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ABSTRACT. For functions belonging to each of the subclass¢s(a) and N* (o) of normal-

ized analytic functions in the open unit disk which are investigated in this paper when- 1,

the authors derive several subordination results involving the Hadamard product (or convolution)
of the associated functions. A number of interesting consequences of some of these subordina-
tion results are also discussed.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A denote the class of functiorfsnormalizedby
(1.1) F)=z2+> an2",

which areanalyticin the openunit disk
U={z:2€C and |z| <1}.
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We denote byM («) and NV («) two interesting subclasses of the clagswhich are defined
(for a > 1) as follows:

(1.2) /\/l(a)::{f:feA and 9%(

and
(1.3) N (a) = {f:fGA and 9%(1—1—2]{//((;))) <« (z € U; a>1)}.

The classes\ («) and NV («) were introduced and studied by Owaal. ([1] and [2]). In
fact, forl < a < %, these classes were investigated earlier by Uralegeidali (cf. [5]; see
also [3] and[[4]).

It follows from the definitions[(1]2) and (1.3) that

(1.4) f(z)eN(a) <= zf"(z) e M(a).

We begin by recalling each of the following coefficient inequalities associated with the func-
tion classes\ (o) and N («).

Theorem A (Nishiwaki and Owal[l, p. 2, Theorem 2.1]f f € A, given by(1.1), satisfies the
coefficient inequality

2f'(2)
f(z)

)<a (zEU;a>1)}

(1.5) Sl =N)+n+A—2a][a,] £2(a—1)

(@>10=A=1),
thenf € M (a).
Theorem B (Nishiwaki and Owal[lL, p. 3, Theorem 2.3]f f € A, given by(1L.1), satisfies the
coefficient inequality

(1.6) > nf(n =X +[n+-20]|a,| £2(a—1)
n=2

(a>1; 0=A=1),
thenf € N («).
In view of Theoreni A and Theorem B, we now introduce the subclasses
(1.7) M* (o) C M () and N (a) CN(a) (a>1),

which consist of functiong € A whose Taylor-Maclaurin coefficients, satisfy the inequal-
ities (1.5) and[(1)6), respectively. In our proposed investigation of functions in the classes
M* (o) andN* («), we shall also make use of the following definitions and results.

Defintition 1 (Hadamard Product or Convolutionfsiven two functionsf, ¢ € A, where
f(z)is given by(1.1)) andg(z) is defined by

Z)=z+ i b, 2",
n=2

the Hadamard produdtor convolutior) f « g is defined as usual by

(f*9) (2 —Z+Z an by 2" = (g f) (2).
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Defintition 2 (Subordination Principle)For two functionsf and g, analytic inU, we say that
the functionf (z) is subordinate tg (z) in U, and write

f=g o f(z)<g(z) (2€0),
if there exists a Schwarz functian(z), analytic inU with
w(0)=0 and |w(z)| <1 (z€U),
such that
f)=g(w(z)) (2€D).
In particular, if the functiory is univalent inU, the above subordination is equivalent to
f(0)=g(0) and f(U)Cg(U)

Defintition 3 (Subordinating Factor Sequencé)sequencéb,, } -, of complex numbers is said
to be a subordinating factor sequence if, whenef/gr) of the form(1.1)) is analytic, univalent
and convex ifJ, we have the subordination given by

(1.8) i ap by, 2" < f(2) (z€eU; a:=1).

Theorem C(cf. Wilf [6]) . The sequencf, }, -, is a subordinating factor sequence if and only
if

(1.9) %<1+2ibnz">>0 (z € U).

2. SUBORDINATION RESULTS FOR THE CLASSES M*(a) AND M(a)

Our first main result (Theorefr} 1 below) provides a sharp subordination result involving the
function classM* («).

Theorem 1. Let the functionf (z) defined by(1.1]) be in the class\1* («). Also letXC denote
the familiar class of functiong € .4 which are also univalent and convexlih Then

2=XN)+1[24+X—2q]

(2.1) ﬂ@a—k%+ﬂ+k—2Mﬁf*”@><g@)
(zeU; 0= =1, a>1;g€Kk)

and

2.2) R(f(z) > - ZaZNFREAZ2] gy

(2=XN)+ 24+ )X—2¢q]
The following constant factor in the subordination resglt)):
(2=X) 424+ —2¢
2[2ac = A) + 12+ X —2a]
cannot be replaced by a larger one.

