Proofs

Proof of Theoreni.l. We give here only an outline of the proof of Theorém, in
which we essentially use the technique used in the prodt,dfffeorem 1].

Let n be of the form (.3), and letn’ be the squarefree kernel of i.e.,n’ =
p1-p2 - pp. Notice first that

(2.9) o(n) so(n’)'

The first step of the proof oP] Theorem 1] is the inequality < M < n/p(n) for n

odd and squarefree. (= n’). An exact analysis of this proof shows that, by equality

(2.9 the following result is true:

Lemma 2.1. Let M > 4 be an integer, let: be of the form(1.3) with p; > 3, and
suppose that

(2.10) M < S0

Then
(a) w(n) > 3049M/4 — 1509 if p; = 3 andp; = 5(mod 6) for 2 < j < w(n),
M/ _ i
= — 1 .
(b) w(n) > 143M/* — 1if p; > 3

Sincen € S;;, andM > 4, by equation {.2) and the forms ofy* and ¢, we
obtain:
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Therefore every element € S;, fulfils inequality (2.10).

Further, if3|n (i.e. p; = 3), then from (..2) and the form ofy*, we obtain that
3¢ (p?j —1), whence3 { (p; — 1) for j > 2; thusp; = 5(mod 6). Now we can apply
condition (a) of Lemma.1, which finishes the proof of case (a) of our theorem.

Case (b) of our theorem follows from case (b) of Lemima O

Proof of Theoreni.3. We will use here the idea and symbols used in the proof of

[2, Theorem 2]. LefN]* be the set ok-element increasing sequencesN\gfwhere
k> 2.

Consider the functiorf : [N]* — {0, 1} of the form f (i1, is, ..., i) = 0 iff the
numberP;* P? - - - Pi* fulfils equation (.2) for someay, ..., a; € N.

By the Ramsey Theoreni], there is an infinite subsé{(k) of the setN such

that
FON(R)®) = {0} or  f([N(k)]") = {1}.
Respectively, there is an infinite subg(tk) of P such that

*) PPy Pt e ST forsome ap,...,op €N,

or

(**) PPy Pt g St forall og,...,a, €N,

for all pairwise distinct element®,,..., P, € P(k). From inequality {.4) we

obtain that, for every: > 2 the number#{n € N : w(n) < k} is finite, and thus
case(x) is impossible. Hence casgex) takes place, which implies that the gek)
fulfils condition (a) of Theorem..3.

The existence of a maximal (with respect to inclusion)Bét) follows from
Kuratowski-Zorn’s Lemma. O]
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