Proof. Let f(z) € M*(«) and suppose that

g(2) :z—l—chz”EIC.

n=2
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Then we readily have

2=\ +[2+ X —2q]
2@a—N+ Rt A—2a] L9

2= N+ 24+ X =20 - n
T 2[2a— N 42+ A —2a]] ”;;C”“"Z ‘
Thus, by Definitionj B, the subordination resqlt {2.1) will hold true if

(2—=X)+ 2+ -2 >
(2.4) {2[(204—)\)—1- 124+ A — 2] an}n 1

(2.3)

is a subordinating factor sequence (with, of course= 1). In view of Theoren C, this is
equivalent to the following inequality:

(2.5) <1+i S T2+ 20 an z)>0 (z € U).

+|2—|—)\—2a|

Now, since
(n—=A)+|n+ X —2a] 0=SAST1 a>1)
is anincreasingfunction ofn, we have

= A+ ]2+ A= 20q
1
( +Z (200 — A +|2+)\—2a|a Z)
2 — 2 -2
w14 2=X)+ 2+ X —2q]
(2a =) + ]2+ X —2¢

1
2+k—2
+@a— yuz+x—2m§: A +124k - 2ajan 2 >

(2—=XN)+[2+X—2q]

=1-
(2a—A)+ 24+ X —2q|
1 o0
- D [(n=A) +[n+ A= 2a]a|
(200 = A) + 2+ A = 2a] =
2—=XN)+[24+)X—2q] 2(ac — 1)
>1-— r— r
(2o —A)+ 24+ X — 2| [(2a —A) 4+ |24+ X — 2]
(2.6) >0 (Jz2| =r < 1),

where we have also made use of the asserfion (1.5) of Théofem A. This evidently proves the
inequality [2.5), and hence also the subordination relsult (2.1) asserted by Théorem 1.
The inequality[(2.R) follows fron{ (Z2]1) upon setting

Z o0
2.7 = = " .
(2.7) g(2) T Z+nE:2z e
Next we consider the function:
2(a—1) )
2.8 =z — 021 1
(2.8) a(z) =2 2-N+2+r—2a] (0=Asta>1),
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which is a member of the claset*(«v). Then, by using (2]1), we have
2—=XN)+[24+X—2q] z
NGa—N+pra—2a) @ S, el
It is also easily verified for the function(z) defined by|(2.]7) that
_ 2-=XN)+1[24+)X—2q] 1
2.10 ——
(2.10) mm{%(2[(2a—)\)+|2+)\—2a|] a(z) ; el
which completes the proof of Theorém 1. O

Corollary 1. Let the functionf(z) defined by([L.1)) be in the class\(«). Then the assertions
and of Theorenfl| hold true. Furthermore, the following constant factor

2—=XN)+[2+X—2q
2[(20c = A) + 12+ X — 2a]
cannot be replaced by a larger one.

(2.9)

By takingA =1 andl < o < g in CorollaryB, we obtain

Corollary 2. Let the functionf(z) defined by(l.1]) be in the class\I(«). Then

(2.11) (1 - %a> (f*9)(z) <g(2)
<z€U; 1<oc§;; gelC)

and

(2.12) R(f(z)) > — L (z€U).

2 -«
The constant factot — S« in the subordination resulf2.11) cannot be replaced by a larger
one.
3. SUBORDINATION RESULTS FOR THE CLASSESN*(a) AND N («)

Our proof of Theorem |2 below is much akin to that of Theofém 1. Here we make use of
Theorenj B in place of Theorem A.

Theorem 2. Let the functionf(z) defined by(1.1) be in the class\V*(«). Then
2-=XN)+24+X—2q]

3.1) Mati-N+Rrrza) 96 <)
(zeU; 02 XS, a>1; g€ k)

and

(3.2) gﬁﬂd)>_(a+1—AyH2+A—2M (zeU).

2=XN)+1[24+X—2q]
The following constant factor in the subordination resgit]):
(2=X) 424+ X —2¢|
2[(a+1—=A)+ 24+ X —2a]
cannot be replaced by a larger one.
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Corollary 3. Let the functionf(z) defined by(l.1]) be in the classV'(«). Then the assertions
(3.1) and (3.2)) of Theoren] hold true. Furthermore, the following constant factor

2—=XN)+[2+X—2q
2[(a+1 =X+ 2+ X —2a]
cannot be replaced by a larger one.

. 3. : :
By letting\A = 1 andl < o < 5 in CorollaryB, we obtain the followinfurther consequence
of Theoreni 2.

Corollary 4. Let the functionf(z) defined by(l.1)) be in the classV'(«). Then

2—«
(3.3) 23-a) (f*9)(z) <g(2)
(zEU; 1<a§g; g€lC>.

and

3—«
The following constant factor in the subordination res@lt):

2—«

2(3—«)
cannot be replaced by a larger one.
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